JPH03252064A - Inorganic nonaqueous electrolytic battery and manufacture thereof - Google Patents

Inorganic nonaqueous electrolytic battery and manufacture thereof

Info

Publication number
JPH03252064A
JPH03252064A JP2050315A JP5031590A JPH03252064A JP H03252064 A JPH03252064 A JP H03252064A JP 2050315 A JP2050315 A JP 2050315A JP 5031590 A JP5031590 A JP 5031590A JP H03252064 A JPH03252064 A JP H03252064A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
positive electrode
electrolyte battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2050315A
Other languages
Japanese (ja)
Inventor
Shuichi Wada
秀一 和田
Tomoyuki Shimomitsu
下光 智之
Akira Kawakami
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2050315A priority Critical patent/JPH03252064A/en
Publication of JPH03252064A publication Critical patent/JPH03252064A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To prevent a reduction in operating voltage by long-term storage and stabilize discharge characteristic by conducting a fixed quantity of pre- discharge at a low current such that a negative electrode can uniformly discharge after battery assembling. CONSTITUTION:An inorganic nonaqueous electrolytic battery is formed of a negative electrode 1, a batter vessel 2, a positive electrode 3, a separator 5, an electrolyte 5, a positive electrode collector 6, a battery cap 7, a body, a glass layer 9, and a positive electrode terminal 10. After battery assembling, a slight quantity of electricity is pre-discharged at a low current. The current at the time of pre-discharge is less than 0.6mA per unit area of lithium. As the discharge quantity in the pre-discharge, 10% or more of the theoretical electric capacity of lithium of the negative electrode 1 is proper in the view of stability of effect. Hence, a reduction in operating voltage by a long-term storage can be prevented, and discharge characteristic can be stabilized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、正極活物質のオキシハロゲン化物が電解液の
溶媒を兼ねる無機非水電解液電池およびその製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an inorganic nonaqueous electrolyte battery in which an oxyhalide as a positive electrode active material also serves as a solvent for an electrolyte, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

塩化チオニル、塩化スルフリル、塩化ホスホリルなどの
常温で液体のオキシハロゲン化物を正極活物質に用い、
リチウム、ナトリウム、カリウムなどのアルカリ金属を
負極に用い、炭素多孔質成形体を正極に用い、上記正極
活物質のオキシハロゲン化物が電解液の溶媒を兼ねる無
機非水電解液電池は、エネルギー密度が高く、低温でも
作動するなど、優れた特性を有するものの、正極活物質
のオキシハロゲン化物と負極のアルカリ金属とが接触し
ているため、長期間貯蔵すると、負極上にハロゲン化ア
ルカリを主体とする被膜が生成し、この被膜が緻密で強
固な被膜に成長して、電池反応を阻害し、電池の作動電
圧を著しく低下させる原因になる。
Oxyhalides that are liquid at room temperature, such as thionyl chloride, sulfuryl chloride, and phosphoryl chloride, are used as positive electrode active materials.
An inorganic nonaqueous electrolyte battery uses an alkali metal such as lithium, sodium, or potassium for the negative electrode and a porous carbon material for the positive electrode, and the oxyhalide of the positive electrode active material also serves as the solvent for the electrolyte. Although it has excellent properties such as being able to operate at high temperatures and at low temperatures, the oxyhalide in the positive electrode active material and the alkali metal in the negative electrode are in contact with each other, so if stored for a long period of time, alkali halides will form on the negative electrode. A film is formed and this film grows into a dense and strong film that inhibits the battery reaction and causes a significant drop in the battery's operating voltage.

そこで、それを防止する対策として、電解液中にビニル
ポリマーを添加する方法(特開昭62−128454号
公報)、電池組立後に高温で貯蔵する方法(特開昭62
−198056号公報)、負極にシアノアクリレートを
塗布する方法(米国特許第4,402.995号明細書
)などが提案されているが、ビニルポリマーやシアノア
クリレートなどの有機物を添加したり、塗布する場合に
は、それらと電解液との反応が生じるおそれがあり、ま
た、高温で貯蔵する場合には、セパレータ中のバインダ
ーが電解液中に溶出して電解液と反応し、セパレータの
強度を低下させるなどの問題がある。
Therefore, as measures to prevent this, a method of adding vinyl polymer to the electrolyte (Japanese Patent Laid-Open No. 62-128454), a method of storing the battery at high temperature after assembly (Japanese Patent Laid-Open No. 62-128454),
-198056) and a method of coating the negative electrode with cyanoacrylate (U.S. Pat. No. 4,402.995), but methods such as adding or coating an organic substance such as vinyl polymer or cyanoacrylate have been proposed. If the separator is stored at high temperatures, the binder in the separator may elute into the electrolyte and react with the electrolyte, reducing the strength of the separator. There are problems such as letting

