JPH10284124A - Lithium battery containing polymer electrolyte - Google Patents

Lithium battery containing polymer electrolyte

Info

Publication number
JPH10284124A
JPH10284124A JP9085358A JP8535897A JPH10284124A JP H10284124 A JPH10284124 A JP H10284124A JP 9085358 A JP9085358 A JP 9085358A JP 8535897 A JP8535897 A JP 8535897A JP H10284124 A JPH10284124 A JP H10284124A
Authority
JP
Japan
Prior art keywords
lithium
polymer electrolyte
weight
copolymer
lithium salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9085358A
Other languages
Japanese (ja)
Inventor
Manabu Kazuhara
学 数原
Kazuya Hiratsuka
和也 平塚
Katsuharu Ikeda
克治 池田
Masayuki Tamura
正之 田村
Atsushi Funaki
篤 船木
Toru Ishida
徹 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP9085358A priority Critical patent/JPH10284124A/en
Publication of JPH10284124A publication Critical patent/JPH10284124A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize electrolyte retaining property and enhance durability for charging and discharging cycle by using a copolymer containing a polymerization unit base on tetrafluoroethylene and a polymerization unit based on hexafluoropropylene in a specific ratio as a matrix for the electrolyte and by using a solvent which can dissolve lithium salt and salt. SOLUTION: Electrolyte of a lithium battery has as a matrix a copolymer containing a polymerization unit based on tetrafluoroethylene for 30-70 wt.% and a polymerization unit based on hexafluoropropylene for 8-50 wt.%. Solute of lithium salt and a solution which can dissolve lithium salt are included. A melting point of the copolymer is preferably not less than 50 deg.C. Solvent for the lithium salt is preferably carbonic estel such as propylene carbonate, dimethyl carbonate and the like. It is preferably that the solution in which the lithium salt is dissolved in the solvent is contained in the polymer electrolyte for 30-80 wt.%. Also, a molecular weight of the copolymer used is preferably 10,000-1,000,000.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はポリマー電解質を使
用したリチウム電池、特にサイクル寿命に優れるリチウ
ム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery using a polymer electrolyte, and more particularly to a lithium secondary battery having excellent cycle life.

【0002】[0002]

【従来の技術】電極活物質としてアルカリ金属、アルカ
リ金属イオンを吸蔵、放出可能な材料を用いる電池が高
エネルギー密度を有するものとして注目されており、な
かでもリチウム二次電池は特にエネルギー密度が高いた
め、電子機器の電源として広く用いられつつある。
2. Description of the Related Art A battery using a material capable of occluding and releasing an alkali metal or an alkali metal ion as an electrode active material has attracted attention as having a high energy density. Among them, a lithium secondary battery has a particularly high energy density. Therefore, it is being widely used as a power source for electronic devices.

【0003】近年、一次電池及び二次電池に液状である
電解液を用いることによって生じる漏液の対策、可燃性
電解液の着火性低減対策、及び電池のフィルム状化によ
る電子機器への組み込み性の向上とスペースの有効利用
等の見地より、ポリマー電解質が提案されている(特表
平8−507407、特表平4−506726)。
In recent years, measures have been taken to prevent liquid leakage caused by using liquid electrolytes for primary batteries and secondary batteries, to reduce the ignitability of flammable electrolytes, and to facilitate the incorporation into electronic devices by forming batteries into films. Polymer electrolytes have been proposed from the standpoints of improvement in space efficiency and effective use of space (Japanese Patent Application Laid-Open Nos. Hei 8-507407 and Hei 4-506726).

【0004】そのなかで、ポリエチレンオキシド系ポリ
マー電解質は電気化学的には安定であるが、有機電解液
の溶媒の保持性が低い難点がある。三次元構造のポリア
クリレート系ポリマー電解質は、溶媒の保持性はよいが
電気化学的に不安定で4V級電池には適さない。ポリフ
ッ化ビニリデンからなるポリマー電解質は電気化学的に
安定であり、フッ素原子を含むのでポリマーが燃えにく
い特徴があるが、ポリマー電解質の温度を上げると電解
液がポリマーよりにじみ出る。これに対し、フッ化ビニ
リデン/ヘキサフルオロプロピレン共重合体を使用する
ことによりこの問題を解決する試みもある。
Among them, polyethylene oxide-based polymer electrolytes are electrochemically stable, but have a drawback in that the solvent retention of the organic electrolyte is low. A polyacrylate-based polymer electrolyte having a three-dimensional structure has good solvent retention, but is electrochemically unstable and is not suitable for a 4V-class battery. The polymer electrolyte made of polyvinylidene fluoride is electrochemically stable and has a feature that the polymer is hardly burned because it contains fluorine atoms. However, when the temperature of the polymer electrolyte is increased, the electrolyte oozes out of the polymer. On the other hand, there is an attempt to solve this problem by using a vinylidene fluoride / hexafluoropropylene copolymer.

【0005】さらに、従来のポリマー電解質使用リチウ
ム二次電池は、充放電サイクル耐久性が液体電解質を用
いた電池より劣る欠点があった。
Further, the conventional lithium secondary battery using a polymer electrolyte has a drawback that the charge / discharge cycle durability is inferior to that of a battery using a liquid electrolyte.

【0006】[0006]

【発明が解決しようとする課題】本発明はポリマー電解
質の新規組成を検討することにより、電解質の保持性が
よく、安定で、特に二次電池として使用するときの充放
電サイクル耐久性が優れたリチウム電池を提供すること
を目的とする。
DISCLOSURE OF THE INVENTION The present invention, by examining a novel composition of a polymer electrolyte, has a good electrolyte holding property, is stable, and has an excellent charge / discharge cycle durability especially when used as a secondary battery. It is intended to provide a lithium battery.

