JPH01146260A - Inorganic nonaqueous electrolyte battery - Google Patents

Inorganic nonaqueous electrolyte battery

Info

Publication number
JPH01146260A
JPH01146260A JP62304930A JP30493087A JPH01146260A JP H01146260 A JPH01146260 A JP H01146260A JP 62304930 A JP62304930 A JP 62304930A JP 30493087 A JP30493087 A JP 30493087A JP H01146260 A JPH01146260 A JP H01146260A
Authority
JP
Japan
Prior art keywords
lithium
battery
discharge
electrolyte
silane compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62304930A
Other languages
Japanese (ja)
Other versions
JPH07101611B2 (en
Inventor
Shintarou Sekido
関戸 伸太朗
Kazumi Yoshimitsu
由光 一三
Takeya Kazehara
風原 健也
Hiroshi Sasama
笹間 拓
Kaoru Hisatomi
久富 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP62304930A priority Critical patent/JPH07101611B2/en
Publication of JPH01146260A publication Critical patent/JPH01146260A/en
Publication of JPH07101611B2 publication Critical patent/JPH07101611B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicon Polymers (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To prevent voltage drop in the initial stage of discharge, especially large voltage drop, which instantaneously appears immediately after the start of discharge, even in the large current discharge of a battery after storage by adding the polymer of an oxygen-containing organic silane compound to an electrolyte. CONSTITUTION:The polymer of an oxygen-containing organic silane compound is added to an electrolyte. This silane compound polymer is taken-in on the surface of a lithium electrode, and a lithium chloride film formed is made coarse. Lithium in the negative electrode is easily converted into lithium ion even in the large current discharge of a battery stored at high temperature or for a long time. The diffusion of lithium ions from the negative electrode to the electrolyte is smoothly conducted without any obstruction by the lithium chloride film. Hence, activation polarization and concentration polarization are decreased and the voltage drop in the initial stage of discharge is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はオキシハロゲン化物を正極活物質および電解液
の溶媒とし、アルカリ金属を負極活物質とする無機非水
電解液電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an inorganic non-aqueous electrolyte battery in which an oxyhalide is used as a positive electrode active material and an electrolyte solvent, and an alkali metal is used as a negative electrode active material.

〔従来の技術〕[Conventional technology]

塩化チオニル−リチウム電池で代表されるような塩化チ
オニル、塩化スルフリル、塩化ホスホリルなどのオキシ
ハロゲン化物を正極活物質および電解液の溶媒とし、リ
チウム、ナトリウム、カリウムなどのアルカリ金属を負
極活物質とする無機非水電解液電池では、その代表的電
池である塩化チオニル−リチウム電池を例にあげて説明
すると、正極活物質である塩化チオニルがリチウム負極
と直接接触しているため、リチウム負極上に塩化リチウ
ムの被膜が形成される。この塩化リチウム被膜は形成当
初は疎な被膜であるが、高温貯蔵または長期間貯蔵した
場合、緻密な被膜となって成長し、リチウム負極の不働
態化を招くことになる。
Oxyhalides such as thionyl chloride, sulfuryl chloride, and phosphoryl chloride, as typified by thionyl chloride-lithium batteries, are used as the positive electrode active material and the solvent for the electrolyte, and alkali metals such as lithium, sodium, and potassium are used as the negative electrode active material. In an inorganic non-aqueous electrolyte battery, using the thionyl chloride-lithium battery, which is a typical battery, as an example, thionyl chloride, which is the positive electrode active material, is in direct contact with the lithium negative electrode, so chloride is deposited on the lithium negative electrode. A coating of lithium is formed. This lithium chloride film is a sparse film when it is initially formed, but when stored at high temperatures or for a long period of time, it grows into a dense film, leading to passivation of the lithium negative electrode.

その結果、この電池を高温ないしは長期間貯蔵した後に
使用すると、放電初期に電圧降下が生じ、所望の電圧値
にまで達しないため、この電池を駆動電源として使用し
た機器が作動できないという問題がある。特に放電開始
直後数100μs〜数msの間に瞬間的に現れるヒゲ状
の電圧降下(第2図の比較例1の放電特性参照)は大き
く、そのため、電池の使用範囲が非常に制約されること
になる。このような放電初期の電圧降下現象は、電流が
大きくなると顕著に現れるようになり、しかも、未放電
の電池を貯蔵した場合のみならず、電池をある程度使用
してから貯蔵した場合にも、その貯蔵ごとに繰り返し現
れるという特異性がある。
As a result, if this battery is used after being stored at high temperatures or for a long period of time, a voltage drop will occur at the beginning of discharge and the desired voltage will not be reached, resulting in the problem that equipment using this battery as a drive power source will not be able to operate. . In particular, the whisker-like voltage drop that appears instantaneously between several 100 μs and several ms immediately after the start of discharge (see the discharge characteristics of Comparative Example 1 in Figure 2) is large, and as a result, the range of use of the battery is extremely limited. become. This phenomenon of voltage drop at the beginning of discharge becomes more noticeable as the current increases, and this phenomenon occurs not only when an undischarged battery is stored, but also when the battery is stored after being used for a certain amount of time. It has the peculiarity of appearing repeatedly in each storage.