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記従来の無機非水電解液電池が持っていた
長期間の貯蔵によって電池の作動電圧が低下するという
問題点を解決し、長期間貯蔵しても作動電圧の著しい低
下が生じない無機非水電解液電池を提供することを目的
とする。
The present invention solves the problem that the conventional inorganic non-aqueous electrolyte battery has, in which the operating voltage of the battery decreases due to long-term storage, and the operating voltage does not significantly decrease even after long-term storage. The purpose of the present invention is to provide an inorganic non-aqueous electrolyte battery.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、電池組立後、低電流で若干の電気量を放電さ
せることにより、上記目的を達成したものである。
The present invention achieves the above object by discharging a small amount of electricity at a low current after battery assembly.

上記のように、電池組立後、低電流で若干の電気量を放
電する(以下、この電池組立後の放電を予備放電という
)ことにより、長期間貯蔵した場合でも作動電圧の著し
い低下が生じない電池が得られる理由を、代表的な無機
非水電解液電池であるリチウム−塩化チオニル電池を例
にあげて説明すると、予備放電により負極表面が清浄な
リチウム面となり、その後に不純物を含まない塩化リチ
ウム被膜が形成されると、この塩化リチウム被膜が保護
被膜として働き、長期間の貯蔵によっても作動電圧の著
しい低下を招かない、すなわち、上記のような予備放電
をしない場合でも、負極表面に塩化リチウム被膜が形成
されるが、該塩化リチウム被膜は不純物を含んでいて、
それが緻密で強固な被膜に成長する原因になり、電池反
応を阻害して、作動電圧を低下させるが、予備放電によ
って、−旦、負極表面を清浄なリチウム面にし、その後
、その上に塩化リチウムの被膜を形成させると、該塩化
リチウム被膜は不純物を含まず、長期間の貯蔵によって
も、緻密で強固な被膜にならないので、電池反応を阻害
せず、したがって、作動電圧の著しい低下を招くことが
なく、電池の放電特性が安定化する。
As mentioned above, by discharging a small amount of electricity at a low current after battery assembly (hereinafter, this discharge after battery assembly is referred to as pre-discharge), there will be no significant drop in operating voltage even when stored for a long time. To explain why a battery can be obtained, using a lithium-thionyl chloride battery, which is a typical inorganic non-aqueous electrolyte battery, as an example, the negative electrode surface becomes a clean lithium surface through preliminary discharge, and then chloride containing no impurities is formed. Once a lithium film is formed, this lithium chloride film acts as a protective film and does not cause a significant drop in operating voltage even after long-term storage.In other words, even without pre-discharging as described above, chloride remains on the surface of the negative electrode. A lithium film is formed, but the lithium chloride film contains impurities,
This causes the growth of a dense and strong film, which inhibits the battery reaction and lowers the operating voltage. When a lithium film is formed, the lithium chloride film does not contain impurities and does not become a dense and strong film even after long-term storage, so it does not inhibit battery reactions and therefore causes a significant drop in operating voltage. Therefore, the discharge characteristics of the battery are stabilized.

上記予備放電にあたっては、低電流で徐々に放電させる
と、負極表面の全面が均一に放電するので、均一に清浄
なリチウム面が得られることになる。そして、この予備
放電時の電流としては、リチウムの単位面積当り0.6
mA以下にすることが適切である。電流が小さいほどリ
チウム表面がより均一に清浄になるが、電流が小さすぎ
ると、リチウム表面を清浄にする作用が不充分になるの
で、通常はリチウムの単位面積当り0.05mA以上で
、かつ0.6mA以下で行うのが好ましい。
In the preliminary discharge, if the negative electrode is gradually discharged at a low current, the entire surface of the negative electrode will be uniformly discharged, so that a uniformly clean lithium surface will be obtained. The current during this preliminary discharge is 0.6 per unit area of lithium.
It is appropriate to keep it below mA. The smaller the current, the more uniformly the lithium surface will be cleaned, but if the current is too small, the cleaning effect on the lithium surface will be insufficient. It is preferable to use less than .6 mA.

予備放電での放電量としては、負極のリチウムの理論電
気容量の10%以上にするのが、効果の安定上から適切
である。この理由は、現在のところ明確ではないが、負
極のリチウムの理論電気容量の10%以上を予備放電す
ることによって、負極のリチウム表面が充分に均一な清
浄面になることと、電解液中の放電反応生成物濃度が、
ある一定量を超えると、負極のリチウム表面に形成され
る塩化リチウム被膜が不純物を含まなくなるものと考え
られる。
It is appropriate for the amount of discharge in the preliminary discharge to be 10% or more of the theoretical electric capacity of lithium in the negative electrode, from the viewpoint of stabilizing the effect. The reason for this is not clear at present, but by pre-discharging 10% or more of the theoretical capacity of the lithium in the negative electrode, the lithium surface in the negative electrode becomes a sufficiently uniform and clean surface, and the lithium in the electrolyte becomes The discharge reaction product concentration is
It is considered that when the amount exceeds a certain level, the lithium chloride film formed on the lithium surface of the negative electrode no longer contains impurities.