【0007】[0007]

【課題を解決するための手段】本発明は、正極、負極及
び電解質を有するリチウム電池において、前記電解質
が、テトラフルオロエチレン(以下TFEという)に基
づく重合単位30〜70重量%とヘキサフルオロプロピ
レン(以下HFPという)に基づく重合単位13〜32
重量%とフッ化ビニリデン(以下VDFという)に基づ
く重合単位8〜50重量%とを含む共重合体をマトリッ
クスとし、リチウム塩の溶質と該リチウム塩を溶解でき
る溶媒とからなる溶液を含有するポリマー電解質である
ことを特徴とするリチウム電池を提供する。
The present invention relates to a lithium battery having a positive electrode, a negative electrode and an electrolyte, wherein the electrolyte comprises 30 to 70% by weight of polymerized units based on tetrafluoroethylene (hereinafter referred to as TFE) and hexafluoropropylene ( Polymerized units 13 to 32 based on HFP)
Polymer comprising a matrix containing a copolymer containing 8 to 50% by weight of polymerized units based on vinylidene fluoride (hereinafter referred to as VDF) in a matrix and containing a solute of a lithium salt and a solvent capable of dissolving the lithium salt Provided is a lithium battery, which is an electrolyte.

【0008】本発明のリチウム電池は、一次電池、二次
電池のいずれの電池としても使用できる。特に二次電池
として使用する場合は、負極へのリチウムの析出がなく
安全であることを考慮すると、負極にリチウムの層間化
合物を用いるいわゆるリチウムイオン二次電池が好まし
い。
[0008] The lithium battery of the present invention can be used as either a primary battery or a secondary battery. In particular, when used as a secondary battery, a so-called lithium ion secondary battery using a lithium intercalation compound for the negative electrode is preferable, considering that lithium is not deposited on the negative electrode and safe.

【0009】本発明におけるポリマー電解質は、マトリ
ックスに、リチウム塩を溶媒に溶解した溶液を含浸させ
ることによって、リチウム塩溶液がマトリックス中に均
一に分布した固体状の電解質である。
The polymer electrolyte in the present invention is a solid electrolyte in which a lithium salt solution is uniformly distributed in a matrix by impregnating the matrix with a solution in which a lithium salt is dissolved in a solvent.

【0010】ポリマー電解質のマトリックスにおいて、
TFEに基づく重合単位が70重量%超ではポリマーの
結晶性と疎油性が高くなり、リチウム塩溶液がポリマー
中に侵入しにくくなったり、ポリマー電解質の電気伝導
度が低くなる。また、TFEに基づく重合単位が30重
量%未満ではポリマー電解質の柔軟性が高くなり、強度
が低下する。HFPに基づく重合単位が32重量%超で
はリチウム塩溶液を含有させてポリマー電解質としたと
きの強度が低下するため、強度向上に適当な架橋の実施
が必要となる。また、13重量%未満では融点が高くな
り、成形加工上好ましくない。VDFに基づく重合単位
が50重量%超では融点が高くなり、8重量%未満では
共重合体のリチウム塩溶液との親和性が低下する。
In a matrix of a polymer electrolyte,
If the polymerized unit based on TFE is more than 70% by weight, the crystallinity and oleophobicity of the polymer will be high, and the lithium salt solution will not easily penetrate into the polymer, and the electric conductivity of the polymer electrolyte will be low. If the amount of polymerized units based on TFE is less than 30% by weight, the flexibility of the polymer electrolyte is increased, and the strength is reduced. If the polymerization unit based on HFP is more than 32% by weight, the strength when a lithium salt solution is contained to form a polymer electrolyte decreases, so that it is necessary to carry out appropriate crosslinking for improving the strength. On the other hand, if the content is less than 13% by weight, the melting point becomes high, which is not preferable in molding. If the polymerization unit based on VDF is more than 50% by weight, the melting point will be high, and if it is less than 8% by weight, the affinity of the copolymer with the lithium salt solution will be reduced.

【0011】特に好ましくは、TFEに基づく重合単位
40〜65重量%とHFPに基づく重合単位15〜25
重量%とVDFに基づく重合単位15〜45重量%とを
含む共重合体が使用される。
Particularly preferably, 40 to 65% by weight of polymerized units based on TFE and 15 to 25 polymerized units based on HFP
Use is made of copolymers containing, by weight, 15 to 45% by weight of polymerized units based on VDF.

【0012】TFEに基づく重合単位とHFPに基づく
重合単位とVDFに基づく重合単位とを含む共重合体
は、これらと共重合体を形成できる他の単量体に基づく
重合単位を10重量%を超えない範囲で適宜含有させた
共重合体であってもよい。
The copolymer containing a polymerized unit based on TFE, a polymerized unit based on HFP, and a polymerized unit based on VDF contains 10% by weight of a polymerized unit based on another monomer capable of forming a copolymer therewith. It may be a copolymer appropriately contained within a range not exceeding.

【0013】他の単量体としては、例えばクロロトリフ
ルオロエチレン、トリフルオロエチレン、フッ化ビニ
ル、エチレン、プロピレン、イソブチレン、エチルビニ
ルエーテル、クロロエチルビニルエーテル、シクロヘキ
シルビニルエーテル、メチルイソプロピルエーテル、ピ
バリン酸ビニル、酢酸ビニル、安息香酸ビニル、Veo
va−9及びVeova−10(商品名、シェル社
製)、エチルアリルエーテル、シクロヘキシルアリルエ
ーテル、ノルボルナジエン、クロトン酸及びそのエステ
ル、アクリル酸及びそのアルキルエステル、メタクリル
酸及びそのアルキルエステル等が挙げられる。
Other monomers include, for example, chlorotrifluoroethylene, trifluoroethylene, vinyl fluoride, ethylene, propylene, isobutylene, ethyl vinyl ether, chloroethyl vinyl ether, cyclohexyl vinyl ether, methyl isopropyl ether, vinyl pivalate, acetic acid Vinyl, vinyl benzoate, Veo
va-9 and Veova-10 (trade name, manufactured by Shell), ethyl allyl ether, cyclohexyl allyl ether, norbornadiene, crotonic acid and its ester, acrylic acid and its alkyl ester, methacrylic acid and its alkyl ester, and the like.