そのため、従来からも、特開昭60−249253号公
報に示されるように、電解液に塩素化ポリエチレンを添
加して放電初期の電圧降下を抑制することや、特開昭6
1−190863号公報に示されるように、電解液にポ
リエチレンオキサイドを添加して放電初期の電圧降下を
抑制することが提案されている。
Therefore, as shown in Japanese Patent Laid-Open No. 60-249253, chlorinated polyethylene has been added to the electrolytic solution to suppress the voltage drop at the initial stage of discharge, and
As shown in Japanese Patent No. 1-190863, it has been proposed to add polyethylene oxide to the electrolytic solution to suppress the voltage drop at the initial stage of discharge.

しかしながら、上記のように電解液に塩素化ポリエチレ
ンやポリエチレンオキサイドを添加した場合も、特に放
電開始直後の数100μs〜数msの間に瞬間的に現れ
るヒゲ状の大きな電圧降下に対してはほとんど抑制効果
を示さなかった。
However, even when chlorinated polyethylene or polyethylene oxide is added to the electrolytic solution as described above, there is almost no suppression of the whisker-like large voltage drop that appears instantaneously between several 100 μs and several ms immediately after the start of discharge. It showed no effect.

〔発明が解決しようとする問題点] 本発明は、上記従来製品が持っていた高温ないしは長期
間貯蔵後の放電で放電初期に電圧降下が生しるという問
題点を解決し、高温ないしは長期間貯蔵後の大電流放電
においても放電初期の電圧降下が生じない無機非水電解
液電池を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention solves the problem that the conventional products mentioned above have, in which a voltage drop occurs at the beginning of discharge due to discharge after high temperature or long-term storage. It is an object of the present invention to provide an inorganic non-aqueous electrolyte battery that does not cause a voltage drop in the initial stage of discharge even during large current discharge after storage.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、電解液にポリマー化された含酸素有機シラン
化合物を添加することによって、高温ないし長時間貯蔵
後の大電流放電においても、放電初期の電圧降下、特に
放電開始直後に瞬間的に現れる大きな電圧降下が生じな
いようにしたものである。
By adding a polymerized oxygen-containing organic silane compound to the electrolytic solution, the present invention is capable of producing voltage drops that appear instantaneously at the beginning of discharge, especially immediately after the start of discharge, even during high-current discharge after high-temperature or long-term storage. This is to prevent a large voltage drop from occurring.

すなわち、電解液にポリマー化された含酸素有機シラン
化合物を添加することによって、該ポリマー化された含
酸素有機シラン化合物がリチウム負極表面に取り込まれ
、形成される塩化リチウム被膜が非常に粗な膜となり、
高温ないし長期間貯蔵後の大電流放電時においても、負
極のリチウムがリチウムイオンになりやすく、また、負
極から電解液へのリチウムイオンの拡散が塩化リチウム
被膜によって阻害されることなくスームズに行われるよ
うになって、活性化分極および濃度分極が小さくなって
、放電初期の電圧降下が防止されるようになるのである
That is, by adding a polymerized oxygen-containing organic silane compound to the electrolytic solution, the polymerized oxygen-containing organic silane compound is incorporated into the surface of the lithium negative electrode, and the formed lithium chloride film becomes a very rough film. Then,
Even during high-temperature or high-current discharge after long-term storage, the lithium in the negative electrode easily turns into lithium ions, and the diffusion of lithium ions from the negative electrode into the electrolyte takes place smoothly without being inhibited by the lithium chloride coating. In this way, activation polarization and concentration polarization become small, and a voltage drop at the initial stage of discharge is prevented.