予備放電での放電量は、リチウム表面を清浄にするとい
う観点からは多くてもさしつかえないが、予備放電での
放電量の増加に伴って電池の放電容量が低下するので、
通常はリチウムの理論電気容量の15%以下にするのが
好ましい、なお、本発明において、負極のリチウムの理
論電気容量とは、電池組立にあたって使用したリチウム
の理論電気容量、つまり、仕込んだリチウムの理論電気
容量を意味するものである。
The amount of discharge during preliminary discharge may be large from the viewpoint of cleaning the lithium surface, but as the amount of discharge during preliminary discharge increases, the discharge capacity of the battery decreases.
Normally, it is preferable to set the value to 15% or less of the theoretical electric capacity of lithium. In the present invention, the theoretical electric capacity of lithium in the negative electrode refers to the theoretical electric capacity of the lithium used in battery assembly. It means the theoretical electric capacity.

また、上記予備放電後、電池を45〜80℃で2〜7日
間エイジングすると、その間に塩化リチウムの適切な被
膜が形成され、以後の貯蔵によっても、安定して、作動
電圧の著しい低下を防止することができる。エイジング
時の温度が45℃より低い場合は効果が少なく、80″
Cを超えるとセパレータ中のバインダーが電解液中に溶
出して電解液と反応し、セパレータの強度が弱くなる。
In addition, if the battery is aged for 2 to 7 days at 45 to 80°C after the above pre-discharge, a suitable film of lithium chloride will be formed during that time, and it will remain stable even during subsequent storage, preventing a significant drop in operating voltage. can do. If the temperature at the time of aging is lower than 45℃, there is little effect, and 80"
When it exceeds C, the binder in the separator dissolves into the electrolyte and reacts with the electrolyte, weakening the strength of the separator.

以上の説明においては、オキシハロゲン化物として塩化
チオニルを用い、アルカリ金属としてリチウムを用いた
リチウム−塩化チオニル電池について説明したが、オキ
シハロゲン化物として、塩化スルフリル、塩化ホスホリ
ルなどを用い、アルカリ金属としてナトリウム、カリウ
ムなどを用いた無機非水電解液電池においても、上記予
備放電による効果は同様に得られる。
In the above explanation, a lithium-thionyl chloride battery was explained using thionyl chloride as the oxyhalide and lithium as the alkali metal. In an inorganic non-aqueous electrolyte battery using , potassium, or the like, the same effect of preliminary discharge as described above can be obtained.

それ故、本発明においては、正極活物質として、塩化チ
オニル以外にも、塩化スルフリル、塩化ホスホリルなど
の常温で液体のオキシハロゲン化物を用いることができ
る。これらのオキシハロゲン化物は正極活物質であると
ともに電解液の溶媒とシテ用いられ、電解液はこれらの
オキシハロゲン化物にLiAlC1n 、LiAlBr
4、LiGac14、LiAlC1+oなどの支持電解
質を溶融させることによって調製される。なお、電解液
の調製にあたって、LiAlC1,などの支持電解質は
LiC1とAlCl、をオキシハロゲン化物に添加して
電解液中でLiAlC1,の形で存在(ただし、イオン
化してLi−イオンとAlCl4+イオンで存在)する
ようにしてもよい、また、負極にも、リチウム以外に、
ナトリウム、カリウムなどのアルカリ金属を用いること
ができる。
Therefore, in the present invention, in addition to thionyl chloride, oxyhalides that are liquid at room temperature, such as sulfuryl chloride and phosphoryl chloride, can be used as the positive electrode active material. These oxyhalides are active materials for the positive electrode and are also used as a solvent in the electrolyte, and the electrolyte contains these oxyhalides as well as LiAlC1n and LiAlBr.
4, prepared by melting a supporting electrolyte such as LiGac14, LiAlC1+o. In preparing the electrolyte, supporting electrolytes such as LiAlC1 are present in the form of LiAlC1 in the electrolyte by adding LiC1 and AlCl to oxyhalides (however, they are ionized to form Li- ions and AlCl4+ ions). In addition to lithium, the negative electrode may also contain
Alkali metals such as sodium and potassium can be used.