【0014】本発明におけるポリマー電解質のマトリッ
クスにおいて、必要に応じて添加される他の成分の重量
比、共重合体の分子量等は、ポリマー電解質フィルムを
形成するための有機溶媒へのマトリックスの溶解性又は
分散性、マトリックスのリチウム塩溶液との混和性及び
リチウム塩溶液の保持性、ポリマー電解質の集電体金属
への接着性、強度、成形性、ハンドリング性、マトリッ
クスの入手の容易性などにより適宜選定できる。
In the polymer electrolyte matrix of the present invention, the weight ratio of other components added as required, the molecular weight of the copolymer, and the like depend on the solubility of the matrix in an organic solvent for forming a polymer electrolyte film. Or dispersibility, miscibility of the matrix with the lithium salt solution and retention of the lithium salt solution, adhesion of the polymer electrolyte to the current collector metal, strength, moldability, handling, ease of matrix availability, etc. Can be selected.

【0015】本発明で使用する共重合体の分子量は1万
〜100万が好ましい。分子量が100万超では、溶解
粘度が著しく高くリチウム塩溶液との均一混合が困難と
なったり、リチウム塩溶液の保持量が少なくなってポリ
マー電解質の電気伝導度が低下したりするので好ましく
ない。一方、1万未満では、ポリマー電解質の機械的強
度が著しく低下するので好ましくない。特に好ましくは
3万〜50万とする。
The molecular weight of the copolymer used in the present invention is preferably 10,000 to 1,000,000. If the molecular weight is more than 1,000,000, the dissolution viscosity is extremely high, so that it is difficult to uniformly mix with the lithium salt solution, or the holding amount of the lithium salt solution is reduced, and the electric conductivity of the polymer electrolyte is undesirably reduced. On the other hand, if it is less than 10,000, the mechanical strength of the polymer electrolyte is significantly reduced, which is not preferable. Particularly preferably, it is set to 30,000 to 500,000.

【0016】本発明においてリチウム塩を溶解し、ポリ
マー電解質中に含有される溶媒としては炭酸エステルが
好ましい。炭酸エステルは環状、鎖状いずれも使用でき
る。環状炭酸エステルとしてはプロピレンカーボネー
ト、エチレンカーボネート等が例示される。鎖状炭酸エ
ステルとしてはジメチルカーボネート、ジエチルカーボ
ネート、メチルエチルカーボネート、メチルプロピルカ
ーボネート、メチルイソプロピルカーボネート等が例示
される。
In the present invention, carbonate is preferable as the solvent in which the lithium salt is dissolved and contained in the polymer electrolyte. Carbonate can be used either cyclic or chain. Examples of the cyclic carbonate include propylene carbonate and ethylene carbonate. Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate and the like.

【0017】本発明では上記炭酸エステルを単独で又は
2種以上を混合して使用できる。他の溶媒と混合して使
用してもよい。また、負極活物質の材料によっては、鎖
状炭酸エステルと環状炭酸エステルを併用すると、放電
特性、サイクル耐久性、充放電効率が改良できる場合が
ある。
In the present invention, the above-mentioned carbonates can be used alone or in combination of two or more. It may be used by mixing with other solvents. Further, depending on the material of the negative electrode active material, the combined use of a chain carbonate and a cyclic carbonate may improve the discharge characteristics, cycle durability, and charge / discharge efficiency.

【0018】本発明で使用されるリチウム塩としては、
ClO4 -、CF3 SO3 -、BF4 -、PF6 -、AsF6 -
SbF6 -、CF3 CO2 -、(CF3 SO22- 等を
アニオンとするリチウム塩のいずれか1種以上を使用す
ることが好ましい。
The lithium salt used in the present invention includes:
ClO 4 , CF 3 SO 3 , BF 4 , PF 6 , AsF 6 ,
It is preferable to use at least one of lithium salts having an anion of SbF 6 , CF 3 CO 2 , (CF 3 SO 2 ) 2 N or the like.

【0019】本発明において、前記リチウム塩は、前記
溶媒に0.2〜2.0mol/lの濃度で溶解するのが
好ましい。この範囲を逸脱すると、イオン伝導度が低下
し、ポリマー電解質の電気伝導度が低下する。より好ま
しくは0.5〜1.5mol/lが選定される。
In the present invention, the lithium salt is preferably dissolved in the solvent at a concentration of 0.2 to 2.0 mol / l. Outside this range, the ionic conductivity decreases and the electrical conductivity of the polymer electrolyte decreases. More preferably, 0.5 to 1.5 mol / l is selected.

【0020】本発明におけるポリマー電解質は、マトリ
ックス中に前記のリチウム塩溶液が均一に分布してい
る。ポリマー電解質中のリチウム塩溶液の含有量は30
〜80重量%が好ましい。30重量%未満では電気伝導
度が低くなるので好ましくない。80重量%超ではポリ
マー電解質が固体状態を保てなくなるおそれがあるので
好ましくない。特に好ましくは40〜65重量%が採用
される。
In the polymer electrolyte of the present invention, the above-mentioned lithium salt solution is uniformly distributed in a matrix. The content of the lithium salt solution in the polymer electrolyte is 30.
~ 80% by weight is preferred. If the amount is less than 30% by weight, the electric conductivity is undesirably low. If it exceeds 80% by weight, the polymer electrolyte may not be able to maintain a solid state, which is not preferable. Particularly preferably, 40 to 65% by weight is employed.