上記のようにポリマー化された含酸素有機シラン化合物
を電解液中に添加することにより、リチウム負極上に形
成される被膜が粗な膜になる理由は、現在のところ必ず
しも明確ではないが、ポリマー化された含酸素有機シラ
ン化合物中の酸素結合がリチウムと反応性を有していて
、この酸素結合がリチウムにより切断されることによっ
て負極表面のリチウムとポリマー化された有機シラン化
合物とが直接結合し、負極リチウム表面にポリマー化さ
れた有機シラン化合物が点在して、塩化リチウム被膜が
粗になるものと考えられる。また、上記のように負極リ
チウム表面にポリマー化された有機シラン化合物が直接
結合して点在することにより塩化リチウム被膜が粗にな
ることによって、負極リチウムの界面抵抗の増加も抑制
されるようになる。
The reason why the film formed on the lithium negative electrode becomes rough when the polymerized oxygen-containing organosilane compound is added to the electrolyte as described above is not necessarily clear at present, but The oxygen bond in the polymerized oxygen-containing organic silane compound is reactive with lithium, and when this oxygen bond is broken by lithium, the lithium on the surface of the negative electrode and the polymerized organic silane compound are directly bonded. However, it is thought that polymerized organic silane compounds are scattered on the negative electrode lithium surface, making the lithium chloride coating rough. In addition, as mentioned above, polymerized organic silane compounds are directly bonded and scattered on the surface of the negative electrode lithium, making the lithium chloride film rough, which suppresses the increase in the interfacial resistance of the negative electrode lithium. Become.

特に、このポリマー化された含酸素有機シラン化合物を
電解液に添加した場合には、高温ないし長期間貯蔵後の
電池を放電させたときに放電開始直後に瞬間的に現れる
大きな電圧降下を防止できるという他の添加剤には見ら
れない顕著な効果が奏されるが、これは上記のようにポ
リマー化された有機シラン化合物が負極表面のリチウム
と直接結合することによるものと考えられる。
In particular, when this polymerized oxygen-containing organic silane compound is added to the electrolyte, it is possible to prevent the large voltage drop that appears instantaneously immediately after the start of discharge when a battery is discharged after being stored at high temperatures or for a long period of time. This remarkable effect not seen with other additives is produced, and this is thought to be due to the direct bonding of the polymerized organic silane compound with the lithium on the surface of the negative electrode as described above.

本発明において、電解液に添加するポリマー化された含
酸素有機シラン化合物としては、例えば、下記の式(H
で示されるポリジメチルシロキサンエチレンオキサイド
のほか、式(n)、(l[)、(IV)、(V)で示さ
れる化合物などがあげられる。
In the present invention, the polymerized oxygen-containing organosilane compound to be added to the electrolytic solution is, for example, the following formula (H
In addition to the polydimethylsiloxane ethylene oxide represented by the above, compounds represented by the formulas (n), (l[), (IV), and (V) can be mentioned.

式(I)二 式(■)二 式(■): 式(■): 式(■): 上記式(n)で示されるポリマー化された含酸素有機シ
ラン化合物は、一般にポリエーテル変性シリコーンオイ
ルと呼ばれており、その市販品の一例をあげると、例え
ば信越化学工業(株)よりシリコーンオイルKF353
(A)の商品名で市販されているものがあげられる。
Formula (I) Formula (■) Formula (■): Formula (■): Formula (■): The polymerized oxygen-containing organic silane compound represented by the above formula (n) is generally a polyether-modified silicone oil. An example of a commercially available product is silicone oil KF353 from Shin-Etsu Chemical Co., Ltd.
Examples include those commercially available under the trade name (A).

また上記式(I[l)で示されるポリマー化された含酸
素有機シラン化合物は、一般にエポキシ変性シリコーン
オイルと呼ばれており、その市販品の一例をあげると、
例えば信越化学工業(株)よりシリコーンオイルKF1
00Tの商品名で市販されているものがあげられる。
Further, the polymerized oxygen-containing organic silane compound represented by the above formula (I[l) is generally called epoxy-modified silicone oil, and an example of a commercially available product thereof is:
For example, silicone oil KF1 from Shin-Etsu Chemical Co., Ltd.
One example is one commercially available under the trade name 00T.

式(IV)で示されるポリマー化された含酸素有機シラ
ン化合物は、−iにカルボキシル変性シリコーンオイル
と呼ばれており、その市販品の一例をあげると、例えば
信越化学工業(株)よりシリコーンオイルX−22−3
7018の商品名で市販されているものがあげられる。
The polymerized oxygen-containing organic silane compound represented by formula (IV) is called carboxyl-modified silicone oil in -i, and examples of its commercially available products include silicone oil from Shin-Etsu Chemical Co., Ltd. X-22-3
One example is one commercially available under the trade name 7018.

式(V)で示されるポリマー化された含酸素有機シラン
化合物は、−Mにラジカル反応性シリコーンオイルと呼
ばれており、その市販品の一例をあげると、例えば信越
化学工業(株)よりシリコーンオイルX−22−500
2の商品名で市販されているものがあげられる。
The polymerized oxygen-containing organic silane compound represented by the formula (V) is called a radical-reactive silicone oil in -M, and an example of a commercially available product is silicone oil from Shin-Etsu Chemical Co., Ltd. Oil X-22-500
Examples include those commercially available under the trade name 2.