〔実施例] つぎに実施例をあげて本発明をさらに説明する。〔Example] Next, the present invention will be further explained with reference to Examples.

空孔率95容量%、厚さ200μmのガラス繊維不織布
をセパレータとして用い、負極にはリチウムを用い、正
極活物質には塩化チオニルを用い、電解液にはこの塩化
チオニルにL i A I CI gを1゜2wol/
j!溶解させたものを用い、塩化チオニルリチウム系で
第1図に示す構造の単3形の無機非水電解液電池を作製
した。
A glass fiber non-woven fabric with a porosity of 95% by volume and a thickness of 200 μm was used as a separator, lithium was used for the negative electrode, thionyl chloride was used for the positive electrode active material, and the electrolyte contained Li A I CI g in this thionyl chloride. 1゜2wol/
j! Using the dissolved material, an AA-sized inorganic non-aqueous electrolyte battery based on lithium thionyl chloride and having the structure shown in FIG. 1 was fabricated.

第1図に示す電池について説明すると、(1)は負極で
あり、この負極(1)は、リチウムからなり、リチウム
のシートをステンレス鋼製で有底円筒状の電池容器(2
)の内周面に圧着することによって円筒状に形成されて
いる。(3)は正極であり、この正極(3)は、アセチ
レンブラックに結着剤としてポリテトラフルオロエチレ
ンを少量添加した炭素を主構成材料とする円柱状の炭素
多孔質成形体からなり、前記負極(1)とセパレータ(
4)を介して設置されている。セパレータ(4)はガラ
ス繊維不織布からなり、円筒状をしていて、前記円筒状
の負極(1)と円柱状の正極(3)とを隔離している。
To explain the battery shown in Fig. 1, (1) is a negative electrode, and this negative electrode (1) is made of lithium, and a lithium sheet is placed in a bottomed cylindrical battery container (2) made of stainless steel.
) is formed into a cylindrical shape by being crimped onto the inner peripheral surface of the cylinder. (3) is a positive electrode, and this positive electrode (3) is made of a cylindrical porous carbon molded body whose main constituent material is carbon made by adding a small amount of polytetrafluoroethylene as a binder to acetylene black. (1) and separator (
4). The separator (4) is made of glass fiber nonwoven fabric, has a cylindrical shape, and separates the cylindrical negative electrode (1) and the cylindrical positive electrode (3).

(5)は電解液であり、この電解液(5)は正極活物質
である塩化チオニルが電解液溶媒として用いられており
、この塩化チオニルに支持電解質としてLiAlCl、
を溶解することによって調製されたものである。このよ
うに正極活物質の塩化チオニルが電解液溶媒を兼ねてい
る関係で、この電池は、他の電池と異なって、多量の電
解液(5)が電池内に注入されており、また、塩化チオ
ニルが正極活物質であることからもわかるように、前記
正極(3)は、それ自身が反応するものではなく、正極
活物質の塩化チオニルと負極(1)からイオン化して溶
出してきたリチウムイオンとの反応場所となるものであ
る。(6)はステンレス調整捧からなる正極集電体で、
(′7)は電池蓋であり、この電池蓋(7)はボディ(
8)とガラス層(9)と正極端子(10)を有し、ボデ
ィ(8)はステンレス鋼で形成されていて、その立ち上
がった外周部が前記電池容器(2)の開口端部と溶接に
より接合されている。ガラス層(9)はボディ(8)の
内周側に設けられていて、このガラス層(9)はボディ
(8)と正極端子00)とを絶縁するとともに、外周面
でその構成ガラスがボディ(8)の内周面に融着し、内
周面でその構成ガラスが正極端子0■の外周面に融着し
て、ボディ(8)と正極端子(10)との間をシールし
ている。正極端子00)はステンレス鋼製でその一部は
電池組立時はパイプ状をしていて電解液注入口として使
用され、その上端部を電解液注入後にその中空部内に挿
入された正極集電体(6)の上部と溶接して封止したも
のである。
(5) is an electrolytic solution, and this electrolytic solution (5) uses thionyl chloride, which is a positive electrode active material, as an electrolyte solvent, and this thionyl chloride has LiAlCl as a supporting electrolyte,
It is prepared by dissolving. Because the positive electrode active material thionyl chloride also serves as the electrolyte solvent, this battery differs from other batteries in that a large amount of electrolyte (5) is injected into the battery, and thionyl chloride As can be seen from the fact that thionyl is the positive electrode active material, the positive electrode (3) does not react with itself, but lithium ions ionized and eluted from the positive electrode active material thionyl chloride and the negative electrode (1). This is the place where the reaction takes place. (6) is a positive electrode current collector made of stainless steel.
('7) is the battery cover, and this battery cover (7) is the body (
8), a glass layer (9), and a positive terminal (10), the body (8) is made of stainless steel, and its raised outer periphery is welded to the open end of the battery container (2). It is joined. The glass layer (9) is provided on the inner circumferential side of the body (8), and this glass layer (9) insulates the body (8) and the positive electrode terminal 00), and the constituent glass on the outer circumferential surface of the body (8) is fused to the inner circumferential surface of the body (8), and the constituent glass is fused to the outer circumferential surface of the positive terminal 0■ on the inner circumferential surface to seal between the body (8) and the positive terminal (10). There is. The positive electrode terminal 00) is made of stainless steel, and part of it is shaped like a pipe and is used as an electrolyte inlet when the battery is assembled, and its upper end is used as the positive electrode current collector inserted into the hollow part after the electrolyte is injected. It is sealed by welding to the upper part of (6).