【0021】本発明におけるポリマー電解質は種々の方
法で作製できる。例えば、マトリックス成分となる共重
合体を有機溶媒に溶解又は均一に分散させ、リチウム塩
を溶媒に溶解させた溶液と混合する(以下、この混合液
をポリマー電解質形成用混合液という)。この混合液を
ガラス板上にバーコータ又はドクターブレードによる塗
布、キャスト又はスピンコートした後、乾燥して主とし
て前記共重合体を溶解又は分散させた有機溶媒を除去
し、ポリマー電解質フィルムを得る。乾燥時にリチウム
塩を溶解させた溶媒が一部蒸発する場合は、該フィルム
に新たにその溶媒を含浸させるか又はフィルムをその溶
媒蒸気に暴露して所望の組成にする。
The polymer electrolyte of the present invention can be prepared by various methods. For example, a copolymer serving as a matrix component is dissolved or uniformly dispersed in an organic solvent, and mixed with a solution in which a lithium salt is dissolved in a solvent (hereinafter, this mixture is referred to as a mixture for forming a polymer electrolyte). The mixed solution is applied, cast or spin-coated on a glass plate with a bar coater or a doctor blade, and then dried to remove mainly the organic solvent in which the copolymer is dissolved or dispersed, thereby obtaining a polymer electrolyte film. When the solvent in which the lithium salt is dissolved partially evaporates during drying, the film is newly impregnated with the solvent or the film is exposed to the solvent vapor to obtain a desired composition.

【0022】フィルムを形成するために共重合体を溶解
又は分散させる有機溶媒としては、テトラヒドロフラ
ン、メチルエチルケトン、メチルイソブチルケトン、ト
ルエン、キシレン、N−メチルピロリドン、アセトン、
アセトニトリル、ジメチルカーボネイト、酢酸エチル、
酢酸ブチル等が使用でき、乾燥により選択的にこの有機
溶媒を除去するため、テトラヒドロフラン、アセトン等
の沸点100℃以下の揮発性の有機溶媒が好ましい。
The organic solvent for dissolving or dispersing the copolymer to form a film includes tetrahydrofuran, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, N-methylpyrrolidone, acetone,
Acetonitrile, dimethyl carbonate, ethyl acetate,
A volatile organic solvent having a boiling point of 100 ° C. or lower such as tetrahydrofuran or acetone is preferable in order to selectively remove the organic solvent by drying.

【0023】本発明における負極活物質は、一次電池の
場合はリチウムイオンを放出可能な材料であり、二次電
池の場合はリチウムイオンを吸蔵、放出可能な材料であ
る。これらの負極活物質を形成する材料は特に限定され
ないが、例えばリチウム金属、リチウム合金、炭素材
料、周期表14、15族の金属を主体とした酸化物、炭
素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化
チタン、炭化ホウ素化合物等が挙げられる。
The negative electrode active material in the present invention is a material capable of releasing lithium ions in the case of a primary battery, and a material capable of absorbing and releasing lithium ions in the case of a secondary battery. Although the material forming these negative electrode active materials is not particularly limited, for example, lithium metal, lithium alloy, carbon material, oxides mainly composed of metals of Groups 14 and 15 of the periodic table, carbon compounds, silicon carbide compounds, silicon oxide compounds , Titanium sulfide, boron carbide compounds and the like.

【0024】炭素材料としては、様々な熱分解条件で有
機物を熱分解したものや人造黒鉛、天然黒鉛、土壌黒
鉛、膨張黒鉛、鱗片状黒鉛等を使用できる。また、酸化
物としては、酸化スズを主体とする化合物が使用でき
る。
As the carbon material, those obtained by thermally decomposing organic substances under various thermal decomposition conditions, artificial graphite, natural graphite, soil graphite, expanded graphite, flaky graphite and the like can be used. As the oxide, a compound mainly composed of tin oxide can be used.

【0025】本発明における正極活物質は一次電池の場
合はリチウムイオンを吸蔵可能な物質であり、二次電池
の場合はリチウムイオンを吸蔵、放出可能な物質であ
る。例えば、周期表4族のTi、Zr、Hf、5族の
V、Nb、Ta、6族のCr、Mo、W、7族のMn、
8族のFe、Ru、9族のCo、10族のNi、11族
のCu、12族のZn、Cd、13族のAl、Ga、I
n、14族のSn、Pb、15族のSb、Bi及び16
族のTe等の金属を主成分とする酸化物及び複合酸化
物、硫化物等のカルコゲン化物、オキシハロゲン化物、
前記金属とリチウムとの複合酸化物等が使用できる。ま
た、ポリアニリン誘導体、ポリピロール誘導体、ポリチ
オフェン誘導体、ポリアセン誘導体、ポリパラフェニレ
ン誘導体、又はそれらの共重合体等の導電性高分子材料
も使用できる。
The positive electrode active material in the present invention is a material capable of occluding and releasing lithium ions in the case of a primary battery, and a material capable of occluding and releasing lithium ions in the case of a secondary battery. For example, Ti, Zr, Hf of Group 4 of the periodic table, V, Nb, Ta of Group 5, Cr, Mo, W of Group 6, Mn of Group 7,
Group 8 Fe, Ru, Group 9 Co, Group 10 Ni, Group 11 Cu, Group 12 Zn, Cd, Group 13 Al, Ga, I
n, Group 14 Sn, Pb, Group 15 Sb, Bi and 16
Oxides and composite oxides containing a metal such as group Te as a main component, chalcogenides such as sulfides, oxyhalides,
A composite oxide of the metal and lithium can be used. Further, a conductive polymer material such as a polyaniline derivative, a polypyrrole derivative, a polythiophene derivative, a polyacene derivative, a polyparaphenylene derivative, or a copolymer thereof can also be used.

【0026】本発明では、リチウムを吸蔵、放出可能な
物質を負極活物質に使用した二次電池とする場合、負極
及び/又は正極にリチウムを含有させる。一般的には正
極活物質の合成時にリチウム含有化合物とし、正極活物
質の固体マトリックス中にリチウムを含有させておく。
また、電池組立前に負極に化学的又は電気化学的方法で
リチウムを含有させたり、電池組立時にリチウム金属を
負極及び/又は正極に接触させて組み込むといった方法
でリチウムを含有させることもできる。
In the present invention, when a secondary battery using a material capable of inserting and extracting lithium as a negative electrode active material is used, lithium is contained in the negative electrode and / or the positive electrode. Generally, a lithium-containing compound is used at the time of synthesis of the positive electrode active material, and lithium is contained in the solid matrix of the positive electrode active material.
Further, lithium can be contained in the negative electrode by a chemical or electrochemical method before assembling the battery, or lithium can be incorporated by bringing lithium metal into contact with the negative electrode and / or the positive electrode when assembling the battery.