そして、上記式(1)〜式(TV)で示されるポリマー
化された含酸素有機シラン化合物としては分子量が50
0〜3.000のものが好ましい。
The polymerized oxygen-containing organic silane compounds represented by the above formulas (1) to (TV) have a molecular weight of 50
0 to 3,000 is preferred.

これらポリマー化された含酸素有機シラン化合物の電解
液への添加量としては、0.1g/l〜10g/lの範
囲にするのが好ましい。つまり、ポリマー化された含酸
素有機シラン化合物の電解液への添加量が上記範囲より
少なくなると、負極表面上に形成される塩化リチウム被
膜を粗にする効果が充分に発揮されず、またポリマー化
された含酸素有機シラン化合物の電解液への添加量が上
記範囲より多くなっても、塩化リチウム被膜を粗にして
放電初期の電圧降下を防止する効果はそれほど変わらず
、ポリマー化された含酸素有機シラン化合物の添加量の
増加に応じて電池内に充填できる正極活物質が低下して
、好ましくないからである。
The amount of these polymerized oxygen-containing organic silane compounds added to the electrolytic solution is preferably in the range of 0.1 g/l to 10 g/l. In other words, if the amount of the polymerized oxygen-containing organosilane compound added to the electrolyte solution is less than the above range, the effect of roughening the lithium chloride film formed on the negative electrode surface will not be sufficiently exhibited, and the polymerization Even if the amount of the oxygen-containing organic silane compound added to the electrolytic solution is larger than the above range, the effect of roughening the lithium chloride film and preventing voltage drop at the beginning of discharge does not change much. This is because as the amount of the organic silane compound added increases, the amount of positive electrode active material that can be filled into the battery decreases, which is not preferable.

本発明の電池において、正極活物質としては、例えば塩
化チオニル、塩化ホスホリル、塩化スルフリルなどの常
温で液体のオキシハロゲン化物が用いられる。これらオ
キシハロゲン化物は正極活物質であるとともに電解液の
溶媒として用いられ、電解液はこれらのオキシハロゲン
化物にLiAICL 、LiAIBra 、LiGaC
1a 、LiB、。C1,、などの支持電解質を溶解さ
せることによって調製される。なお、電解液の調製にあ
たって、L i A I Cl aなどの支持電解質は
LiClとAlC11をオキシハロゲン化物に添加して
電解液中でL i A I CI aの形で存在(ただ
し、イオン化してLi+とAlCl、−で存在)するよ
うにしてもよいし、またポリマー化された含酸素有機シ
ラン化合物を電解液調製時に支持電解質とともに添加し
てもよいし、あるいは支持電解質より先に添加してもよ
い。
In the battery of the present invention, an oxyhalide that is liquid at room temperature, such as thionyl chloride, phosphoryl chloride, or sulfuryl chloride, is used as the positive electrode active material. These oxyhalides are used as positive electrode active materials and as solvents for the electrolyte, and the electrolyte contains these oxyhalides as well as LiAICL, LiAIBra, and LiGaC.
1a, LiB,. It is prepared by dissolving a supporting electrolyte such as C1, . In preparing the electrolytic solution, supporting electrolytes such as LiCl and AlC11 are added to oxyhalides so that they exist in the electrolytic solution in the form of LiAICIa (however, they are not ionized). Alternatively, a polymerized oxygen-containing organosilane compound may be added together with the supporting electrolyte when preparing the electrolyte, or it may be added before the supporting electrolyte. Good too.

負極活物質としては、例えばリチウム、ナトリウム、カ
リウムなどのアルカリ金属が用いられる。
As the negative electrode active material, for example, alkali metals such as lithium, sodium, and potassium are used.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail by giving examples.

実施例1 正極活物質として塩化チオニルを用い、負極活物質とし
てリチウムを用いて単3形で塩化チオニル−リチウム系
の無機非水電解液電池を作製した。
Example 1 A AA-sized thionyl chloride-lithium type inorganic non-aqueous electrolyte battery was produced using thionyl chloride as a positive electrode active material and lithium as a negative electrode active material.

電解液は上記の塩化チオニルに支持電解質としてのLi
AlCl4 (ただし、塩化チオニルへの添加時はLi
C1とAlC1,とを添加)を1.2−o1/j!溶解
したものであり、本実施例においては、この電解液にポ
リジメチルシロキサンエチレンオキサイド(ゼネラルサ
イエンスコーポレーション製)を2 g/l、溶解して
いる。
The electrolyte contains the above thionyl chloride and Li as a supporting electrolyte.
AlCl4 (However, when adding to thionyl chloride, Li
C1 and AlC1) is added to 1.2-o1/j! In this example, 2 g/l of polydimethylsiloxane ethylene oxide (manufactured by General Science Corporation) is dissolved in this electrolytic solution.