00は底部絶縁材であり、この底部絶縁材00はガラス
繊維不織布からなり、正極(3)と負極端子を兼ねる電
池容器(2)とを絶縁する。0りは上部絶縁材であり、
この上部絶縁材0りは上記底部絶縁材θ0と同様のガラ
ス繊維不織布からなり、正極(3)と負極端子を兼ねる
電池蓋(7)のボディ(8)とが直接接触しないように
絶縁している。そして、電池内の上部には、温度上昇時
の電解液の体積膨張を吸収するために空気室a■が設け
られている。
00 is a bottom insulating material, and this bottom insulating material 00 is made of glass fiber nonwoven fabric and insulates the positive electrode (3) and the battery container (2) which also serves as the negative electrode terminal. 0 is the upper insulation material,
This upper insulating material 0 is made of the same glass fiber nonwoven fabric as the bottom insulating material θ0, and is insulated to prevent direct contact between the positive electrode (3) and the body (8) of the battery lid (7), which also serves as the negative electrode terminal. There is. An air chamber a2 is provided in the upper part of the battery to absorb the volumetric expansion of the electrolytic solution when the temperature rises.

上記電池の組立は、次に示すように行われた。The above battery was assembled as shown below.

まず、有底円筒状の電池容器(2)の内周面にリチウム
シートを圧着して負極(1)を形成し、その負極(1)
の内周面にそってセパレータ(4)を配置し、ついで底
部絶縁材0θを電池容器(2)の底部に配置し、円柱状
の正極(3)をセパレータ(4)の内周側に挿入し、正
極(3)上に上部絶縁材面を配置し、電池容器(2)の
開口部に電池蓋(7)を嵌合し、電池蓋(7)のボディ
(8)の外周部と電池容器(2)の開口端部とを炭酸ガ
スレーザーで溶接して接合し、電池蓋(7)のパイプ部
より電解液を電池内に注入し、電解液注入後に上記パイ
プ部に正極集電体(6)を挿入し、正極集電体(6)の
下端を上部絶縁材02)を貫通させて正極(3)内に到
達させ、正極集電体(6)の上部をパイプ部の上端部と
溶接して密閉するとともに正極端子0(1)を構成して
、第1図に示す状態に電池を組み立てた。
First, a lithium sheet is pressure-bonded to the inner peripheral surface of a cylindrical battery container (2) with a bottom to form a negative electrode (1).
A separator (4) is placed along the inner circumferential surface of the cell, then a bottom insulating material 0θ is placed at the bottom of the battery container (2), and a cylindrical positive electrode (3) is inserted into the inner circumferential side of the separator (4). Then, place the upper insulating material surface on the positive electrode (3), fit the battery lid (7) into the opening of the battery container (2), and connect the outer periphery of the body (8) of the battery lid (7) with the battery. The open end of the container (2) is welded and joined with a carbon dioxide laser, the electrolyte is injected into the battery through the pipe part of the battery lid (7), and after the electrolyte is injected, the positive electrode current collector is inserted into the pipe part. (6), pass the lower end of the positive electrode current collector (6) through the upper insulating material 02) and reach the inside of the positive electrode (3), and insert the upper part of the positive electrode current collector (6) into the upper end of the pipe section. The battery was assembled in the state shown in FIG. 1 by welding and sealing and forming the positive electrode terminal 0(1).

上記のようにして組み立てた電池を負極のりチウムの単
位面積当り0.05mA、0.2mA、0.6mA、1
.0mA、3mAの電流で、各を流ごとにリチウムの理
論電気容量の4%、7%、10%、15%を予備放電さ
せた。
The batteries assembled as described above were charged at 0.05 mA, 0.2 mA, 0.6 mA per unit area of negative electrode lithium, and 1
.. Each flow was pre-discharged to 4%, 7%, 10%, and 15% of the theoretical capacitance of lithium at currents of 0 mA and 3 mA.