【0027】正極活物質に使用するリチウム含有化合物
としては、特にリチウムとマンガンの複合酸化物、リチ
ウムとコバルトの複合酸化物、リチウムとニッケルの複
合酸化物が好ましい。
As the lithium-containing compound used for the positive electrode active material, a composite oxide of lithium and manganese, a composite oxide of lithium and cobalt, and a composite oxide of lithium and nickel are particularly preferable.

【0028】本発明における正極及び負極は、活物質を
有機溶媒と混練してスラリとし、該スラリを金属箔集電
体に塗布、乾燥して得ることが好ましい。より好ましく
は、前記正極及び負極にポリマー電解質形成用混合液を
含浸又は塗布し、電極層の内部までポリマー電解質を浸
透させるとよい。また、スラリにポリマー電解質形成用
混合液をあらかじめ混合してから金属箔集電体に塗布し
てもよい。
The positive and negative electrodes of the present invention are preferably obtained by kneading an active material with an organic solvent to form a slurry, applying the slurry to a metal foil current collector, and drying. More preferably, the mixed solution for forming a polymer electrolyte is impregnated or applied to the positive electrode and the negative electrode, and the polymer electrolyte is permeated to the inside of the electrode layer. Alternatively, the slurry may be preliminarily mixed with a mixed solution for forming a polymer electrolyte and then applied to the metal foil current collector.

【0029】また、本発明では、前記共重合体を有機溶
媒に溶解又は分散させずに多孔質フィルム状に形成し、
活物質を含むスラリを金属箔集電体に塗布、乾燥して得
た正極及び負極の間にはさみ、その後にリチウム塩を溶
解した溶液を吸収せしめて電池素子を形成することもで
きる。
In the present invention, the copolymer is formed into a porous film without being dissolved or dispersed in an organic solvent,
A battery element can also be formed by applying a slurry containing an active material to a metal foil current collector, sandwiching it between a positive electrode and a negative electrode obtained by drying, and then absorbing a solution in which a lithium salt is dissolved.

【0030】本発明のリチウム電池の形状には特に制約
はない。シート状(いわゆるフイルム状)、折り畳み
状、巻回型有底円筒形、ボタン形等が用途に応じて選択
される。
The shape of the lithium battery of the present invention is not particularly limited. A sheet shape (a so-called film shape), a folded shape, a wound-type cylindrical shape with a bottom, a button shape, and the like are selected according to the application.

【0031】[0031]

【実施例】以下に実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例に限定されない。ポリマ
ーの分子量の尺度である容量流速は以下の方法で測定し
た。高化式フローテスターを用い、265℃、5kg/
cm2 加圧下に直径1mm、長さ2mmのノズルより単
位時間に押し出される溶融試料の容量を測定した。単位
としてはmm3 /secで表す。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. The volume flow rate, which is a measure of the molecular weight of the polymer, was measured by the following method. Using a Koka type flow tester, 265 ℃, 5kg /
The volume of the molten sample extruded per unit time from a nozzle having a diameter of 1 mm and a length of 2 mm under a pressure of cm 2 was measured. The unit is mm 3 / sec.

【0032】溶融範囲の始点と終点は示差熱分析によっ
て決定した。測定方法としては、示差熱分析測定装置を
用い、窒素ガス雰囲気中で加熱速度は10℃/分とし、
基準物質としてインジウムを用いた。
The start and end points of the melting range were determined by differential thermal analysis. As a measuring method, using a differential thermal analysis measuring apparatus, the heating rate was 10 ° C./min in a nitrogen gas atmosphere,
Indium was used as a reference substance.

【0033】[例1]1lの撹拌機付きステンレス製オ
ートクレーブを容器として用い、イオン交換水615
g、パーフルオロオクタン酸アンモニウム2.56g、
シュウ酸0.41g及びシュウ酸水素アンモニウム1.
24gを装入した。次いで窒素を封入してパージ、脱気
を繰り返し行った。次にHFP55.2g(=0.40
モル)を容器に供給した。さらにTFE21.5g(=
0.21モル)及びVDF8.4g(=0.13モル)
を供給し、それによって15kg/cm2 の圧力が発生
した。容器内の温度を43℃に保ち、撹拌翼の回転速度
を200rpmとし、15重量%のKMnO4 水溶液を
添加することで重合を開始した。
Example 1 1 l of stainless steel autoclave with a stirrer was used as a container, and ion-exchanged water 615 was used.
g, 2.56 g of ammonium perfluorooctanoate,
0.41 g of oxalic acid and ammonium hydrogen oxalate
24 g were charged. Subsequently, nitrogen was enclosed, and purging and degassing were repeatedly performed. Next, 55.2 g of HFP (= 0.40)
Mol) was supplied to the vessel. Furthermore, 21.5 g of TFE (=
0.21 mol) and 8.4 g of VDF (= 0.13 mol)
, Whereby a pressure of 15 kg / cm 2 was generated. The temperature in the vessel was maintained at 43 ° C., the rotation speed of the stirring blade was set to 200 rpm, and the polymerization was started by adding a 15 wt% KMnO 4 aqueous solution.