第1図は上記電池を示すもので、図中、1はリチウムか
らなる負極であり、この負極1はリチウムシートを有底
円筒状の電池容器2の内周面に圧若することによって形
成されている。3は正極で、この正極3はアセチレンブ
ラックを主成分とする円柱状の炭素多孔質成形体よりな
るものであり、それ自身は反応せず、集電作用と、塩化
チオニルとリチウムイオンとを反応させる触媒の役割を
している。4は電解液で、この電解液4は前記のように
塩化チオニルにL i A I CI aを溶解させた
ものであり、本実施例においては、この電解液4にポリ
ジメチルシロキサンエチレンオキサイドが2 g/l添
加され、電池内には3.9mj!注入されている。そし
て、この電池においては、塩化チオニルは上記のように
電解液の溶媒であるとともに正極活物質でもある。5は
ガラス繊維不織布よりなるセパレータであり、円筒状を
していて、前記円筒状の負極1と円柱状の正極3とを隔
離している。6は正極集電体で、ステンレス鋼棒よりな
る。
FIG. 1 shows the above-mentioned battery. In the figure, 1 is a negative electrode made of lithium, and this negative electrode 1 is formed by pressing a lithium sheet onto the inner peripheral surface of a cylindrical battery container 2 with a bottom. ing. 3 is a positive electrode, and this positive electrode 3 is made of a cylindrical porous carbon molded body containing acetylene black as a main component, and does not react itself, but has a current collecting effect and reacts with thionyl chloride and lithium ions. It acts as a catalyst. 4 is an electrolytic solution, and this electrolytic solution 4 is obtained by dissolving Li A I CI a in thionyl chloride as described above, and in this example, polydimethylsiloxane ethylene oxide is dissolved in this electrolytic solution 4. g/l added, and 3.9 mj in the battery! Injected. In this battery, thionyl chloride is not only the solvent of the electrolytic solution as described above, but also the positive electrode active material. Reference numeral 5 denotes a separator made of glass fiber nonwoven fabric, which has a cylindrical shape and separates the cylindrical negative electrode 1 and the cylindrical positive electrode 3. 6 is a positive electrode current collector, which is made of a stainless steel rod.

7は電池蓋で、この電池蓋7はステンレス鋼で形成され
ていて、その立ち上がった外周部が前記電池容器2の開
口端部と溶接により接合されている。
Reference numeral 7 denotes a battery lid, and this battery lid 7 is made of stainless steel, and its raised outer peripheral portion is joined to the open end of the battery container 2 by welding.

そして電池蓋7の内周側には正極端子9との間にガラス
層8が設けられていて、ガラス層8は電池蓋7と正極端
子9とを絶縁するとともに、外周面でその構成ガラスが
電池蓋7の内周面に融着し、その内周面でその構成ガラ
スが正極端子9の外周面に融着して、電池M7と正極端
子9との間をシールし、電池容器2の開口部はいわゆる
ハーメチックシールにより封口されている。正極端子9
はステンレス鋼製で電池組立時はパイプ状をしていて、
電解液注入口として使用され、その上端部を電解液注入
後にその中空部内に挿入された正極集電体6の上部と溶
接して封止したものである。そして、10および11は
それぞれガラス繊維不織布からなる底部隔離材および上
部隔離材であり、12は電池内の上部に設けられた空気
室である。
A glass layer 8 is provided on the inner circumferential side of the battery cover 7 between the positive electrode terminal 9 and the glass layer 8 insulating the battery cover 7 and the positive electrode terminal 9. The constituent glass is fused to the inner circumferential surface of the battery lid 7, and the constituent glass is fused to the outer circumferential surface of the positive terminal 9 on the inner circumferential surface, sealing between the battery M7 and the positive terminal 9. The opening is sealed with a so-called hermetic seal. Positive terminal 9
is made of stainless steel and has a pipe shape when assembling the battery.
It is used as an electrolyte inlet, and its upper end is sealed by welding to the upper part of the positive electrode current collector 6 inserted into the hollow part after the electrolyte is injected. Reference numerals 10 and 11 are a bottom isolation member and an upper isolation member respectively made of glass fiber nonwoven fabric, and 12 is an air chamber provided at the upper part of the battery.

実施例2 ポリジメチルシロキサンエチレンオキサイドに代えて信
越化学工業(株)のシリコーンオイルKF353 (A
 ) (商品名、前記式(II)で示されるポリマー化
された含酸素有機シラン化合物)を2g/l添加した電
解液を用いたほかは実施例1と同様の構成からなる塩化
チオニル−リチウム系の無機非水電解液電池を作製した
Example 2 Silicone oil KF353 (A) from Shin-Etsu Chemical Co., Ltd. was used instead of polydimethylsiloxane ethylene oxide
) (trade name, polymerized oxygen-containing organic silane compound represented by the above formula (II)) was used as an electrolytic solution containing 2 g/l of thionyl chloride-lithium chloride having the same composition as in Example 1. An inorganic non-aqueous electrolyte battery was fabricated.