これらの電池を常温で300日間貯蔵し、貯蔵後、20
℃、100Ωで5秒間放電させて、閉路電圧を測定した
。その結果を第2図に示す。
These batteries were stored at room temperature for 300 days, and after storage, 20
The closed circuit voltage was measured by discharging at 100Ω for 5 seconds at °C. The results are shown in FIG.

また、0.6mAの電流で、リチウムの理論電気容量の
10%を予備放電した電池を、予備放電終了後、直ちに
、30℃、45℃160℃、80℃、100℃の温度で
、それぞれ1日間、2日間、3日間、7日間、14日間
貯蔵してエイジングを行った。
In addition, a battery pre-discharged to 10% of the theoretical capacitance of lithium with a current of 0.6 mA was immediately discharged at 30°C, 45°C, 160°C, 80°C, and 100°C for 1 hour each. Aging was performed by storing for 1 day, 2 days, 3 days, 7 days, and 14 days.

これらの電池についても、前記と同様に、常温で300
日間の貯蔵を行い、貯蔵後、20℃、100Ωで5秒間
放電させて、閉路電圧を測定した。その結果を第3図に
示す。
These batteries also have a lifespan of 300°C at room temperature, as described above.
After storage, the battery was discharged at 20° C. and 100Ω for 5 seconds, and the closed circuit voltage was measured. The results are shown in FIG.

第2図においては、予備放電時の電流を横軸にとり、閉
路電圧を縦軸にとり、予備放電時の放電量ごとに予備放
電時の電流と閉路電圧との関係を示しているが、この第
2図に示すように、リチウムの単位面積当り0.6mA
以下の電流で、リチウムの理論電気容量の10%以上を
予備放電したときには、300日間の貯蔵後においても
、閉路電圧が3.0V以上あり、作動電圧の低下が少な
いことを示していた。なお、予備放電をまったくしなか
った場合の貯蔵後の閉路電圧は2.55Vであり、リチ
ウムの単位面積当り0.6mA以下の電流でリチウムの
理論電気容量の10%以上を予備放電した場合に比べて
、閉路電圧が低く、貯蔵による作動電圧の低下が大きい
ことを示していた。
In Figure 2, the current during pre-discharge is plotted on the horizontal axis, and the closed-circuit voltage is plotted on the vertical axis, and the relationship between the current during pre-discharge and the closed-circuit voltage is shown for each amount of discharge during pre-discharge. As shown in Figure 2, 0.6 mA per unit area of lithium
When 10% or more of the theoretical electric capacity of lithium was predischarged at the following current, the closed circuit voltage was 3.0 V or more even after 300 days of storage, indicating that the operating voltage did not decrease much. The closed circuit voltage after storage without any pre-discharge is 2.55V, and if 10% or more of the theoretical capacitance of lithium is pre-discharged with a current of 0.6 mA or less per unit area of lithium. In comparison, the closed-circuit voltage was low, indicating that the drop in operating voltage due to storage was large.

なお、リチウムの理論電気容量の10%、15%を予備
放電したものでも、1.0m A、3.0mAの電流で
予備放電したものは、閉路電圧の著しい低下はなかった
が、電池を分解してみると、リチウム表面が不均一に消
費されており、予備放電後の電池を使用したときに電流
密度が不均一になることが予測されるなど、前処理とし
ては好ましくなかった。
In addition, even when pre-discharging 10% or 15% of the theoretical capacity of lithium, or pre-discharging at a current of 1.0 mA or 3.0 mA, there was no significant decrease in the closed circuit voltage, but the battery could be disassembled. As a result, the lithium surface was consumed unevenly, and it was predicted that the current density would be uneven when the pre-discharged battery was used, which was not desirable as a pretreatment.