【0034】重合の進行とともにガス状のTFE、VD
F及び液状のHFPを供給し圧力を保持した。4時間後
容器を冷却し、残存のガス単量体をパージして重合を停
止させた。この時点までに供給された単量体はあらかじ
め装入された単量体の他にさらにTFE54g(=0.
54モル)、VDF45.4g(=0.71モル)及び
HFP125.5g(=0.91モル)であった。
As the polymerization proceeds, gaseous TFE, VD
F and liquid HFP were supplied and the pressure was maintained. After 4 hours, the vessel was cooled and the remaining gas monomers were purged to stop the polymerization. The monomer supplied up to this point was 54 g of TFE (= 0.
54 mol), 45.4 g (= 0.71 mol) of VDF and 125.5 g (= 0.91 mol) of HFP.

【0035】容器を開放し得られた乳白色の分散液73
0gを濃塩酸で酸性化してプロペラ付き撹拌機を用いて
撹拌し、得られた沈殿物をイオン交換水で数回洗浄し
た。これを110℃において10時間乾燥して得られた
共重合体の重量は108gであった。
The milky white dispersion 73 obtained by opening the container was obtained.
0 g was acidified with concentrated hydrochloric acid, stirred with a stirrer equipped with a propeller, and the obtained precipitate was washed several times with ion-exchanged water. The copolymer was dried at 110 ° C. for 10 hours, and the weight of the obtained copolymer was 108 g.

【0036】13C−NMRスペクトルから計算した共重
合体の組成は、TFEに基づく重合単位とVDFに基づ
く重合単位とHFPに基づく重合単位とが重量比で4
5.0/37.6/17.3であった。この共重合体の
溶融範囲は、示差熱分析により114〜126℃である
ことが確認された。また容量流速値は20(mm3 /s
ec)であった。
The composition of the copolymer calculated from the 13 C-NMR spectrum is such that a polymer unit based on TFE, a polymer unit based on VDF, and a polymer unit based on HFP have a weight ratio of 4
5.0 / 37.6 / 17.3. The melting range of this copolymer was confirmed to be 114 to 126 ° C. by differential thermal analysis. The volume flow rate value is 20 (mm 3 / s
ec).

【0037】アルゴン雰囲気中で、この共重合体10重
量部をアセトン32重量部に撹拌しながら加温して溶解
させた。これを溶液1とする。次にエチレンカーボネー
トとプロピレンカーボネートを体積比で1/1に混合し
た溶媒にLiPF6 を1mol/lの濃度でアルゴン雰
囲気中で溶解した。これを溶液2とする。
In an argon atmosphere, 10 parts by weight of this copolymer was dissolved in 32 parts by weight of acetone while heating with stirring. This is designated as solution 1. Next, LiPF 6 was dissolved at a concentration of 1 mol / l in an argon atmosphere in a solvent in which ethylene carbonate and propylene carbonate were mixed at a volume ratio of 1/1. This is designated as solution 2.

【0038】溶液1を21重量部に溶液2を5重量部加
え、60℃に加熱し撹拌した。この溶液をガラス板上に
バーコータにて塗布し、40℃で1時間乾燥してアセト
ンを除去し、厚さ100μmの透明なポリマー電解質フ
ィルムを得た。このフィルムの組成は、共重合体、エチ
レンカーボネート/プロピレンカーボネート混合溶媒、
LiPF6 が重量比で50/44.3/5.7であっ
た。このフィルムをガラス基板より剥離し、交流インピ
ーダンス法により電気伝導度を25℃、アルゴン雰囲気
中で測定した。電気伝導度は5. 0×10-4S/cmで
あった。
[0038] 21 parts by weight of solution 1 and 5 parts by weight of solution 2 were added, and the mixture was heated to 60 ° C and stirred. This solution was applied on a glass plate using a bar coater, and dried at 40 ° C. for 1 hour to remove acetone to obtain a 100 μm thick transparent polymer electrolyte film. The composition of this film is a copolymer, a mixed solvent of ethylene carbonate / propylene carbonate,
LiPF 6 was 50 / 44.3 / 5.7 by weight. The film was peeled from the glass substrate, and the electrical conductivity was measured by an AC impedance method at 25 ° C. in an argon atmosphere. The electric conductivity was 5.0 × 10 −4 S / cm.

【0039】正極活物質としてLiCoO2 粉末を11
重量部、導電材としてアセチレンブラックを1.5重量
部、上記共重合体6重量部、溶液2を11重量部、及び
アセトン70重量部をアルゴン雰囲気下で混合し、撹拌
しながら加温してスラリを得た。このスラリを表面を粗
面化した厚さ20μmのアルミニウム箔にバーコータに
て塗布、乾燥し、正極を得た。
LiCoO 2 powder was used as a positive electrode active material in 11
Parts by weight, 1.5 parts by weight of acetylene black as a conductive material, 6 parts by weight of the above copolymer, 11 parts by weight of solution 2 and 70 parts by weight of acetone were mixed in an argon atmosphere, and heated while stirring. Got a slurry. This slurry was applied to a 20 μm-thick aluminum foil having a roughened surface using a bar coater and dried to obtain a positive electrode.

【0040】負極活物質としてメソフェーズカーボンフ
ァイバ粉末(平均直径8μm、平均長さ50μm、(0
02)面間隔0.336nm)12重量部、上記共重合
体6重量部、溶液2を11重量部、及びアセトン70重
量部をアルゴン雰囲気下で混合し、撹拌しながら加温し
てスラリを得た。このスラリを表面を粗面化した厚さ2
0μmの銅箔にバーコータにて塗布、乾燥し、負極を得
た。
Mesophase carbon fiber powder (average diameter 8 μm, average length 50 μm, (0
02) A spacing of 0.336 nm) 12 parts by weight of the copolymer, 6 parts by weight of the above copolymer, 11 parts by weight of solution 2 and 70 parts by weight of acetone were mixed in an argon atmosphere, and heated with stirring to obtain a slurry. Was. Thickness of this slurry obtained by roughening the surface 2
A negative electrode was obtained by coating and drying on a 0 μm copper foil with a bar coater.