実施例3 ポリジメチルシロキサンエチレンオキサイドに代えて信
越化学工業(株)のシリコーンオイルKF100T(商
品名、前記式(III)で示されるポリマー化された含
酸素有機シラン化合物)を2g/l添加した電解液を用
いたほかは実施例1と同様の構成からなる塩化チオニル
−リチウム系の無機非水電解液電池を作製した。
Example 3 Electrolysis in which 2 g/l of silicone oil KF100T (trade name, polymerized oxygen-containing organic silane compound represented by the above formula (III)) from Shin-Etsu Chemical Co., Ltd. was added in place of polydimethylsiloxane ethylene oxide. An inorganic nonaqueous electrolyte battery of thionyl chloride-lithium chloride having the same structure as in Example 1 except that the liquid was used was produced.

実施例4 ポリジメチルシロキサンエチレンオキサイドに代えて信
越化学工業(株)のシリコーンオイルX−22−370
1E (商品名、前記式(N”)で示されるポリマー化
された含酸素有機シラン化合物)を2g/2添加した電
解液を用いたほかは実施例1と同様の構成からなる塩化
チオニル−リチウム系の無機非水電解液電池を作製した
Example 4 Silicone oil X-22-370 from Shin-Etsu Chemical Co., Ltd. was used instead of polydimethylsiloxane ethylene oxide.
1E (trade name, polymerized oxygen-containing organic silane compound represented by the above formula (N'')) was used as an electrolytic solution containing 2 g/2 of the same composition as in Example 1, except that lithium thionyl chloride was used. We fabricated an inorganic non-aqueous electrolyte battery based on this method.

実施例5 ポリジメチルシロキサンエチレンオキサイドに代えて信
越化学工業(株)のシリコーンオイルX−22−500
2(商品名、前記式(V)で示されるポリマー化された
含酸素有機シラン化合物)を2g/2添加した電解液を
用いたほかは実施例1と同様の構成からなる塩化チオニ
ル−リチウム系の無機非水電解液電池を作製した。
Example 5 Silicone oil X-22-500 from Shin-Etsu Chemical Co., Ltd. was used instead of polydimethylsiloxane ethylene oxide.
A thionyl chloride-lithium chloride system having the same structure as in Example 1 except that an electrolytic solution containing 2 g/2 of 2 (trade name, polymerized oxygen-containing organic silane compound represented by the above formula (V)) was used. An inorganic non-aqueous electrolyte battery was fabricated.

比較例1 ポリジメチルシロキサンエチレンオキサイドなどのポリ
マー化された含酸素有機シラン化合物をまったく添加し
ていない電解液、つまり塩化チオニルにLiAlC1,
を1.2 mol/ I! ?容解しただけの電解液を
用いたほかは実施例1と同様の構成からなる塩化チオニ
ル−リチウム系の無機非水電解液電池を作製した。
Comparative Example 1 An electrolytic solution containing no polymerized oxygen-containing organosilane compound such as polydimethylsiloxane ethylene oxide, that is, thionyl chloride containing LiAlC1,
1.2 mol/I! ? A thionyl chloride-lithium inorganic non-aqueous electrolyte battery was produced having the same structure as in Example 1 except that only the dissolved electrolyte solution was used.

比較例2 ポリジメチルシロキサンエチレンオキサイドに代えて塩
素化ポリエチレンを2 g / l添加した電解液を用
いたほかは実施例1と同様の構成からなる塩化チオニル
−リチウム系の無機非水電解液電池を作製した。
Comparative Example 2 A thionyl chloride-lithium inorganic non-aqueous electrolyte battery having the same structure as Example 1 except that an electrolyte containing 2 g/l of chlorinated polyethylene instead of polydimethylsiloxane ethylene oxide was used. Created.

比較例3 ポリジメチルシロキサンエチレンオキサイドに代えてポ
リエチレンオキサイドを0.2 g / l添加した電
解液を用いたほかは実施例1と同様の構成からなる塩化
チオニル−リチウム系の無機非水電解液電池を作製した
Comparative Example 3 A thionyl chloride-lithium-based inorganic non-aqueous electrolyte battery having the same structure as Example 1 except that an electrolyte containing 0.2 g/l of polyethylene oxide was used instead of polydimethylsiloxane ethylene oxide. was created.