第3図においては、エイジング時の貯蔵日数を横軸にと
り、閉路電圧を縦軸にとり、エイジング時の温度ごとに
貯蔵日数と閉路電圧との関係を示しているが、第3図に
示すように、エイジングの温度が45〜80℃で2〜7
日間貯蔵してエイジングを行った場合には、閉路電圧が
高く、効果がさらに向上することが認められた。
In Figure 3, the horizontal axis represents the number of storage days during aging, and the closed circuit voltage represents the vertical axis, and the relationship between the number of storage days and the closed circuit voltage is shown for each temperature during aging. , aging temperature is 45-80℃ and 2-7
When aging was performed by storing for days, the closed circuit voltage was high and the effect was found to be further improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、電池組立後、負極表
面が均一に放電できるような低電流で一定量予備放電す
ることにより、長期間の貯蔵によっても作動電圧の著し
い低下が生じない無機非水電解液電池を提供することが
できた。
As explained above, in the present invention, after the battery is assembled, pre-discharge is carried out at a constant amount at a low current that can uniformly discharge the surface of the negative electrode. We were able to provide a water electrolyte battery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る無機非水電解液電池の一例を示す
断面図である。第2図は予備放電時の電流と閉路電圧と
の関係を予備放電時の放電量ごとに示す図である。第3
図はエイジング時の貯蔵日数と閉路電圧との関係をエイ
ジング時の温度ごとに示す図である。 (1)・・・負極、 (3)・・・正極、 (4)・・
・セパレータ、(5)・・・電解液 易 1 図 o、Qり c!6 1θ うL(−A)
FIG. 1 is a sectional view showing an example of an inorganic non-aqueous electrolyte battery according to the present invention. FIG. 2 is a diagram showing the relationship between current and closed circuit voltage during preliminary discharge for each amount of discharge during preliminary discharge. Third
The figure is a diagram showing the relationship between storage days and closed circuit voltage during aging for each temperature during aging. (1)...Negative electrode, (3)...Positive electrode, (4)...
・Separator, (5)...Electrolyte solution 1 Diagram o, Qric! 6 1θ L(-A)

Claims (10)

【特許請求の範囲】[Claims] (1)常温で液体のオキシハロゲン化物を正極活物質お
よび電解液の溶媒とし、 アルカリ金属からなる負極(1)と、炭素多孔質成形体
からなる正極(3)と、セパレータ(4)と、電解液(
5)を有し、 上記セパレータ(4)が、上記負極(1)と上記正極(
3)との間に配置する無機非水電解液電池において、 電池組立後、負極(1)の単位面積当り0.6mA以下
の電流で負極(1)の理論電気容量の10%以上を放電
させる安定化処理を行ったことを特徴とする無機非水電
解液電池。
(1) An oxyhalide that is liquid at room temperature is used as a solvent for a positive electrode active material and an electrolytic solution, and a negative electrode (1) made of an alkali metal, a positive electrode (3) made of a carbon porous molded body, and a separator (4), Electrolyte (
5), and the separator (4) has the negative electrode (1) and the positive electrode (
3) In the inorganic non-aqueous electrolyte battery placed between An inorganic nonaqueous electrolyte battery characterized by undergoing stabilization treatment.
(2)オキシハロゲン化物が塩化チオニルであり、アル
カリ金属がリチウムであって、負極(1)のリチウムの
単位面積当り0.6mA以下の電流でリチウムの理論電
気容量の10%以上を放電させる安定化処理を行った請
求項1記載の無機非水電解液電池。
(2) The oxyhalide is thionyl chloride, the alkali metal is lithium, and the negative electrode (1) is stable enough to discharge 10% or more of the theoretical electric capacity of lithium at a current of 0.6 mA or less per unit area of lithium. The inorganic non-aqueous electrolyte battery according to claim 1, which has been subjected to a chemical treatment.
(3)安定化処理後、直ちに45〜80℃の雰囲気中で
2〜7日間貯蔵してエイジングを行ったことを特徴とす
る請求項1または2記載の無機非水電解液電池。
(3) The inorganic nonaqueous electrolyte battery according to claim 1 or 2, wherein the inorganic nonaqueous electrolyte battery is aged by being stored in an atmosphere at 45 to 80°C for 2 to 7 days immediately after the stabilization treatment.
(4)常温で液体のオキシハロゲン化物を正極活物質お
よび電解液の溶媒とし、 アルカリ金属からなる負極(1)と、炭素多孔質成形体
からなる正極(3)と、セパレータ(4)と、電解液(
5)を有し、 上記セパレータ(4)が上記負極(1)と上記正極(3
)との間に配置する無機非水電解液電池の製造にあたり
、 電池組立後、負極(1)の単位面積当り0.6mA以下
の電流で負極(1)の理論電気容量の10%以上を放電
させて安定化処理を行うことを特徴とする無機非水電解
液電池の製造方法。
(4) An oxyhalide that is liquid at room temperature is used as a positive electrode active material and an electrolyte solvent, and a negative electrode (1) made of an alkali metal, a positive electrode (3) made of a carbon porous molded body, and a separator (4), Electrolyte (
5), wherein the separator (4) is the negative electrode (1) and the positive electrode (3).
) When manufacturing an inorganic non-aqueous electrolyte battery placed between 1. A method for producing an inorganic non-aqueous electrolyte battery, which comprises performing a stabilization treatment.
(5)負極(1)の単位面積当り0.05〜0.6mA
の電流で放電させる請求項4記載の無機非水電解液電池
の製造方法。
(5) 0.05 to 0.6 mA per unit area of negative electrode (1)
5. The method for manufacturing an inorganic non-aqueous electrolyte battery according to claim 4, wherein the battery is discharged at a current of .
(6)負極(1)の理論電気容量の10〜15%を放電
させる請求項4または5記載の無機非水電解液電池の製
造方法。
(6) The method for manufacturing an inorganic non-aqueous electrolyte battery according to claim 4 or 5, wherein 10 to 15% of the theoretical electric capacity of the negative electrode (1) is discharged.
(7)オキシハロゲン化物が塩化チオニルであり、アル
カリ金属がリチウムであって、負極(1)のリチウムの
単位面積当り0.6mA以下の電流でリチウムの理論電
気容量の10%以上を放電させて安定化処理を行う請求
項4記載の無機非水電解液電池の製造方法。
(7) The oxyhalide is thionyl chloride, the alkali metal is lithium, and 10% or more of the theoretical electric capacity of the lithium is discharged at a current of 0.6 mA or less per unit area of the lithium of the negative electrode (1). 5. The method for manufacturing an inorganic non-aqueous electrolyte battery according to claim 4, wherein a stabilization treatment is performed.
(8)負極(1)のリチウムの単位面積当り0.05〜
0. 6mAの電流で放電させる請求項7記載の無機非水電解
液電池の製造方法。
(8) 0.05 to 0.05 per unit area of lithium in negative electrode (1)
0. 8. The method for manufacturing an inorganic non-aqueous electrolyte battery according to claim 7, wherein the battery is discharged with a current of 6 mA.
(9)リチウムの理論電気容量の10〜15%を放電さ
せる請求項7または8記載の無機非水電解液電池の製造
方法。
(9) The method for manufacturing an inorganic nonaqueous electrolyte battery according to claim 7 or 8, wherein 10 to 15% of the theoretical electric capacity of lithium is discharged.
(10)安定化処理後、直ちに45〜80℃の雰囲気中
で2〜7日間貯蔵してエイジングを行うことを特徴とす
る請求項4、5、6、7、8または9記載の無機非水電
解液電池の製造方法。
(10) The inorganic non-water according to claim 4, 5, 6, 7, 8 or 9, wherein after the stabilization treatment, the inorganic non-water is immediately stored in an atmosphere of 45 to 80°C for 2 to 7 days to carry out aging. A method of manufacturing an electrolyte battery.
JP2050315A 1990-02-28 1990-02-28 Inorganic nonaqueous electrolytic battery and manufacture thereof Pending JPH03252064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2050315A JPH03252064A (en) 1990-02-28 1990-02-28 Inorganic nonaqueous electrolytic battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2050315A JPH03252064A (en) 1990-02-28 1990-02-28 Inorganic nonaqueous electrolytic battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03252064A true JPH03252064A (en) 1991-11-11