【0041】前記ポリマー電解質フィルムを1.5cm
角に成形し、これを介して有効電極面積1cm×1cm
の前記正極及び前記負極を対向させ、厚さ1.5mmで
3cm角の2枚のポリTFE背板で挟み締め付け、その
外側を外装フィルムで覆うことによりリチウムイオン二
次電池素子を組み立てた。この操作もすべてアルゴン雰
囲気中で行った。
The polymer electrolyte film is 1.5 cm
Formed into corners, through which the effective electrode area 1 cm x 1 cm
The positive electrode and the negative electrode were opposed to each other, sandwiched between two 1.5 cm-thick 3 cm square poly TFE back plates, and the outside thereof was covered with an exterior film to assemble a lithium ion secondary battery element. This operation was all performed in an argon atmosphere.

【0042】充放電条件は、0.5Cの定電流で、充電
電圧は4.2Vまで、放電電圧は2.5Vまでの電位規
制で充放電サイクル試験を行った。その結果、500サ
イクル後の容量維持率は93%であった。
A charge / discharge cycle test was performed under the conditions of a constant current of 0.5 C, a charge voltage of up to 4.2 V, and a discharge voltage of up to 2.5 V. As a result, the capacity retention after 500 cycles was 93%.

【0043】[例2]例1において初期のTFEを2
3.5g(=0.23モル)、HFPを51.2g(=
0.37モル)、VDFを5.9g(=0.09モル)
とし、重合の進行とともに供給する単量体についてはT
FEを62.5g(=0.62モル)、HFPを14
1.3g(=1.02モル)、VDFを37.4g(=
0.58モル)に変更した以外は例1と同様にして共重
合し、TFE/HFP/VDF共重合体113g(重量
比で59.3/16.2/24.5)を得た。この共重
合体の溶融範囲は示差熱分析により125〜136℃で
あることが確認された。また容量流速値は10(mm3
/sec)であった。
Example 2 In Example 1, the initial TFE was changed to 2
3.5 g (= 0.23 mol) and HFP 51.2 g (=
0.37 mol), 5.9 g of VDF (= 0.09 mol)
And for the monomers supplied as the polymerization proceeds, T
62.5 g (= 0.62 mol) of FE and 14
1.3 g (= 1.02 mol), VDF 37.4 g (=
The copolymerization was carried out in the same manner as in Example 1 except that the amount was changed to 0.58 mol, to obtain 113 g of a TFE / HFP / VDF copolymer (59.3 / 16.2 / 24.5 in weight ratio). The melting range of this copolymer was confirmed to be 125 to 136 ° C. by differential thermal analysis. The volume flow rate is 10 (mm 3
/ Sec).

【0044】この共重合体を用いた以外は例1と同様に
して厚さ100μmのポリマー電解質フィルムを得た。
このフィルムの電気伝導度を例1と同様にして測定した
ところ、4.5×10-4S/cmであった。
A polymer electrolyte film having a thickness of 100 μm was obtained in the same manner as in Example 1 except that this copolymer was used.
When the electric conductivity of this film was measured in the same manner as in Example 1, it was 4.5 × 10 −4 S / cm.

【0045】このポリマー電解質を用いた以外は例1と
同様にして電池素子を組み立て、例1と同様に充放電サ
イクル試験を行った。500サイクル後の容量維持率は
91%であった。
A battery element was assembled in the same manner as in Example 1 except that this polymer electrolyte was used, and a charge / discharge cycle test was performed in the same manner as in Example 1. The capacity retention after 500 cycles was 91%.

【0046】[例3]例1において初期のTFEを2
5.2g(=0.25モル)、VDFを48g(=0.
07モル)、HFPを53.2g(=0.38モル)と
し、重合の進行とともに供給する単量体についてはTF
Eを66.4g(=0.66モル)、VDFを30.8
g(=0.48モル)、HFPを152.4g(=1.
10モル)に変更した以外は例1と同様にして共重合
し、TFE/HFP/VDF共重合体102g(重量比
で62.1/16.1/21.8)を得た。この共重合
体の溶融範囲は、示差熱分析により153〜168℃で
あることが確認された。また容量流速値は6(mm3
sec)であった。
[Example 3] In the example 1, the initial TFE was 2
5.2 g (= 0.25 mol) and 48 g of VDF (= 0.25 mol)
07 mol), and 53.2 g (= 0.38 mol) of HFP.
E was 66.4 g (= 0.66 mol) and VDF was 30.8 g
g (= 0.48 mol) and 152.4 g of HFP (= 1.
Copolymerization was carried out in the same manner as in Example 1 except that the amount was changed to 10 mol) to obtain 102 g of TFE / HFP / VDF copolymer (weight ratio: 62.1 / 16.1 / 21.8). The melting range of this copolymer was confirmed by differential thermal analysis to be 153 to 168 ° C. The volume flow rate value is 6 (mm 3 /
sec).

【0047】この共重合体を用いた以外は例1と同様に
して厚さ100μmのポリマー電解質フィルムを得た。
このフィルムの電気伝導度を例1と同様にして測定した
ところ、4.0×10-4S/cmであった。
A polymer electrolyte film having a thickness of 100 μm was obtained in the same manner as in Example 1 except that this copolymer was used.
When the electric conductivity of this film was measured in the same manner as in Example 1, it was 4.0 × 10 −4 S / cm.

【0048】このポリマー電解質を用いた以外は例1と
同様にして電池素子を組み立て、例1と同様に充放電サ
イクル試験を行った。500サイクル後の容量維持率は
90%であった。
A battery element was assembled in the same manner as in Example 1 except that this polymer electrolyte was used, and a charge / discharge cycle test was performed in the same manner as in Example 1. The capacity retention after 500 cycles was 90%.

【0049】[例4]負極として厚さ100μmのリチ
ウム/アルミニウム合金箔を用いた他は例1と同様にし
てリチウム二次電池素子を組み立て、例1と同様に充放
電サイクル試験を行った。500サイクル後の容量維持
率は87%であった。
Example 4 A lithium secondary battery element was assembled in the same manner as in Example 1 except that a lithium / aluminum alloy foil having a thickness of 100 μm was used as a negative electrode, and a charge / discharge cycle test was performed as in Example 1. The capacity retention after 500 cycles was 87%.