上記実施例1〜5および比較例1〜3の電池を60°C
で20日貯蔵した後、20℃、lOΩでlOm s放電
したときの最低電圧を測定した。つまり、高温貯蔵後の
大電流(負荷10Ωで電流は約200mAに相当)放電
での放電開始直後に現れる電圧降下の程度を調べた。そ
の結果を第1表に示す。
The batteries of Examples 1 to 5 and Comparative Examples 1 to 3 above were heated at 60°C.
After storage for 20 days at 20° C., the lowest voltage when discharged at 10Ω for 10ms was measured. That is, the extent of the voltage drop that appears immediately after the start of discharge during high-current (corresponding to about 200 mA at a load of 10 Ω) discharge after high-temperature storage was investigated. The results are shown in Table 1.

なお、第1表においては、実施例2〜5で用いたポリマ
ー化された含酸素有機シラン化合物を商品名で表示した
In Table 1, the polymerized oxygen-containing organic silane compounds used in Examples 2 to 5 are indicated by trade name.

第1表に示すように、60“Cで20日間貯蔵後に、1
0ΩでlOm s R11,電させた場合、添加物をま
ったく添加していない比較例1の電池では、最低電圧が
1.189 Vまで低下し、大きな電圧降下が認められ
たのに対し、実施例1〜5の電池では、添加物の相違に
よって若干の差はあるものの、最低電圧が2.050V
〜2.109 Vの範囲にあって大きな電圧降下は認め
られなかった。また、電解液に塩素化ポリエチレンを添
加した比較例2の電池や電解液にポリエチレンオキサイ
ドを添加した比較例3の電池は、最低電圧がそれぞれ1
.203V、1.200Vと比較例1の電池に近く、こ
のような大電流放電では放電開始直後に現れる電圧降下
を防止する効果がほとんど認められなかった。
As shown in Table 1, after storage at 60"C for 20 days, 1
When the battery of Comparative Example 1 to which no additives were added had a voltage of 10m s R11 at 0Ω, the minimum voltage decreased to 1.189 V, and a large voltage drop was observed, whereas in the battery of Example 1, the lowest voltage decreased to 1.189 V. For batteries 1 to 5, the minimum voltage is 2.050V, although there are slight differences depending on the additives.
~2.109 V, and no significant voltage drop was observed. In addition, the battery of Comparative Example 2 in which chlorinated polyethylene was added to the electrolyte and the battery in Comparative Example 3 in which polyethylene oxide was added to the electrolyte had a minimum voltage of 1.
.. 203V and 1.200V, which are close to those of the battery of Comparative Example 1, and in such a large current discharge, there was hardly any effect of preventing the voltage drop that appears immediately after the start of discharge.

第2図は上記実施例1の電池と比較例1の電池を20°
Cで10Ω定抵抗放電させたときの放電特性を示す図で
、横軸は放電時間を示し、縦軸は放電電圧を示している
Figure 2 shows the battery of Example 1 and the battery of Comparative Example 1 at 20 degrees.
This is a diagram showing the discharge characteristics when discharging at a constant resistance of 10Ω at C, the horizontal axis shows the discharge time, and the vertical axis shows the discharge voltage.

第2図に示すように、添加物をまったく添加していない
比較例1の電池では、放電開始より1mSmS後付上ゲ
状の大きな電圧降下が認められるが、実施例1の電池で
は、そのようなヒゲ状の電圧降下は認められなかった。
As shown in Figure 2, in the battery of Comparative Example 1 to which no additives were added, a large voltage drop with a 1mSmS drop was observed after the start of discharge, but in the battery of Example 1, such a large voltage drop was observed. No whisker-like voltage drop was observed.

なお、実施例2〜5の電池についても、上記と同条件下
で放電させて放電特性を調べたが、これら実施例2〜5
の電池も、放電開始直後のヒゲ状の電圧降下がなく、実
施例1の電池と同様の放電特性を有していた。
The batteries of Examples 2 to 5 were also discharged under the same conditions as above to examine their discharge characteristics.
The battery also had the same discharge characteristics as the battery of Example 1, with no whisker-like voltage drop immediately after the start of discharge.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、電解液にポリマー化
された含酸素有機シラン化合物を添加することにより、
貯蔵後の大電流放電においても放電初期の電圧降下、特
に放電開始直後に瞬間的に現れる大きな電圧降下を防止
することができた。
As explained above, in the present invention, by adding a polymerized oxygen-containing organic silane compound to the electrolytic solution,
Even during large current discharge after storage, it was possible to prevent a voltage drop at the initial stage of discharge, especially a large voltage drop that appears instantaneously immediately after the start of discharge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の無機非水電解液電池の一実施例を示す
断面図である。第2図は実施例1の電池と比較例1の電
池の放電特性図である。 1・・・負極、 3・・・正極、  4・・・電解液第
  1  図 第  2  図 □実施例1 一一一一比較例1 放電時間(ms)
FIG. 1 is a sectional view showing an embodiment of an inorganic non-aqueous electrolyte battery of the present invention. FIG. 2 is a discharge characteristic diagram of the battery of Example 1 and the battery of Comparative Example 1. DESCRIPTION OF SYMBOLS 1...Negative electrode, 3...Positive electrode, 4...Electrolyte solution No. 1 Fig. 2 Fig. □Example 1 1111 Comparative Example 1 Discharge time (ms)