Family

ID=12855469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2050315A Pending JPH03252064A (en) 1990-02-28 1990-02-28 Inorganic nonaqueous electrolytic battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03252064A (en)

Similar Documents

Publication Publication Date Title
US10637096B2 (en) Electrochemical battery cell
RU2156523C2 (en) Lithium cell improvement technique
EP0747981A2 (en) Manganese dioxide alkaline cell
CA1169920A (en) Electrochemical generator comprising a thin gas electrode
US5639578A (en) Current collectors for alkaline cells
DK154039B (en) PROCEDURE FOR THE PREPARATION OF POSITIVE ELECTRODS FOR ELECTROCHEMICAL ELEMENTS, NAME LI / MNO2 CELLS
JPH03252064A (en) Inorganic nonaqueous electrolytic battery and manufacture thereof
JP2594827B2 (en) Method for producing electrolytic manganese dioxide
JPH1064551A (en) Inorganic nonaqueous solvent battery
JPS6182674A (en) Nonaqueous solvent battery
JPH0763013B2 (en) Inorganic non-aqueous electrolyte battery
JPH0521072A (en) Inorganic nonaqueous electrolytic battery
JPS635866B2 (en)
JPH0521071A (en) Inorganic nonaqueous electrolytic battery
JPH09120824A (en) Inorganic nonaqueous solvent battery
JPH01146260A (en) Inorganic nonaqueous electrolyte battery
JPH10284038A (en) Nonaqueous solvent battery
JPS60200465A (en) Method of manufacturing electrolyte for nonaqueous- solvent cell
JPS59171470A (en) Nonaqueous solvent battery
JPS6196669A (en) High power lithium battery
JPH09245806A (en) Nonaqueous solvent battery
JPH03252047A (en) Inorganic nonaqueous electrolyte battery
JPS6199273A (en) Thionyl chloride-lithium battery
JPS62128454A (en) Nonaqueous solvent cell
JPH0259590B2 (en)