【0050】[0050]

【発明の効果】本発明のリチウム電池は、ポリマー電解
質のリチウム塩溶液の保持性がよく良好な電気伝導度を
有し、かつポリマー電解質と電極活物質との密着性がよ
いので、充放電サイクル耐久性が優れている。また、本
発明のリチウム電池は、正極活物質及び負極活物質の選
択により、一次電池、二次電池両方に適用できる。
As described above, the lithium battery of the present invention has good retention of the lithium salt solution of the polymer electrolyte, good electric conductivity, and good adhesion between the polymer electrolyte and the electrode active material. Excellent durability. Further, the lithium battery of the present invention can be applied to both a primary battery and a secondary battery by selecting a positive electrode active material and a negative electrode active material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田村 正之 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 船木 篤 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 石田 徹 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masayuki Tamura 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Inside the Asahi Glass Co., Ltd. (72) Inventor Atsushi Funaki 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Asahi Glass Central Research Laboratory (72) Inventor Tohru Ishida 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa-ken Central Research Laboratory of Asahi Glass Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】正極、負極及び電解質を有するリチウム電
池において、前記電解質が、テトラフルオロエチレンに
基づく重合単位30〜70重量%とヘキサフルオロプロ
ピレンに基づく重合単位13〜32重量%とフッ化ビニ
リデンに基づく重合単位8〜50重量%とを含む共重合
体をマトリックスとし、リチウム塩の溶質と該リチウム
塩を溶解できる溶媒とからなる溶液を含有するポリマー
電解質であることを特徴とするリチウム電池。
1. A lithium battery comprising a positive electrode, a negative electrode and an electrolyte, wherein the electrolyte comprises 30 to 70% by weight of polymerized units based on tetrafluoroethylene, 13 to 32% by weight of polymerized units based on hexafluoropropylene, and vinylidene fluoride. A lithium battery comprising: a polymer electrolyte comprising, as a matrix, a copolymer containing 8 to 50% by weight of a polymer unit based on the polymer electrolyte, the solution comprising a solute of a lithium salt and a solvent capable of dissolving the lithium salt.
【請求項2】前記共重合体の融点が50℃以上である請
求項1記載のリチウム電池。
2. The lithium battery according to claim 1, wherein the melting point of the copolymer is 50 ° C. or higher.
【請求項3】前記溶媒が炭酸エステルである請求項1又
は2記載のリチウム電池。
3. The lithium battery according to claim 1, wherein the solvent is a carbonate ester.
【請求項4】リチウム塩を溶媒に溶解した溶液が、ポリ
マー電解質中に30〜80重量%含有されている請求項
1、2又は3記載のリチウム電池。
4. The lithium battery according to claim 1, wherein the polymer electrolyte contains 30 to 80% by weight of a solution obtained by dissolving a lithium salt in a solvent.
JP9085358A 1997-04-03 1997-04-03 Lithium battery containing polymer electrolyte Pending JPH10284124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9085358A JPH10284124A (en) 1997-04-03 1997-04-03 Lithium battery containing polymer electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9085358A JPH10284124A (en) 1997-04-03 1997-04-03 Lithium battery containing polymer electrolyte

Publications (1)

Publication Number Publication Date
JPH10284124A true JPH10284124A (en) 1998-10-23

Family

ID=13856494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9085358A Pending JPH10284124A (en) 1997-04-03 1997-04-03 Lithium battery containing polymer electrolyte

Country Status (1)

Country Link
JP (1) JPH10284124A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012909A1 (en) * 2001-07-27 2003-02-13 Newturn Energy Co., Ltd. Polymer electrolyte and method of manufacturing the same
JP2003187870A (en) * 2001-12-18 2003-07-04 Japan Storage Battery Co Ltd Polymer electrolyte and nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012909A1 (en) * 2001-07-27 2003-02-13 Newturn Energy Co., Ltd. Polymer electrolyte and method of manufacturing the same
JP2003187870A (en) * 2001-12-18 2003-07-04 Japan Storage Battery Co Ltd Polymer electrolyte and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JPH10294131A (en) Lithium battery having polymer electrolyte
EP1011165B1 (en) Lithium secondary battery, polymer gel electrolyte, and binder for lithium secondary batteries
JPH11111265A (en) Polymer electrolyte secondary battery
JP3854382B2 (en) Polymer matrix for forming gelled solid electrolyte, solid electrolyte and battery
JP5638224B2 (en) Polymer electrolyte, lithium battery including the same, method for producing polymer electrolyte, and method for producing lithium battery
JP2008066047A (en) Nonaqueous electrolyte battery and separator thereof
JPH1186875A (en) Positive electrode for nonaqueous secondary battery
JPH10284128A (en) Lithium battery
JP3842442B2 (en) Polymer solid electrolyte and electrochemical device using the same
JP2007226974A (en) Lithium-ion secondary battery
WO1993014528A1 (en) Secondary battery
JP2011159503A (en) Lithium ion conductive polymer electrolyte and lithium battery
JPH10334945A (en) Improved lithium battery
JPH10284124A (en) Lithium battery containing polymer electrolyte
JPH10284127A (en) Lithium battery
JPH10334946A (en) Lithium battery
JP3757489B2 (en) Lithium battery
JPH11329448A (en) Nonaqueous secondary battery positive electrode current collector and nonaqueous secondary battery having this current collector
JP3539564B2 (en) Polymer electrolyte and non-aqueous electrolyte secondary battery
JPH10334947A (en) Lithium battery
JPH113729A (en) Lithium battery
JP2000228218A (en) Lithium battery having high polymer electrolyte
JPH1116604A (en) Lithium battery
JPH10302837A (en) Lithium battery having polymeric electrolyte
JPH10149841A (en) Lithium battery