Claims (2)

【特許請求の範囲】[Claims] (1)オキシハロゲン化物を正極活物質および電解液の
溶媒とし、アルカリ金属を負極活物質とする無機非水電
解液電池において、電解液にポリマー化された含酸素有
機シラン化合物を添加したことを特徴とする無機非水電
解液電池。
(1) In an inorganic non-aqueous electrolyte battery that uses an oxyhalide as a positive electrode active material and an electrolyte solvent and an alkali metal as a negative electrode active material, the addition of a polymerized oxygen-containing organic silane compound to the electrolyte Characteristics of inorganic non-aqueous electrolyte batteries.
(2)ポリマー化された含酸素有機シラン化合物が次の
式( I )〜式(V)で示される化合物から選ばれる少
なくとも1種である特許請求の範囲第1項記載の無機非
水電解液電池。 式( I ): ▲数式、化学式、表等があります▼ 式(II): ▲数式、化学式、表等があります▼ 式(III): ▲数式、化学式、表等があります▼ 式(IV): ▲数式、化学式、表等があります▼ 式(V): ▲数式、化学式、表等があります▼
(2) The inorganic nonaqueous electrolyte according to claim 1, wherein the polymerized oxygen-containing organic silane compound is at least one compound selected from the following formulas (I) to (V): battery. Formula (I): ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Formula (II): ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Formula (III): ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Formula (IV): ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Formula (V): ▲There are mathematical formulas, chemical formulas, tables, etc.▼
JP62304930A 1987-12-01 1987-12-01 Inorganic non-aqueous electrolyte battery Expired - Fee Related JPH07101611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62304930A JPH07101611B2 (en) 1987-12-01 1987-12-01 Inorganic non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62304930A JPH07101611B2 (en) 1987-12-01 1987-12-01 Inorganic non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH01146260A true JPH01146260A (en) 1989-06-08
JPH07101611B2 JPH07101611B2 (en) 1995-11-01

Family

ID=17939025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62304930A Expired - Fee Related JPH07101611B2 (en) 1987-12-01 1987-12-01 Inorganic non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH07101611B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100433444C (en) * 2001-05-11 2008-11-12 三星Sdi株式会社 Electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN105702918A (en) * 2014-11-25 2016-06-22 江苏合志锂硫电池技术有限公司 Lithium metal electrode and preparation method thereof, and lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100433444C (en) * 2001-05-11 2008-11-12 三星Sdi株式会社 Electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN105702918A (en) * 2014-11-25 2016-06-22 江苏合志锂硫电池技术有限公司 Lithium metal electrode and preparation method thereof, and lithium secondary battery

Also Published As

Publication number Publication date
JPH07101611B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
US4939050A (en) Electric cells
US5902696A (en) Separator for nonaqueous electrochemical cells
CA1134906A (en) Nonaqueous electrochemical cell
EP0262846B1 (en) Nonaqueous battery with special separator
US5154992A (en) Electrolyte for lithium-manganese oxide cells and the like
JP4102184B2 (en) Aluminum negative battery
EP0589229A1 (en) Organic electrolytic solution and organic electrolytic solution cell
JPH01146260A (en) Inorganic nonaqueous electrolyte battery
JP3398165B2 (en) Inorganic non-aqueous electrolyte battery
JP2752361B2 (en) Sealed non-aqueous battery with positive terminal pin and perchlorate electrolyte
JP3014054B2 (en) Negative electrode active material for alkaline batteries
JPH02170347A (en) Inorganic nonaqueous electrolyte battery
JPH02170346A (en) Inorganic nonaqueous electrolyte battery
JPH01146261A (en) Inorganic nonaqueous electrolyte battery
JPH07101610B2 (en) Inorganic non-aqueous electrolyte battery
KR20070086261A (en) Battery with nonaqueous electrolyte
AU644475B2 (en) Improved electrolyte for lithium-manganese oxide cells and the like
JPH10284038A (en) Nonaqueous solvent battery
CA1239440A (en) Nonaqueous electrochemical cell
JPH10284124A (en) Lithium battery containing polymer electrolyte
JPH09120824A (en) Inorganic nonaqueous solvent battery
JPH04269459A (en) Nonaqueous electrolyte battery
JPH03252064A (en) Inorganic nonaqueous electrolytic battery and manufacture thereof
JPS62128454A (en) Nonaqueous solvent cell
JPH04206255A (en) Inorganic non-aqueous electrolyte battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees