JPH11111265A - Polymer electrolyte secondary battery - Google Patents

Polymer electrolyte secondary battery

Info

Publication number
JPH11111265A
JPH11111265A JP9266811A JP26681197A JPH11111265A JP H11111265 A JPH11111265 A JP H11111265A JP 9266811 A JP9266811 A JP 9266811A JP 26681197 A JP26681197 A JP 26681197A JP H11111265 A JPH11111265 A JP H11111265A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
electrode body
positive electrode
plate
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9266811A
Other languages
Japanese (ja)
Inventor
Manabu Kazuhara
学 数原
Katsuharu Ikeda
克治 池田
Kazuya Hiratsuka
和也 平塚
Hiroki Kamiya
浩樹 神谷
Masayuki Tamura
正之 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP9266811A priority Critical patent/JPH11111265A/en
Publication of JPH11111265A publication Critical patent/JPH11111265A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce internal resistance of a battery, attain size reduction, increase capacity, and improve a rapid charge/discharge characteristic and charge/discharge cycle durability by forming a positive electrode body and/or a negative electrode body of a foaming metallic plate which does not form an allay with lithium or a metallic fiber sintered plate, and filling an electrode layer inside a metallic current collecting body. SOLUTION: A positive electrode body and/or a negative electrode body are integrally formed in a condition where a current collecting body three-dimensionally expands in a mixture by filling the mixture containing an active material and a polymer electrolyte in the current collecting body composed of a foaming metallic plate which does not form an alloy with lithium or a metallic fiber sintered plate. Therefore, an average distance between the active material and the current collecting body is small, and internal resistance of an electrode body is small. Therefore, a battery having large capacity is obtained, and can endure even large electric current discharge. In the electrode body, the active material is fixed by a polymer electrolyte also having a function as a binder together with the foaming metallic plate, and even if charge/ discharge is repeated, an increase in internal resistance of the electrode body can be restrained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はポリマー電解質を使
用した二次電池、特に容量が大きく、内部抵抗が小さく
かつサイクル寿命に優れるポリマー電解質二次電池に関
する。
The present invention relates to a secondary battery using a polymer electrolyte, and more particularly to a polymer electrolyte secondary battery having a large capacity, a small internal resistance and an excellent cycle life.

【0002】[0002]

【従来の技術】電極活物質としてアルカリ金属、アルカ
リ金属イオンを吸蔵、放出可能な材料を用いる電池が高
エネルギ密度を有するものとして注目されており、なか
でもリチウム二次電池は特にエネルギ密度が高いため、
電子機器の電源として広く用いられつつある。
2. Description of the Related Art A battery using a material capable of occluding and releasing an alkali metal or an alkali metal ion as an electrode active material has attracted attention as having a high energy density. Among them, a lithium secondary battery has a particularly high energy density. For,
It is being widely used as a power source for electronic devices.

【0003】一次電池及び二次電池に液状である電解液
を用いる場合、漏液及び可燃性電解液の着火性低減に対
する対策が工夫されている。近年、これらの問題に対す
る対策及び電池のフィルム状化による電子機器への組み
込み性の向上とスペースの有効利用等の見地より、ポリ
マー電解質が提案されている(特表平8−50740
7、特表平4−506726)。
[0003] When a liquid electrolyte is used for the primary battery and the secondary battery, measures have been devised to reduce leakage and the ignitability of the flammable electrolyte. In recent years, polymer electrolytes have been proposed from the viewpoints of measures against these problems, improvement of incorporation into electronic devices by forming batteries into a film, and effective use of space (Japanese Patent Application Laid-Open No. Hei 8-50740).
7, Tokuhyo Hei 4-506726).

【0004】そのなかで、ポリエチレンオキシド系ポリ
マー電解質は電気化学的には安定であるが、有機電解液
の溶媒の保持性が低い難点がある。三次元構造のポリア
クリレート系ポリマー電解質は、溶媒の保持性はよいが
電気化学的に不安定で高電位の電池には適さない。
Among them, polyethylene oxide-based polymer electrolytes are electrochemically stable, but have a drawback in that the solvent retention of the organic electrolyte is low. The polyacrylate-based polymer electrolyte having a three-dimensional structure has good solvent retention, but is electrochemically unstable and is not suitable for a high-potential battery.

【0005】ポリフッ化ビニリデンからなるポリマー電
解質は電気化学的に安定であり、フッ素原子を含むので
ポリマーの耐熱性が高い特徴があるが、ポリマー電解質
の温度を上げると電解液がポリマーよりにじみ出る。こ
れに対し、フッ化ビニリデンとヘキサフルオロプロピレ
ンの共重合体を使用することによりこの問題を解決する
試みもある。
[0005] A polymer electrolyte made of polyvinylidene fluoride is electrochemically stable and has a feature that the polymer has high heat resistance because it contains fluorine atoms. However, when the temperature of the polymer electrolyte is increased, the electrolyte oozes out of the polymer. On the other hand, there is an attempt to solve this problem by using a copolymer of vinylidene fluoride and hexafluoropropylene.

【0006】従来のポリマー電解質二次電池は、例えば
正極活物質又は負極活物質とポリマー電解質とからなる
スラリを集電体金属箔の表面に塗工して50〜100μ
mの厚さの電極層を形成し、乾燥して正極体及び負極体
とし、正極体と負極体との間に、セパレータとしてポリ
マー電解質フィルムを挟んだものを基本素子とするか、
または、シート状の正極体と負極体との間にセパレータ
のフィルムを挟んで多数交互に積層して多層素子とし、
この素子を外装ラミネートフィルムで密封し、電池とし
ている。
In a conventional polymer electrolyte secondary battery, for example, a slurry composed of a positive electrode active material or a negative electrode active material and a polymer electrolyte is applied to the surface of a current collector metal foil to form a 50-100 μm slurry.
An electrode layer having a thickness of m is formed and dried to form a positive electrode body and a negative electrode body, and between the positive electrode body and the negative electrode body, a device in which a polymer electrolyte film is interposed as a separator or a basic device,
Alternatively, a multi-layer element is formed by alternately stacking a large number of sheets with a separator film between a sheet-like positive electrode body and a negative electrode body,
This element was sealed with an exterior laminate film to form a battery.

【0007】[0007]

【発明が解決しようとする課題】上述したポリマー電解
質電池の単位体積あたりの容量を増大させるためには、
正極体中の正極活物質の含有量及び負極体中の負極活物
質の含有量を多くすることが必要である。しかし、活物
質の量を多くすると非水電解液の保持の機能の他にバイ
ンダとして機能するポリマーの量が相対的に低下するた
め、集電体への密着性が低下する。したがって、ポリマ
ー電解質電池の製造工程や電池の取扱時、充放電サイク
ル後に電極層と集電体箔の間で剥離が生じ、電池性能が
低下する問題があった。
In order to increase the capacity per unit volume of the above-mentioned polymer electrolyte battery,
It is necessary to increase the content of the positive electrode active material in the positive electrode body and the content of the negative electrode active material in the negative electrode body. However, if the amount of the active material is increased, the amount of the polymer that functions as a binder in addition to the function of holding the non-aqueous electrolyte is relatively reduced, so that the adhesion to the current collector is reduced. Therefore, there has been a problem that peeling occurs between the electrode layer and the current collector foil after the charge / discharge cycle during the manufacturing process of the polymer electrolyte battery, the handling of the battery, and the battery performance is deteriorated.

【0008】また、電極層を厚くして単位面積あたりの
電極層の体積を高めると、電極層が集電体箔より剥がれ
やすくなり、また、電極の厚さ方向の電気抵抗、すなわ
ち内部抵抗が大きく、リチウムイオンの拡散距離が長い
ため、電極材料の利用率が著しく低く、この分エネルギ
密度と容量が小さくなる問題があり、特に液体電解質よ
りもポリマー電解質では電気伝導度が低いためにこの問
題が顕著である。
[0008] When the electrode layer is thickened to increase the volume of the electrode layer per unit area, the electrode layer is more easily peeled from the current collector foil, and the electrical resistance in the thickness direction of the electrode, that is, the internal resistance is reduced. Because of the large size and long diffusion distance of lithium ions, the utilization rate of the electrode material is extremely low, and there is a problem that the energy density and the capacity are reduced accordingly. Particularly, the polymer electrolyte has a lower electric conductivity than the liquid electrolyte. Is remarkable.

【0009】表面を粗面化した厚さ10〜30μmのア
ルミニウム箔をポリマー電解質電池の正極集電体に用い
て厚さ100μmのシート状正極とすることが提案され
ている(特開平9−022699)が、このような粗面
化アルミニウム箔集電体は密着性の向上には一部効果が
あるが、電極層を例えば150μm以上にすると電極層
の剥離や電池内部抵抗の増大、容量が発現しにくくなる
等の問題がある。
It has been proposed to use a 10-30 μm thick aluminum foil having a roughened surface as a positive electrode current collector of a polymer electrolyte battery to form a 100 μm thick sheet-like positive electrode (Japanese Patent Laid-Open No. 9-22699). However, such a surface-roughened aluminum foil current collector has a partial effect in improving the adhesiveness. However, when the electrode layer is made to have a thickness of, for example, 150 μm or more, the electrode layer peels off, the internal resistance of the battery increases, and the capacity appears. There is a problem that it becomes difficult.

【0010】このように従来のポリマー電解質使用リチ
ウム二次電池は、内部抵抗が高く、大電流放電がしがた
く、容量が小さく、また充放電サイクル耐久性が液体電
解質を用いた電池より劣る欠点があった。
As described above, the conventional lithium secondary battery using a polymer electrolyte has a disadvantage that the internal resistance is high, large current discharge is difficult, the capacity is small, and the charge / discharge cycle durability is inferior to the battery using the liquid electrolyte. was there.

【0011】本発明は特定の集電体を採用することによ
り、電池の内部抵抗を低減させ、小型大容量かつ急速充
放電特性に優れ、充放電サイクル耐久性が優れたポリマ
ー電解質二次電池を提供する。
The present invention provides a polymer electrolyte secondary battery which employs a specific current collector to reduce the internal resistance of the battery, and has a small size, a large capacity, excellent rapid charge / discharge characteristics, and excellent charge / discharge cycle durability. provide.

【0012】[0012]

【課題を解決するための手段】本発明は、金属集電体
に、活物質、電解質を含有する非水溶液及び該溶液を保
持するポリマーを含む電極層を一体化させてなる、正極
体及び負極体と、前記正極体及び前記負極体の間に介在
されて電解質を含有する非水溶液を保持してなるポリマ
ー電解質とを有するポリマー電解質二次電池において、
前記正極体及び/又は前記負極体は、金属集電体がリチ
ウムと合金を形成しない金属からなる発泡金属板又は金
属繊維焼結板であって、電極層が金属集電体内部に充填
されてなることを特徴とするポリマー電解質二次電池を
提供する。
According to the present invention, there is provided a positive electrode and a negative electrode comprising a metal current collector and an electrode layer containing a non-aqueous solution containing an active material and an electrolyte and a polymer holding the solution. Body, a polymer electrolyte secondary battery having a polymer electrolyte interposed between the cathode body and the anode body and holding a non-aqueous solution containing an electrolyte,
The positive electrode body and / or the negative electrode body is a foamed metal plate or a metal fiber sintered plate made of a metal in which the metal current collector does not form an alloy with lithium, and the electrode layer is filled in the metal current collector. The invention provides a polymer electrolyte secondary battery characterized in that:

【0013】本明細書において、リチウムと合金を形成
しない発泡金属板又は金属繊維焼結板とは、充放電サイ
クルを繰り返してもリチウムと合金をつくらない発泡金
属板又は金属繊維焼結板をいう。また、正極活物質、ポ
リマー電解質及び必要に応じて添加される導電材などか
らなる正極層を集電体内部に充填して集電体と一体化さ
せたものを正極体という。また、負極体についても同様
の定義とする。
In this specification, a foamed metal plate or a sintered metal fiber plate that does not form an alloy with lithium refers to a foamed metal plate or a sintered metal fiber plate that does not form an alloy with lithium even after repeated charge / discharge cycles. . In addition, a positive electrode body in which a positive electrode layer made of a positive electrode active material, a polymer electrolyte, and a conductive material added as necessary is filled in the current collector and integrated with the current collector. The same definition applies to the negative electrode body.

【0014】本発明の正極体及び/又は負極体(以下、
まとめて電極体という)は、リチウムと合金を形成しな
い発泡金属板又は金属繊維焼結板からなる集電体に、活
物質とポリマー電解質とを含む混合物を充填することに
より、集電体が前記混合物中に三次元的に広がった状態
で一体化されている。したがって、活物質と集電体の間
の平均距離が小さく、電極体の内部抵抗が小さい。その
ため、容量の大きい電池が得られ、大電流放電にも耐え
られる。電極体において活物質とポリマー電解質との混
合物は、集電体の気孔内にすべて充填されている必要は
ないが、電極体の空隙率は小さいほど体積あたりの容量
を大きくできるので好ましい。電極体の空隙率は10%
以下であることが好ましい。
The positive electrode body and / or the negative electrode body of the present invention (hereinafter, referred to as the “body”)
(Collectively referred to as an electrode body) is formed by filling a current collector made of a foamed metal plate or a metal fiber sintered plate that does not form an alloy with lithium with a mixture containing an active material and a polymer electrolyte. It is integrated in the mixture in a three-dimensionally spread state. Therefore, the average distance between the active material and the current collector is small, and the internal resistance of the electrode body is small. Therefore, a battery having a large capacity can be obtained and can withstand a large current discharge. In the electrode body, the mixture of the active material and the polymer electrolyte does not need to be completely filled in the pores of the current collector, but a smaller porosity of the electrode body is preferable because the capacity per volume can be increased. The porosity of the electrode body is 10%
The following is preferred.

【0015】本発明における電極体は、例えば以下のよ
うにして得られる。まずポリマー電解質のマトリックス
を形成するポリマーを有機溶媒に溶解又は均一に分散さ
せ、電解質を非水溶媒に溶解させた溶液と混合する(以
下、この混合液をポリマー電解質形成用混合液とい
う)。この混合液と活物質粉末を混合してスラリとし、
このスラリを発泡金属板又は金属繊維焼結板に塗工後乾
燥して得る。好ましくは、次いでプレス等で圧縮する。
圧縮すると、電極体の空隙率が減少し、体積あたりの容
量を大きくできる。
The electrode body according to the present invention is obtained, for example, as follows. First, a polymer forming a matrix of a polymer electrolyte is dissolved or uniformly dispersed in an organic solvent, and mixed with a solution in which the electrolyte is dissolved in a non-aqueous solvent (hereinafter, this mixed solution is referred to as a mixed solution for forming a polymer electrolyte). This mixture and the active material powder are mixed to form a slurry,
This slurry is applied to a foamed metal plate or a sintered metal fiber plate and then dried to obtain a slurry. Preferably, it is then compressed by a press or the like.
When compressed, the porosity of the electrode body decreases, and the capacity per volume can be increased.

【0016】前記ポリマーを溶解又は分散させる有機溶
媒としては、テトラヒドロフラン(以下、THFとい
う)、メチルエチルケトン、メチルイソブチルケトン、
トルエン、キシレン、N−メチルピロリドン、アセト
ン、アセトニトリル、ジメチルカーボネート、酢酸エチ
ル、酢酸ブチル等が使用できるが、乾燥により選択的に
この有機溶媒を除去するため、THF、アセトン等の沸
点100℃以下の揮発性の有機溶媒が好ましい。
As the organic solvent for dissolving or dispersing the polymer, tetrahydrofuran (hereinafter referred to as THF), methyl ethyl ketone, methyl isobutyl ketone,
Toluene, xylene, N-methylpyrrolidone, acetone, acetonitrile, dimethyl carbonate, ethyl acetate, butyl acetate and the like can be used, but in order to selectively remove this organic solvent by drying, the boiling point of THF, acetone or the like is 100 ° C or less. Volatile organic solvents are preferred.

【0017】電極体中では、発泡金属板又は金属繊維焼
結板とバインダとしての機能も有するポリマー電解質と
により活物質が固着されており、活物質が充放電サイク
ルによって膨張、収縮を繰り返すことがあっても、活物
質の粒子間の接触状態が維持されて電極体の内部抵抗の
増大が抑制され、また、充放電サイクルにより活物質の
粒子が電極体から脱落することがなく電池の初期容量を
保持できる。
In the electrode body, an active material is fixed by a foamed metal plate or a sintered metal fiber plate and a polymer electrolyte which also functions as a binder, and the active material repeats expansion and contraction by a charge / discharge cycle. Even if there is, the contact state between the particles of the active material is maintained, the increase in the internal resistance of the electrode body is suppressed, and the particles of the active material do not fall off from the electrode body due to the charge / discharge cycle, and the initial capacity of the battery is reduced. Can be held.

【0018】金属集電体と電極層を一体化した電極体の
厚さは0.2〜2mmであることが好ましい。厚さが
0.2mm未満では、活物質の担持量が少なく電池容量
が小さくなる。また、厚すぎると、電極体の抵抗が大き
くなり、実用性が劣る。特に0.3〜1mmが電池特性
上好ましい。
The thickness of the electrode body in which the metal current collector and the electrode layer are integrated is preferably 0.2 to 2 mm. When the thickness is less than 0.2 mm, the amount of the active material carried is small and the battery capacity is small. On the other hand, if it is too thick, the resistance of the electrode body becomes large, and the practicality is poor. In particular, 0.3 to 1 mm is preferable in terms of battery characteristics.

【0019】負極用の金属集電体としては、ニッケルを
主成分とする発泡金属板、ニッケルを主成分とする繊維
焼結板又はステンレス繊維焼結板が好ましい。ニッケル
を主成分とする金属は、リチウムと合金化しにくく、導
電性も良好である。また、ニッケルの発泡金属板やニッ
ケル又はステンレスの繊維焼結体は市販品の入手が容易
である。ステンレスとしては、通常の安価なSUS30
4、SUS316、SUS316L等が使用できる。ま
た、銅の発泡金属板や銅繊維焼結金属も使用できる。
As the metal current collector for the negative electrode, a foamed metal plate containing nickel as a main component, a sintered fiber plate containing nickel as a main component, or a sintered stainless steel plate is preferable. A metal containing nickel as a main component is not easily alloyed with lithium and has good conductivity. In addition, commercially available nickel foam metal sheets and nickel or stainless steel fiber sintered bodies are easily available. As stainless steel, ordinary inexpensive SUS30
4, SUS316, SUS316L, etc. can be used. Further, a copper foam metal plate or a copper fiber sintered metal can also be used.

【0020】負極用集電体として使用される発泡金属板
は、連続した気泡を有する海綿状の多孔体であることが
好ましい。この気泡の単位泡の開口径は10μm〜1.
0mmであるのが好ましい。開口径が10μm未満では
負極活物質とポリマー電解質からなる混合物の気泡内へ
の充填が難しくなり、また1.0mm超では集電体であ
る発泡金属板と負極活物質との間の平均距離が大きくな
り、電極の内部抵抗が増加する。充填のしやすさと内部
抵抗の見地より、開口径は30〜500μmであるのが
より好ましい。
The foamed metal plate used as the current collector for the negative electrode is preferably a spongy porous body having continuous cells. The opening diameter of the unit bubble of this bubble is 10 μm to 1.
It is preferably 0 mm. If the opening diameter is less than 10 μm, it becomes difficult to fill the mixture of the negative electrode active material and the polymer electrolyte into the air bubbles, and if it exceeds 1.0 mm, the average distance between the foamed metal plate as the current collector and the negative electrode active material is reduced. And the internal resistance of the electrode increases. From the viewpoint of ease of filling and internal resistance, the opening diameter is more preferably 30 to 500 μm.

【0021】また、発泡金属板の気孔率は70〜98%
であるのが好ましい。気孔率が70%未満では、気泡内
に充填しうる負極活物質とポリマー電解質との量が減少
し、電池の容量が小さくなる。気孔率が98%超では、
発泡金属板の強度が小さくなり、負極体の強度が低下す
る。
The porosity of the foamed metal sheet is 70 to 98%.
It is preferred that If the porosity is less than 70%, the amount of the negative electrode active material and the polymer electrolyte that can be filled in the bubbles decreases, and the capacity of the battery decreases. If the porosity exceeds 98%,
The strength of the foamed metal plate decreases, and the strength of the negative electrode body decreases.

【0022】負極用金属集電体として使用される金属繊
維焼結板は、繊維径が1〜50μmであるのが好まし
い。1μm未満では負極活物質とポリマー電解質からな
る混合物の金属繊維焼結板への充填が難しくなり、50
μm超では集電体である発泡金属板と負極活物質との間
の平均距離が大きくなり、電極の内部抵抗が増加する。
充填のしやすさと内部抵抗の見地より、5〜25μmが
より好ましい。
The metal fiber sintered plate used as the negative electrode metal current collector preferably has a fiber diameter of 1 to 50 μm. If it is less than 1 μm, it becomes difficult to fill a mixture of a negative electrode active material and a polymer electrolyte into a sintered metal fiber plate,
If it exceeds μm, the average distance between the foamed metal plate serving as the current collector and the negative electrode active material increases, and the internal resistance of the electrode increases.
From the viewpoint of ease of filling and internal resistance, 5 to 25 μm is more preferable.

【0023】上記繊維金属焼結板としては、短繊維又は
長繊維の焼結板を使用するのが好ましい。焼結されてい
ない金属繊維では、強度が弱く、板状等の形状を保持し
がたく、また金属繊維同士の電気的接続が不足する結果
電気抵抗が高くなるので、少なくとも金属繊維の一部が
焼結されている必要がある。上記金属繊維焼結板の気孔
率は70〜95%が好ましい。70%未満では充填でき
る負極活物質とポリマー電解質との量が減少し、電池の
容量が小さくなる。95%超では繊維焼結板の強度が小
さくなり、負極体の強度が低下する。
It is preferable to use a short fiber or long fiber sintered plate as the fiber metal sintered plate. Unsintered metal fibers have low strength, are difficult to maintain the shape of a plate or the like, and also have insufficient electrical connection between metal fibers, resulting in high electrical resistance. Must be sintered. The porosity of the metal fiber sintered plate is preferably from 70 to 95%. If it is less than 70%, the amount of the negative electrode active material and the polymer electrolyte that can be filled decreases, and the capacity of the battery decreases. If it exceeds 95%, the strength of the fiber sintered plate is reduced, and the strength of the negative electrode body is reduced.

【0024】本発明における負極活物質は、リチウムイ
オンを吸蔵、放出可能な材料である。負極活物質を形成
する材料は特に限定されないが、例えばリチウム金属、
リチウム合金、炭素材料、周期表14、15族の金属を
主体とした酸化物、炭素化合物、炭化ケイ素化合物、酸
化ケイ素化合物、硫化チタン、炭化ホウ素化合物等が挙
げられる。炭素材料としては、様々な熱分解条件で有機
物を熱分解したものや人造黒鉛、天然黒鉛、土壌黒鉛、
膨張黒鉛、鱗片状黒鉛等を使用できる。また、酸化物と
しては、酸化スズを主体とする化合物が使用できる。
The negative electrode active material in the present invention is a material capable of inserting and extracting lithium ions. The material forming the negative electrode active material is not particularly limited, for example, lithium metal,
Examples thereof include a lithium alloy, a carbon material, an oxide mainly containing a metal belonging to Groups 14 and 15 of the periodic table, a carbon compound, a silicon carbide compound, a silicon oxide compound, titanium sulfide, and a boron carbide compound. As carbon materials, those obtained by thermally decomposing organic substances under various pyrolysis conditions, artificial graphite, natural graphite, soil graphite,
Expanded graphite, flaky graphite and the like can be used. As the oxide, a compound mainly composed of tin oxide can be used.

【0025】上記炭素材料のうち、特にメソフェーズ球
状カーボン又はメソフェーズカーボン短繊維が、負極の
リチウムを吸蔵、放出可能な炭素材料として好ましく使
用される。メソフェーズ球状カーボンを用いると、球状
であることによって高密度に充填でき単位体積あたりの
容量が大きくなる。粒径50μm以下のメソフェーズ球
状カーボンを使用するとさらに好ましく、その場合、大
きい電池容量が得られる。また、メソフェーズカーボン
短繊維を用いると、短繊維の隙間をぬって効率よく電解
質溶液が電極材料に供給され、大電流による充放電特性
が良好となる。長さが100μm以下のメソフェーズカ
ーボン短繊維を用いるとさらに好ましく、その場合、発
泡金属の集電体の気孔中への充填が容易となる。また、
チャーピッチ、コークス等の縮合多環炭化水素化合物の
熱分解物を用いると、高容量の二次電池が得られるので
好ましい。
Of the above carbon materials, particularly, mesophase spherical carbon or short mesophase carbon fiber is preferably used as the carbon material capable of inserting and extracting lithium of the negative electrode. When mesophase spherical carbon is used, it can be packed at a high density due to its spherical shape, and the capacity per unit volume increases. It is more preferable to use mesophase spherical carbon having a particle size of 50 μm or less, in which case a large battery capacity can be obtained. When the mesophase carbon short fibers are used, the electrolyte solution is efficiently supplied to the electrode material by removing the gaps between the short fibers, and the charge / discharge characteristics by a large current are improved. It is more preferable to use short mesophase carbon fibers having a length of 100 μm or less. In this case, it is easy to fill the pores of the current collector with the foamed metal. Also,
It is preferable to use a thermal decomposition product of a condensed polycyclic hydrocarbon compound such as char pitch or coke because a high capacity secondary battery can be obtained.

【0026】上記の負極活物質は、電極層自体の強度発
現の見地より、粒子径が1〜30μmであると好まし
い。粒子径が1μm未満では嵩高くなり取扱いにくく、
30μm超では負極層を形成するためのスラリが不安定
になったり電池容量が減少する傾向がある。
The above-mentioned negative electrode active material preferably has a particle diameter of 1 to 30 μm from the viewpoint of developing the strength of the electrode layer itself. If the particle size is less than 1 μm, it becomes bulky and difficult to handle,
If it exceeds 30 μm, the slurry for forming the negative electrode layer tends to be unstable or the battery capacity tends to decrease.

【0027】正極の集電体としては、作動する電位範囲
で安定で溶解や溶出が起こらず、かつ導電性に優れたも
のが好ましい。具体的にはアルミニウムを主成分とする
発泡金属板、アルミニウム繊維焼結板、チタン繊維焼結
板、ステンレス繊維焼結板がこれらの条件を満たし好ま
しい。なかでも、アルミニウムを主成分とする発泡金属
板、アルミニウム繊維焼結板、繊維状SUS316の焼
結板及び繊維状SUS316Lの焼結板は、工業的に製
造されており容易に入手できる。
The current collector of the positive electrode is preferably a current collector that is stable in the operating potential range, does not dissolve or elute, and has excellent conductivity. Specifically, a foamed metal plate containing aluminum as a main component, a sintered aluminum fiber plate, a sintered titanium fiber plate, and a sintered stainless steel plate are preferable because these conditions are satisfied. Among them, a foamed metal plate containing aluminum as a main component, an aluminum fiber sintered plate, a fibrous SUS316 sintered plate and a fibrous SUS316L sintered plate are industrially manufactured and easily available.

【0028】アルミニウムを主成分とする発泡金属板
は、連通する気泡を有する海綿状の多孔体であると好ま
しい。また、単位泡の孔径は50μm〜1.0mmであ
るのが好ましい。50μm未満では正極活物質とポリマ
ー電解質との混合物の気泡内への充填が難しくなり、
1.0mm超では3次元状の集電体である発泡金属板と
正極活物質との間の平均距離が大きくなり、正極体の内
部抵抗が大きくなる。
The foamed metal plate containing aluminum as a main component is preferably a spongy porous body having communicating bubbles. Further, the pore diameter of the unit foam is preferably 50 μm to 1.0 mm. If it is less than 50 μm, it becomes difficult to fill a mixture of the cathode active material and the polymer electrolyte into the bubbles,
If it exceeds 1.0 mm, the average distance between the foamed metal plate, which is a three-dimensional current collector, and the positive electrode active material increases, and the internal resistance of the positive electrode body increases.

【0029】正極用集電体に使用するアルミニウムを主
成分とする発泡金属板の気孔率は70〜98%が好まし
い。気孔率が70%未満では正極活物質とポリマー電解
質との混合物の気泡内への充填量が少なくなり、電池容
量が減少する。また、98%超では発泡金属板の強度が
小さく、正極活物質の固着力が低下し、充放電に伴う正
極活物質の膨張収縮により、正極活物質の粒子間の接触
が絶たれたり、粒子が脱落して充放電に関与しない正極
活物質が生じ、電池容量が減少する。
The porosity of the foamed metal plate mainly composed of aluminum used for the current collector for the positive electrode is preferably 70 to 98%. If the porosity is less than 70%, the amount of the mixture of the positive electrode active material and the polymer electrolyte filled in the bubbles is reduced, and the battery capacity is reduced. On the other hand, if it exceeds 98%, the strength of the foamed metal plate is low, the fixation force of the positive electrode active material is reduced, and the expansion and contraction of the positive electrode active material due to charge and discharge causes the particles to lose contact with the positive electrode active material. Are dropped to generate a positive electrode active material that is not involved in charge and discharge, and the battery capacity is reduced.

【0030】正極用集電体の金属繊維焼結板は、繊維径
は負極用集電体の金属繊維焼結板と同様の理由で1〜5
0μm、さらには5〜25μmとするのが好ましい。気
孔率は50〜95%が好ましい。50%未満では繊維焼
結板に充填できる正極活物質とポリマー電解質の量が減
少し、電池の容量が小さくなる。95%超では金属繊維
焼結板の強度が弱くなる。正極用集電体の金属繊維焼結
板の好ましい形態としては、負極用集電体の金属繊維焼
結板と同様の理由から短繊維の焼結体、長繊維の焼結体
である。
The metal fiber sintered plate of the current collector for the positive electrode has a fiber diameter of 1 to 5 for the same reason as the metal fiber sintered plate of the current collector for the negative electrode.
It is preferably 0 μm, more preferably 5 to 25 μm. The porosity is preferably 50 to 95%. If it is less than 50%, the amounts of the positive electrode active material and the polymer electrolyte that can be filled in the fiber sintered plate decrease, and the capacity of the battery decreases. If it exceeds 95%, the strength of the metal fiber sintered plate becomes weak. Preferred forms of the metal fiber sintered plate of the current collector for the positive electrode are a short fiber sintered body and a long fiber sintered body for the same reason as the metal fiber sintered plate of the negative electrode current collector.

【0031】上記の発泡金属板又は金属繊維焼結板から
なる集電体に充填させる正極活物質の粉末の粒径は、集
電体の隙間に充填しやすく、リチウムの吸蔵、放出がス
ムーズに行われ、かつ嵩高くならないように1〜80μ
mとするのが好ましい。
The particle size of the powder of the positive electrode active material to be filled in the current collector made of the above-mentioned foamed metal plate or sintered metal fiber plate is such that the gap between the current collectors can be easily filled and lithium can be smoothly absorbed and released. 1-80μ to be done and not bulky
m is preferable.

【0032】本発明における正極活物質はリチウムイオ
ンを吸蔵、放出可能な物質である。例えば、周期表4族
のTi、Zr、Hf、5族のV、Nb、Ta、6族のC
r、Mo、W、7族のMn、8族のFe、Ru、9族の
Co、10族のNi、11族のCu、12族のZn、C
d、13族のAl、Ga、In、14族のSn、Pb、
15族のSb、Bi及び16族のTe等の金属を主成分
とする酸化物及び複合酸化物、硫化物等のカルコゲン化
物、オキシハロゲン化物、前記金属とリチウムとの複合
酸化物等が使用できる。
The positive electrode active material in the present invention is a material capable of occluding and releasing lithium ions. For example, Ti, Zr, Hf of group 4 of the periodic table, V, Nb, Ta of group 5 and C of group 6
r, Mo, W, Group 7 Mn, Group 8 Fe, Ru, Group 9 Co, Group 10 Ni, Group 11 Cu, Group 12 Zn, C
d, Al, Ga, In of group 13; Sn, Pb of group 14;
Oxides and composite oxides containing a metal such as Sb and Bi of Group 15 and Te of Group 16 as main components, chalcogenides such as sulfides, oxyhalides, and composite oxides of the above metals and lithium can be used. .

【0033】正極活物質に使用するリチウム含有化合物
としては、特にリチウムとマンガンの複合酸化物、リチ
ウムとコバルトの複合酸化物、リチウムとニッケルの複
合酸化物が好ましい。これらのリチウム含有酸化物の粒
径は、正極体を形成するためのスラリの安定化、又は正
極層自体の強度発現の見地より30μm以下が好まし
い。
As the lithium-containing compound used for the positive electrode active material, a composite oxide of lithium and manganese, a composite oxide of lithium and cobalt, and a composite oxide of lithium and nickel are particularly preferable. The particle size of these lithium-containing oxides is preferably 30 μm or less from the viewpoint of stabilizing the slurry for forming the positive electrode body or developing the strength of the positive electrode layer itself.

【0034】上記のリチウム含有複合酸化物のなかで
も、LiMn24 の組成式で示されるスピネル型リチ
ウムマンガン系複合酸化物のMnの一部を他の元素で置
換した正極活物質は、作動電位が高く、充放電サイクル
耐久性に優れている。特に、Lip Mn2-x-y Fex
y4 で表される複合酸化物(0<p≦1、0≦x<
0.4、0≦y<0.4かつ0<x+y<0.4)を用
いると、作動電位が高く、充放電サイクル耐久性に優れ
ているので好ましい。特に0.2≦x≦0.4、かつ
0.04≦y≦0.15であるものが好ましい。
Among the above-mentioned lithium-containing composite oxides, the positive electrode active material in which a part of Mn of the spinel-type lithium manganese-based composite oxide represented by the composition formula of LiMn 2 O 4 is substituted with another element is activated. High potential and excellent charge / discharge cycle durability. In particular, Li p Mn 2-xy F x Z
n y O 4 composite oxide represented (0 <p ≦ 1,0 ≦ x <
When 0.4, 0 ≦ y <0.4 and 0 <x + y <0.4) are used, the operating potential is high and the charge / discharge cycle durability is excellent, so that it is preferable. Particularly, those satisfying 0.2 ≦ x ≦ 0.4 and 0.04 ≦ y ≦ 0.15 are preferable.

【0035】正極活物質自体の電子導電性が不足する場
合は、正極活物質に導電材を添加してもよい。導電材と
しては、好ましくは導電性が良好な天然黒鉛又は高度に
黒鉛化した人造黒鉛が使用される。また、導電性を保持
しつつ電解質の吸収性を向上させるために正極層の1〜
5重量%のカーボンブラックを添加してもよい。これら
の導電材の粒径は5μm以下が好ましい。
When the electron conductivity of the positive electrode active material itself is insufficient, a conductive material may be added to the positive electrode active material. As the conductive material, natural graphite having good conductivity or artificial graphite highly graphitized is preferably used. Moreover, in order to improve the absorbency of the electrolyte while maintaining the conductivity, the positive electrode layer 1 to 1
5% by weight of carbon black may be added. The particle size of these conductive materials is preferably 5 μm or less.

【0036】また、ポリアニリン誘導体、ポリピロール
誘導体、ポリチオフェン誘導体、ポリアセン誘導体、ポ
リパラフェニレン誘導体、又はそれらの共重合体等の導
電性高分子材料も併用してもよい。
Further, a conductive polymer material such as a polyaniline derivative, a polypyrrole derivative, a polythiophene derivative, a polyacene derivative, a polyparaphenylene derivative, or a copolymer thereof may be used in combination.

【0037】本発明において、非水系電解質は、電解質
を含有する非水溶液をポリマーマトリックスに保持して
なるポリマー電解質である。ポリマーマトリックスとし
ては、2種以上の重合単位を含む共重合体であり、かつ
該重合単位のうち1種以上がフルオロオレフィンに基づ
く重合単位であることが好ましく、前記非水溶液はリチ
ウム塩の溶質とリチウム塩を溶解できる溶媒とからなる
ことが好ましい。このとき、ポリマーの電気化学的安定
性が高く、高い電圧で安定して作動できる電池が得られ
る。
In the present invention, the non-aqueous electrolyte is a polymer electrolyte obtained by holding a non-aqueous solution containing an electrolyte in a polymer matrix. The polymer matrix is preferably a copolymer containing two or more kinds of polymerized units, and one or more of the polymerized units is preferably a polymerized unit based on a fluoroolefin. It preferably comprises a solvent capable of dissolving the lithium salt. At this time, a battery in which the polymer has high electrochemical stability and can be operated stably at a high voltage is obtained.

【0038】フルオロオレフィンに基づく重合単位を含
む共重合体を重合によって得るための原料のフルオロオ
レフィンとしては種々のものが使用できるが、他の単量
体との共重合性に優れ、ポリマーの強度が高い点で、ク
ロロトリフルオロエチレン、テトラフルオロエチレン、
又はフッ化ビニリデンが好ましい。本発明におけるポリ
マー電解質のマトリックスの共重合体は、上記3種のフ
ルオロオレフィンのうちの2種以上を共重合させた共重
合体であっても、上記3種のフルオロオレフィンのうち
の1種以上と他の単量体とを共重合させた共重合体であ
っても好ましく使用できる。
Various fluoroolefins can be used as a raw material for obtaining a copolymer containing polymerized units based on a fluoroolefin by polymerization, but the copolymer is excellent in copolymerizability with other monomers and has a high polymer strength. Chlorotrifluoroethylene, tetrafluoroethylene,
Or vinylidene fluoride is preferred. The copolymer of the matrix of the polymer electrolyte in the present invention may be a copolymer obtained by copolymerizing two or more of the above three types of fluoroolefins, but may be one or more of the above three types of fluoroolefins. A copolymer obtained by copolymerizing a monomer with another monomer can be preferably used.

【0039】また、上記3種のフルオロオレフィンと共
重合させる他の単量体としては、例えば、ヘキサフルオ
ロアセトン、パーフルオロ(メチルビニルエーテル)、
パーフルオロ(プロピルビニルエーテル)等のパーフル
オロ(アルキルビニルエーテル)、エチレン、プロピレ
ン、イソブチレン、ピバリン酸ビニル、酢酸ビニル、ビ
ニレンカーボネート、エチルビニルエーテル、ブチルビ
ニルエーテル、シクロヘキシルビニルエーテル、エチル
アリルエーテル、シクロヘキシルアリルエーテル、ノル
ボルナジエン、クロトン酸エステル、アクリル酸アルキ
ルエステル、メタクリル酸アルキルエステル等が挙げら
れる。
Other monomers copolymerized with the above three kinds of fluoroolefins include, for example, hexafluoroacetone, perfluoro (methyl vinyl ether),
Perfluoro (alkyl vinyl ether) such as perfluoro (propyl vinyl ether), ethylene, propylene, isobutylene, vinyl pivalate, vinyl acetate, vinylene carbonate, ethyl vinyl ether, butyl vinyl ether, cyclohexyl vinyl ether, ethyl allyl ether, cyclohexyl allyl ether, norbornadiene, Crotonic acid esters, alkyl acrylates, alkyl methacrylates, and the like.

【0040】また、上記3種のフルオロオレフィンとと
もに、ヘキサフルオロプロピレン、トリフルオロエチレ
ン、フッ化ビニル、(パーフルオロブチル)エチレン、
(パーフルオロオクチル)プロピレン等のフルオロオレ
フィンを併用することも好ましい。
Further, along with the above three kinds of fluoroolefins, hexafluoropropylene, trifluoroethylene, vinyl fluoride, (perfluorobutyl) ethylene,
It is also preferable to use a fluoroolefin such as (perfluorooctyl) propylene in combination.

【0041】ポリマー電解質のマトリックスは、特に電
気化学的安定性、ポリマー電解質としたときの電気伝導
度、集電体との密着性、強度の観点より、クロロトリフ
ルオロエチレン、テトラフルオロエチレン及びフッ化ビ
ニリデンからなる群から選ばれる1種以上に基づく重合
単位と、パーフルオロビニルエーテル、ヘキサフルオロ
プロピレン及びビニレンカーボネートからなる群から選
ばれる1種以上に基づく重合単位とを含む共重合体であ
ることが好ましい。
The matrix of the polymer electrolyte is preferably made of chlorotrifluoroethylene, tetrafluoroethylene or fluoride from the viewpoints of electrochemical stability, electric conductivity when the polymer electrolyte is used, adhesion to the current collector, and strength. It is preferable that the copolymer is a copolymer containing a polymerized unit based on at least one member selected from the group consisting of vinylidene and a polymerized unit based on at least one member selected from the group consisting of perfluorovinyl ether, hexafluoropropylene and vinylene carbonate. .

【0042】具体的には、フッ化ビニリデン/パーフル
オロビニルエーテル共重合体、フッ化ビニリデン/クロ
ロトリフルオロエチレン共重合体、フッ化ビニリデン/
ヘキサフルオロプロピレン/テトラフルオロエチレン共
重合体、フッ化ビニリデン/ヘキサフルオロプロピレン
共重合体、クロロトリフルオロエチレン/ビニレンカー
ボネート共重合体等が好ましい。特にフッ化ビニリデン
/パーフルオロビニルエーテル共重合体が上記特性が優
れているので好ましい。なお、本明細書において、A/
B共重合体とは、Aに基づく重合単位とBに基づく重合
単位とからなる共重合体を意味する。
Specifically, vinylidene fluoride / perfluorovinyl ether copolymer, vinylidene fluoride / chlorotrifluoroethylene copolymer, vinylidene fluoride /
Hexafluoropropylene / tetrafluoroethylene copolymer, vinylidene fluoride / hexafluoropropylene copolymer, chlorotrifluoroethylene / vinylene carbonate copolymer and the like are preferable. Particularly, a vinylidene fluoride / perfluorovinyl ether copolymer is preferable because of the excellent properties described above. In this specification, A /
The B copolymer means a copolymer composed of a polymer unit based on A and a polymer unit based on B.

【0043】本発明におけるポリマー電解質のマトリッ
クスを構成する共重合体中のフルオロオレフィンに基づ
く重合単位の含有割合は10重量%以上であることが好
ましい。10重量%未満ではポリマー電解質の柔軟性が
高くなりすぎ、強度が低下する傾向にある。特に強度の
高いポリマー電解質を得るためには、60重量%以上で
あることが好ましい。
In the present invention, the content of the polymer unit based on fluoroolefin in the copolymer constituting the matrix of the polymer electrolyte is preferably at least 10% by weight. If it is less than 10% by weight, the flexibility of the polymer electrolyte becomes too high, and the strength tends to decrease. In order to obtain a particularly strong polymer electrolyte, the content is preferably 60% by weight or more.

【0044】また、1種類のフルオロオレフィンに基づ
く重合単位は、97重量%以下であることが好ましく、
より好ましくは95重量%以下である。97重量%超で
はポリマーの結晶性が高くなり、柔軟性が低下して成形
加工性が低下したり、電解質を含む溶液がマトリックス
中に侵入しにくくなったり、ポリマー電解質の電気伝導
度が低くなる。
Further, the polymerization unit based on one kind of fluoroolefin is preferably at most 97% by weight,
It is more preferably at most 95% by weight. If the content exceeds 97% by weight, the crystallinity of the polymer is increased, the flexibility is reduced and the moldability is reduced, the solution containing the electrolyte is hardly penetrated into the matrix, and the electric conductivity of the polymer electrolyte is reduced. .

【0045】ポリマー電解質のマトリックを形成するポ
リマーは、ポリマー電解質の充放電時の体積変化防止、
機械的強度向上の見地より必要に応じて架橋されること
が好ましい。ポリマー電解質のマトリックスを形成する
ポリマーの分子量は1万〜100万が好ましい。分子量
が100万超では、溶解粘度が著しく高く電解質溶液と
の均一混合が困難となったり、電解質溶液の保持量が少
なくなってポリマー電解質の電気伝導度が低下するので
好ましくない。1万未満では、ポリマー電解質の機械的
強度が著しく低下するので好ましくない。特に好ましく
は3万〜50万が採用される。
The polymer that forms the matrix of the polymer electrolyte can prevent volume change during charge and discharge of the polymer electrolyte,
From the viewpoint of improving the mechanical strength, it is preferable that crosslinking is performed as necessary. The molecular weight of the polymer forming the matrix of the polymer electrolyte is preferably 10,000 to 1,000,000. When the molecular weight is more than 1,000,000, the dissolution viscosity is extremely high, and it is difficult to uniformly mix the electrolyte solution with the electrolyte solution, and the holding amount of the electrolyte solution is reduced, so that the electric conductivity of the polymer electrolyte is undesirably reduced. If it is less than 10,000, the mechanical strength of the polymer electrolyte is significantly reduced, which is not preferable. Particularly preferably, 30,000 to 500,000 is employed.

【0046】また、正極中の正極活物質/ポリマー電解
質の重量比及び負極中の負極活物質/ポリマー電解質の
重量比は1/2〜2/1であることが好ましい。重量比
が1/2未満では電池の容量が低下する。2/1超では
集電体への接合力の低下や活物質同士の接合力が低下す
る。より好ましくは2/3〜3/2である。
The weight ratio of the positive electrode active material / polymer electrolyte in the positive electrode and the weight ratio of the negative electrode active material / polymer electrolyte in the negative electrode are preferably 1/2 to 2/1. If the weight ratio is less than 1/2, the capacity of the battery decreases. If it exceeds 2/1, the bonding strength to the current collector decreases and the bonding strength between the active materials decreases. More preferably, it is 2/3 to 3/2.

【0047】本発明において、フルオロオレフィンに基
づく重合単位のポリマー中の含有割合、他の成分の含有
割合、ポリマーの分子量等は、フィルムを形成するため
の有機溶媒へのマトリックスの溶解性又は分散性、マト
リックスの電解質溶液との混和性及び電解質溶液の保持
性、ポリマー電解質の集電体金属への接着性、強度、成
形性、ハンドリング性、マトリックスの入手の容易性等
により適宜選定できる。
In the present invention, the content of the polymerized unit based on fluoroolefin in the polymer, the content of other components, the molecular weight of the polymer, and the like are determined by the solubility or dispersibility of the matrix in an organic solvent for forming a film. It can be appropriately selected depending on the miscibility of the matrix with the electrolyte solution, the retention of the electrolyte solution, the adhesion of the polymer electrolyte to the current collector metal, the strength, the moldability, the handleability, the availability of the matrix, and the like.

【0048】本発明のポリマー電解質二次電池における
電解質溶液としては、リチウム塩を溶質とし、リチウム
塩を溶解できる溶媒とからなる溶液が好ましい。上記溶
媒としては炭酸エステルが好ましい。炭酸エステルは環
状、鎖状いずれも使用できる。環状炭酸エステルとして
はプロピレンカーボネート、エチレンカーボネート等が
例示される。鎖状炭酸エステルとしてはジメチルカーボ
ネート、ジエチルカーボネート、エチルメチルカーボネ
ート、メチルプロピルカーボネート、メチルイソプロピ
ルカーボネート等が例示される。
The electrolyte solution in the polymer electrolyte secondary battery of the present invention is preferably a solution comprising a lithium salt as a solute and a solvent capable of dissolving the lithium salt. The solvent is preferably a carbonate ester. Carbonate can be used either cyclic or chain. Examples of the cyclic carbonate include propylene carbonate and ethylene carbonate. Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate and the like.

【0049】本発明では上記炭酸エステルを単独で又は
2種以上を混合して使用できる。他の溶媒と混合して使
用してもよい。また、負極活物質の材料によっては、鎖
状炭酸エステルと環状炭酸エステルを併用すると、放電
特性、サイクル耐久性、充放電効率が改良できる場合が
ある。
In the present invention, the above-mentioned carbonates can be used alone or in combination of two or more. It may be used by mixing with other solvents. Further, depending on the material of the negative electrode active material, the combined use of a chain carbonate and a cyclic carbonate may improve the discharge characteristics, cycle durability, and charge / discharge efficiency.

【0050】また、リチウム塩としては、ClO4 -、C
3 SO3 -、BF4 -、PF6 -、AsF6 -、SbF6 -、C
3 CO2 -、(CF3 SO22- 等をアニオンとす
るリチウム塩のいずれか1種以上を使用することが好ま
しい。本発明におけるリチウム塩溶液は、リチウム塩を
前記溶媒に0.2〜2.0mol/Lの濃度で溶解する
のが好ましい。この範囲を逸脱すると、イオン伝導度が
低下し、ポリマー電解質の電気伝導度が低下する。より
好ましくは0.5〜1.5mol/Lが選定される。
The lithium salts include ClO 4 , C
F 3 SO 3 , BF 4 , PF 6 , AsF 6 , SbF 6 , C
It is preferable to use at least one of lithium salts having an anion such as F 3 CO 2 and (CF 3 SO 2 ) 2 N . In the lithium salt solution according to the present invention, it is preferable that the lithium salt is dissolved in the solvent at a concentration of 0.2 to 2.0 mol / L. Outside this range, the ionic conductivity decreases and the electrical conductivity of the polymer electrolyte decreases. More preferably, 0.5 to 1.5 mol / L is selected.

【0051】本発明では、マトリックス中に前記リチウ
ム塩溶液が均一に分布したポリマー電解質と正極活物質
の混合物を正極集電体と一体化させて正極体として使用
するが、ポリマー電解質中の電解質溶液の含有量は30
〜90重量%が好ましい。30重量%未満では電気伝導
度が低くなる。90重量%超ではポリマー電解質が固体
状態を保てなくなる。特に好ましくは40〜80重量%
が採用される。
In the present invention, a mixture of a polymer electrolyte and a positive electrode active material in which the lithium salt solution is uniformly distributed in a matrix is used as a positive electrode by integrating it with a positive electrode current collector. Is 30
~ 90% by weight is preferred. If it is less than 30% by weight, the electric conductivity is low. If it exceeds 90% by weight, the polymer electrolyte cannot maintain a solid state. Particularly preferably 40 to 80% by weight
Is adopted.

【0052】本発明における正極体と負極体の間に配置
され、セパレータとしての機能を有する層は、例えば以
下のようにして形成できる。すなわち、ポリマー電解質
形成用混合液をスラリ状とし、ガラス板上にバーコータ
又はドクターブレードによる塗布、キャスト又はスピン
コートした後、乾燥して主として前記ポリマーを溶解又
は分散させた有機溶媒を除去し、これをガラス板から剥
離し、ポリマー電解質からなるフィルムを得てセパレー
タとする。乾燥時に電解質溶液の溶媒が一部蒸発する場
合は、該フィルムに新たにその溶媒を含浸させるか又は
フィルムをその溶媒蒸気に暴露して所望の組成にする。
The layer disposed between the positive electrode body and the negative electrode body in the present invention and having a function as a separator can be formed, for example, as follows. That is, the mixed solution for forming a polymer electrolyte is formed into a slurry, and is coated on a glass plate by a bar coater or a doctor blade, cast or spin-coated, and then dried to remove an organic solvent in which the polymer is mainly dissolved or dispersed. Is peeled off from the glass plate to obtain a film made of a polymer electrolyte, which is used as a separator. If the solvent of the electrolyte solution partially evaporates during drying, the film is newly impregnated with the solvent or the film is exposed to the solvent vapor to obtain a desired composition.

【0053】また、多孔質ポリプロピレン、多孔質ポリ
テトラフルオロエチレン、不織布、高分子織布、網等を
補強体とし、ポリマー電解質を担持してセパレータとす
ると強度を向上できるので好ましい。正極、セパレータ
又は負極に使用するポリマー電解質のポリマーマトリッ
クスは同じ組成であってもよいが、ポリマーの耐酸化、
還元性を考慮し、必要に応じて組成を異ならせてもよ
い。
It is preferable to use a porous polypropylene, a porous polytetrafluoroethylene, a nonwoven fabric, a polymer woven fabric, a net, or the like as a reinforcing body and to carry a polymer electrolyte as a separator since the strength can be improved. The polymer matrix of the polymer electrolyte used for the positive electrode, the separator or the negative electrode may have the same composition.
The composition may be varied as necessary in consideration of the reducibility.

【0054】本発明では、リチウムを吸蔵、放出可能な
物質を負極活物質に使用した二次電池とする場合、負極
及び/又は正極にリチウムを含有させる。一般的には正
極活物質の合成時にリチウム含有化合物とし、正極活物
質の固体マトリックス中にリチウムを含有させておく。
また、電池組立前に負極に化学的又は電気化学的方法で
リチウムを含有させたり、電池組立時にリチウム金属を
負極及び/又は正極に接触させて組み込むといった方法
でリチウムを含有させることもできる。本発明における
ポリマー電解質の形状には特に制約はない。シート状
(いわゆるフィルム状)、折り畳み状、巻回型有底円筒
形、ボタン形等が用途に応じて選択される。
In the present invention, when a secondary battery uses a material capable of occluding and releasing lithium as a negative electrode active material, lithium is contained in the negative electrode and / or the positive electrode. Generally, a lithium-containing compound is used at the time of synthesis of the positive electrode active material, and lithium is contained in the solid matrix of the positive electrode active material.
In addition, lithium can be contained in the negative electrode by a chemical or electrochemical method before the battery is assembled, or lithium can be contained by bringing lithium metal into contact with the negative electrode and / or the positive electrode when the battery is assembled. There is no particular limitation on the shape of the polymer electrolyte in the present invention. A sheet shape (a so-called film shape), a folded shape, a rolled bottomed cylindrical shape, a button shape, and the like are selected according to the application.

【0055】[0055]

【実施例】以下に実施例及び比較例により本発明を具体
的に説明するが、本発明はこれらに限定されない。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0056】[例1]内容積1Lの撹拌機付きステンレ
ス製オートクレーブを用い、イオン交換水を540g、
tert−ブタノールを59.4g、sec−ブタノー
ルを0.6g、C817CO2 NH4 を6g、Na2
PO4 ・12H2 Oを12g、過硫酸アンモニウムを6
g、FeSO4 ・7H2 Oを9mg、EDTA・2H2
O(エチレンジアミン四酢酸二水物)を11g、CF2
=CFOCF2 CF2 CF3 を40.5g添加し、気相
を窒素で置換後、フッ化ビニリデン99.8gを仕込ん
だ。
Example 1 Using a stainless steel autoclave with an internal volume of 1 L and equipped with a stirrer, 540 g of ion-exchanged water was added.
tert-butanol 59.4 g, sec-butanol 0.6 g, C 8 F 17 CO 2 NH 4 6 g, Na 2 H
12 g of PO 4 .12H 2 O and 6 g of ammonium persulfate
g, FeSO 4 · 7H 2 O to 9mg, EDTA · 2H 2
11 g of O (ethylenediaminetetraacetic acid dihydrate), CF 2
= CFOCF 2 CF 2 CF 3 was added, and the gas phase was replaced with nitrogen. Then, 99.8 g of vinylidene fluoride was charged.

【0057】25℃に昇温した後、CH2 OHSO2
a・2H2 O(ロンガリット)の1重量%水溶液を21
mL/hrの速度で添加し重合反応を行った。反応の進
行とともに圧力が低下するので、23気圧の圧力を維持
するようにフッ化ビニリデンを仕込んだ。5時間後気相
をパージして重合を停止し、濃度30重量%のエマルジ
ョンを得た。
After the temperature was raised to 25 ° C., CH 2 OHSO 2 N
a. A 1% by weight aqueous solution of 2H 2 O (Rongalit) was added to 21
The polymerization reaction was performed by adding at a rate of mL / hr. Since the pressure decreased with the progress of the reaction, vinylidene fluoride was charged so as to maintain a pressure of 23 atm. After 5 hours, the polymerization was stopped by purging the gas phase to obtain an emulsion having a concentration of 30% by weight.

【0058】凝集、洗浄、乾燥し、フッ化ビニリデン/
CF2 =CFOCF2 CF2 CF3共重合体を回収し
た。この共重合体の組成は、フッ化ビニリデンに基づく
重合単位/CF2 =CFOCF2 CF2 CF3 に基づく
重合単位の割合が89/11(重量比)で、THFを溶
媒とした極限粘度は1.4dL/gであった。
Agglomeration, washing, drying, vinylidene fluoride /
A CF 2 = CFOCF 2 CF 2 CF 3 copolymer was recovered. The composition of this copolymer is such that the ratio of polymerization units based on vinylidene fluoride / polymerization units based on CF 2 = CFOCF 2 CF 2 CF 3 is 89/11 (weight ratio), and the intrinsic viscosity using THF as a solvent is 1 It was 0.4 dL / g.

【0059】アルゴン雰囲気中で、この共重合体8gを
THF48gに撹拌しながら加温して溶解させた。これ
を溶液1とする。次にエチレンカーボネートとプロピレ
ンカーボネートを体積比で1/1に混合した溶媒にLi
PF6 を1mol/Lの濃度でアルゴン雰囲気中で溶解
した。これを溶液2とする。
In an argon atmosphere, 8 g of the copolymer was dissolved in 48 g of THF by heating while stirring. This is designated as solution 1. Next, Li was added to a solvent in which ethylene carbonate and propylene carbonate were mixed at a volume ratio of 1/1.
The PF 6 dissolved in an argon atmosphere at a concentration of 1 mol / L. This is designated as solution 2.

【0060】21gの溶液1に3gの溶液2を加え、6
0℃に加熱し撹拌した。この溶液をガラス板上にバーコ
ータにて塗布し、40℃で1時間乾燥してTHFを除去
し、厚さ100μmの透明なポリマー電解質フィルムを
得た。このフィルムの組成は、共重合体、エチレンカー
ボネート/プロピレンカーボネート混合溶媒、LiPF
6 が重量比で50/44.3/5.7であった。
3 g of solution 2 was added to 21 g of solution 1 and
The mixture was heated to 0 ° C. and stirred. This solution was applied on a glass plate with a bar coater, and dried at 40 ° C. for 1 hour to remove THF to obtain a transparent polymer electrolyte film having a thickness of 100 μm. The composition of this film is as follows: copolymer, ethylene carbonate / propylene carbonate mixed solvent, LiPF
6 was 50 / 44.3 / 5.7 by weight.

【0061】このフィルムをガラス基板より剥離し、交
流インピーダンス法により電気伝導度を25℃、アルゴ
ン雰囲気中で測定したところ、3.8×10-4S/cm
であった。
The film was peeled off from the glass substrate, and the electric conductivity was measured by an alternating current impedance method at 25 ° C. in an argon atmosphere to be 3.8 × 10 −4 S / cm.
Met.

【0062】直径8μm、長さ1cm以上のSUS31
6L繊維からなるマットを焼結して得た厚さ0.94m
m、目付量530g/m2 、気孔率93%のステンレス
繊維焼結板を正極集電体とした。正極活物質として平均
粒径5μmのLi0.95Fe0.25Zn0.05Mn1.74
末を5.42g、導電材として粒径1μm以下の黒鉛粉
末を0.68g、上記共重合体を2.8g、溶液2を
5.4g、及びTHF20gをアルゴン雰囲気中で混合
し、撹拌しながら加温してスラリを得た。このスラリを
上記ステンレス繊維焼結板に含浸させ、乾燥後プレスし
て、厚さ0.4mmの正極体を得た。この正極体は18
0度折り曲げても剥離等の異常が認められなかった。
SUS31 having a diameter of 8 μm and a length of 1 cm or more
0.94m thickness obtained by sintering a mat made of 6L fiber
m, a basis weight of 530 g / m 2 and a porosity of 93% were used as the positive electrode current collector. 5.42 g of Li 0.95 Fe 0.25 Zn 0.05 Mn 1.7 O 4 powder having an average particle size of 5 μm as a positive electrode active material, 0.68 g of graphite powder having a particle size of 1 μm or less as a conductive material, 2.8 g of the above copolymer, and a solution were prepared. 5.4 g of 2 and 20 g of THF were mixed in an argon atmosphere, and heated with stirring to obtain a slurry. This slurry was impregnated into the stainless steel sintered plate, dried and pressed to obtain a positive electrode body having a thickness of 0.4 mm. This cathode body is 18
No abnormalities such as peeling were observed even when bent at 0 °.

【0063】負極活物質として炭素粉末(比表面積2.
0m2 /g、平均直径10μm、(002)面間隔0.
3358nm、結晶子サイズLc 80nm)5.88
g、上記共重合体2.8g、溶液2を5.4g、及びT
HF20gをアルゴン雰囲気中で混合し、撹拌しながら
加温してスラリを得た。このスラリを直径20μm、長
さ1cm以上のSUS316L繊維からなるマットを焼
結して得た厚さ0.55mm、目付量450g/m2
気孔率90%のステンレス繊維焼結板を集電体とし、正
極体と同様にして厚さ0.38mmの負極体を得た。負
極は180度折り曲げても剥離等の異常は認められなか
った。
Carbon powder (specific surface area: 2.
0 m 2 / g, average diameter 10 μm, (002) interplanar spacing 0.
3358nm, crystallite size L c 80nm) 5.88
g, 2.8 g of the above copolymer, 5.4 g of solution 2, and T
HF (20 g) was mixed in an argon atmosphere and heated with stirring to obtain a slurry. This slurry was obtained by sintering a mat made of SUS316L fiber having a diameter of 20 μm and a length of 1 cm or more, a thickness of 0.55 mm, a basis weight of 450 g / m 2 ,
A stainless steel sintered plate having a porosity of 90% was used as a current collector, and a 0.38 mm thick negative electrode was obtained in the same manner as the positive electrode. No abnormality such as peeling was observed even when the negative electrode was bent at 180 degrees.

【0064】上記ポリマー電解質フィルムを1.5cm
角に成形し、これを介して有効電極面積1cm×1cm
の正極と負極を対向させ、厚さ1.5mmで3cm角の
2枚のポリテトラフルオロエチレン背板で挟み締め付
け、その外側を外装フィルムで覆うことによりリチウム
イオン二次電池素子を組み立てた。この操作もすべてア
ルゴン雰囲気中で行った。
The above-mentioned polymer electrolyte film was 1.5 cm
Formed into corners, through which the effective electrode area 1 cm x 1 cm
The positive electrode and the negative electrode were opposed to each other, sandwiched and clamped between two 1.5 cm-thick 3 cm square polytetrafluoroethylene back plates, and the outside thereof was covered with an exterior film to assemble a lithium ion secondary battery element. This operation was all performed in an argon atmosphere.

【0065】充放電条件は、2Cの定電流で、充電電圧
は4.2Vまで、放電電圧は2.5Vまでの電位規制で
充放電サイクル試験を行った。初期の放電容量は6.5
mAHであり、50サイクル後の容量維持率は95%で
あった。
The charge and discharge conditions were a constant current of 2 C, and a charge and discharge cycle test was performed under the potential regulation of a charge voltage up to 4.2 V and a discharge voltage up to 2.5 V. The initial discharge capacity is 6.5
mAH and the capacity retention after 50 cycles was 95%.

【0066】[例2]負極集電体として厚さ1.52m
mの発泡ニッケル板(目付量550g/m2、平均開口
径0.4mm、気孔率96%)を用いた以外は例1と同
様にしてリチウムイオン二次電池素子を組み立て、例1
と同様に充放電サイクル試験を行った。初期放電容量
は、6.9mAHであり、50サイクル後の容量維持率
は96%であった。また、負極体は180度折り曲げて
も剥離等の異常は認められなかった。
[Example 2] 1.52 m thick negative electrode current collector
m, a lithium-ion secondary battery element was assembled in the same manner as in Example 1 except that a foamed nickel plate having a weight of 550 g / m 2 , an average opening diameter of 0.4 mm, and a porosity of 96% was used.
A charge / discharge cycle test was performed in the same manner as described above. The initial discharge capacity was 6.9 mAH, and the capacity retention after 50 cycles was 96%. Further, even when the negative electrode body was bent by 180 degrees, no abnormality such as peeling was observed.

【0067】[例3]厚さ1.53mm、目付量125
0g/m2 、気孔率90%のステンレス繊維焼結板を正
極集電体とし、正極活物質とポリマー電解質とを充填、
乾燥、プレス後の厚さを0.64mmとした以外は例1
と同様にして正極体を得た。また、厚さ1.45mm、
目付量1290g/m2 、平均開口径0.5mm、気孔
率90%の発泡ニッケル板を負極集電体とし、負極活物
質とポリマー電解質とを充填、乾燥、プレス後の厚さを
0.5mmとした以外は例1と同様にして負極体を得
た。正極体及び負極体は180度折り曲げても剥離等の
異常は認められなかった。
[Example 3] Thickness 1.53 mm, weight per unit area 125
A stainless steel sintered plate having 0 g / m 2 and a porosity of 90% was used as a positive electrode current collector, filled with a positive electrode active material and a polymer electrolyte,
Example 1 except that the thickness after drying and pressing was 0.64 mm
In the same manner as in the above, a positive electrode body was obtained. In addition, thickness 1.45mm,
A foamed nickel plate having a basis weight of 1290 g / m 2 , an average opening diameter of 0.5 mm and a porosity of 90% was used as a negative electrode current collector, filled with a negative electrode active material and a polymer electrolyte, dried, and pressed to a thickness of 0.5 mm. A negative electrode body was obtained in the same manner as in Example 1 except that the above conditions were satisfied. No abnormality such as peeling was observed even when the positive electrode body and the negative electrode body were bent by 180 degrees.

【0068】上記正極体及び負極体を用い、例1と同様
にしてリチウムイオン二次電池素子を組み立て、例1と
同様に充放電サイクル試験を行った。初期放電容量は
9.8mAHであり、50サイクル後の容量維持率は9
1%であった。
Using the above-mentioned positive electrode body and negative electrode body, a lithium ion secondary battery element was assembled in the same manner as in Example 1, and a charge / discharge cycle test was performed in the same manner as in Example 1. The initial discharge capacity was 9.8 mAH, and the capacity retention rate after 50 cycles was 9
1%.

【0069】[例4]厚さ3.0mm、気孔率93%、
単位泡の平均孔径0.4mmの発泡アルミニウム板を正
極集電体とし、正極活物質とポリマー電解質とを充填、
乾燥、プレス後の厚さを1.0mmとして正極体を作製
した以外は例3と同様にしてリチウムイオン二次電池素
子を組み立てた。初期放電容量は10.5mAHであっ
た。正極体は180度折り曲げても剥離等の異常は認め
られなかった。
Example 4 Thickness 3.0 mm, porosity 93%
A foamed aluminum plate having an average pore diameter of 0.4 mm per unit foam is used as a positive electrode current collector, and is filled with a positive electrode active material and a polymer electrolyte,
A lithium ion secondary battery element was assembled in the same manner as in Example 3, except that the thickness after drying and pressing was 1.0 mm to prepare a positive electrode body. The initial discharge capacity was 10.5 mAH. No abnormality such as peeling was observed even when the positive electrode body was bent by 180 degrees.

【0070】[例5]例1において共重合体として、ク
ロロトリフルオロエチレン/ビニレンカーボネート共重
合体(重量比で74/26)を用い、正極活物質とし
て、粒径7μmのLiCoO2 粉末を用いた以外は例1
と同様にしてリチウムイオン二次電池素子を組み立て、
例1と同様に充放電サイクル試験を行った。初期放電容
量は7.3mAH、50サイクル後の容量維持率は92
%であった。正極体は180度折り曲げても剥離等の異
常は認められなかった。
Example 5 In Example 1, a chlorotrifluoroethylene / vinylene carbonate copolymer (74/26 by weight) was used as a copolymer, and a LiCoO 2 powder having a particle diameter of 7 μm was used as a positive electrode active material. Example 1 except for
Assemble the lithium ion secondary battery element in the same manner as
A charge / discharge cycle test was performed in the same manner as in Example 1. The initial discharge capacity was 7.3 mAH, and the capacity retention rate after 50 cycles was 92.
%Met. No abnormality such as peeling was observed even when the positive electrode body was bent by 180 degrees.

【0071】[例6]直径35μm、長さ1cm以上の
チタン繊維からなるマットを焼結して得た厚さ0.53
mm、目付量300g/m2 、気孔率87%のチタン繊
維焼結板を正極集電体とした以外は例1と同様にしてリ
チウムイオン二次電池素子を組み立て、例1と同様に充
放電サイクル試験を行った。初期放電容量は5.5mA
Hであり、50サイクル後の容量維持率は90%であっ
た。正極体は180度折り曲げても剥離等の異常は認め
られなかった。
Example 6 Thickness obtained by sintering a mat made of titanium fiber having a diameter of 35 μm and a length of 1 cm or more was 0.53.
A lithium ion secondary battery element was assembled in the same manner as in Example 1, except that a titanium fiber sintered plate having a thickness of 300 g / m 2 and a porosity of 87% was used as the positive electrode current collector. A cycle test was performed. Initial discharge capacity is 5.5mA
H, and the capacity retention after 50 cycles was 90%. No abnormality such as peeling was observed even when the positive electrode body was bent by 180 degrees.

【0072】[例7]表面のみが粗面化された厚さ30
μmのアルミニウム箔を正極集電体とし、例1で用いた
正極スラリを塗布し、乾燥したところ、塗膜乾燥後の厚
さが110μm以上では電極層が集電体より剥離し、使
用に耐えなかった。そこで塗膜乾燥後の厚さが100μ
mとなるように正極体を作製し、この正極体を用いた以
外は例1と同様にしてリチウムイオン二次電池素子を組
み立て、充放電サイクル試験を行った。初期放電容量は
1.8mAHであった。50サイクル後の容量維持率は
75%であった。正極体は180度折り曲げると電極層
の剥離が認められた。
[Example 7] Thickness 30 where only the surface was roughened
When the positive electrode slurry used in Example 1 was coated and dried using an aluminum foil having a thickness of μm as the positive electrode current collector, when the thickness after drying of the coating film was 110 μm or more, the electrode layer was peeled off from the current collector and endured. Did not. Therefore, the thickness after drying the coating is 100μ
m, and a lithium ion secondary battery element was assembled in the same manner as in Example 1 except that this positive electrode body was used, and a charge / discharge cycle test was performed. The initial discharge capacity was 1.8 mAH. The capacity retention after 50 cycles was 75%. When the positive electrode body was bent by 180 degrees, peeling of the electrode layer was observed.

【0073】[例8]表面のみが粗面化された厚さ20
μmの銅箔を負極集電体とし、この箔に例1で用いた負
極スラリを塗布、乾燥したところ、塗膜乾燥後の厚さが
100μm以上では、電極層が集電体より剥離し、使用
に耐えなかった。そこで、塗膜乾燥後の厚さを90μm
として負極体を作製し、この負極体を用いた以外は例1
と同様にしてリチウムイオン二次電池素子を組み立て、
充放電サイクル試験を行った。初期放電容量は1.6m
AHであり、50サイクル後の容量維持率は70%であ
った。負極体は180度折り曲げると剥離が認められ
た。
[Example 8] Thickness 20 in which only the surface was roughened
μm copper foil as a negative electrode current collector, the negative electrode slurry used in Example 1 was applied to this foil and dried. When the thickness after coating film drying was 100 μm or more, the electrode layer was peeled off from the current collector, Did not endure use. Therefore, the thickness after coating film drying is 90 μm
Example 1 except that a negative electrode body was prepared
Assemble the lithium ion secondary battery element in the same manner as
A charge / discharge cycle test was performed. Initial discharge capacity is 1.6m
AH, and the capacity retention rate after 50 cycles was 70%. Peeling was observed when the negative electrode body was bent by 180 degrees.

【0074】[例9(比較例)]例7で作製した塗膜乾
燥厚さ100μmの正極体と、例8で作製した塗膜乾燥
厚さ90μmの負極体を用いた以外は例1と同様にして
リチウムイオン二次電池素子を組み立て、充放電サイク
ル試験を行った。初期放電容量は1.3mAHであり、
50サイクル後の容量維持率は35%であった。
Example 9 (Comparative Example) The same as Example 1 except that the positive electrode body having a dry film thickness of 100 μm prepared in Example 7 and the negative electrode body having a dry film thickness of 90 μm prepared in Example 8 were used. Then, a lithium ion secondary battery element was assembled, and a charge / discharge cycle test was performed. The initial discharge capacity is 1.3 mAH,
The capacity retention after 50 cycles was 35%.

【0075】[0075]

【発明の効果】本発明のポリマー電解質二次電池は、正
極体及び/又は負極体において活物質及びポリマー電解
質と集電体との結着力が強いため、充放電サイクル特性
が優れる。
According to the polymer electrolyte secondary battery of the present invention, the positive electrode and / or the negative electrode have a strong binding force between the active material and the polymer electrolyte and the current collector, and thus have excellent charge / discharge cycle characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神谷 浩樹 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 田村 正之 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroki Kamiya 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Inside the Asahi Glass Co., Ltd. (72) Inventor Masayuki Tamura 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Asahi Glass Co., Ltd. Central Research Laboratory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】金属集電体に、活物質、電解質を含有する
非水溶液及び該溶液を保持するポリマーを含む電極層を
一体化させてなる、正極体及び負極体と、前記正極体及
び前記負極体の間に介在されて電解質を含有する非水溶
液をポリマーマトリックスに保持してなるポリマー電解
質とを有するポリマー電解質二次電池において、前記正
極体及び/又は前記負極体は、金属集電体がリチウムと
合金を形成しない金属からなる発泡金属板又は金属繊維
焼結板であって、電極層が金属集電体内部に充填されて
なることを特徴とするポリマー電解質二次電池。
A positive electrode body and a negative electrode body comprising a metal current collector and an electrode layer containing a non-aqueous solution containing an active material and an electrolyte and a polymer holding the solution are integrated with each other. In a polymer electrolyte secondary battery having a polymer electrolyte in which a non-aqueous solution containing an electrolyte is interposed between the anode bodies and held in a polymer matrix, the cathode body and / or the anode body may have a metal current collector. A polymer electrolyte secondary battery, which is a foamed metal plate or a sintered metal fiber plate made of a metal that does not form an alloy with lithium, wherein an electrode layer is filled in a metal current collector.
【請求項2】負極用の金属集電体は、ニッケルを主成分
とする発泡金属板、ニッケルを主成分とする繊維焼結板
又はステンレス繊維焼結板からなり、かつ負極体の厚さ
が0.2〜2mmである請求項1記載のポリマー電解質
二次電池。
2. The metal current collector for a negative electrode comprises a foamed metal plate containing nickel as a main component, a fiber sintered plate or a stainless steel sintered plate containing nickel as a main component, and the thickness of the negative electrode body is reduced. The polymer electrolyte secondary battery according to claim 1, which has a thickness of 0.2 to 2 mm.
【請求項3】正極用の金属集電体は、発泡アルミニウム
板、アルミニウム金属繊維焼結板、チタン繊維焼結板又
はステンレス繊維焼結板であり、かつ正極体の厚さが
0.2〜2mmである請求項1又は2記載のポリマー電
解質二次電池。
3. The metal current collector for a positive electrode is a foamed aluminum plate, an aluminum metal fiber sintered plate, a titanium fiber sintered plate or a stainless steel sintered plate, and the thickness of the positive electrode body is 0.2 to 0.2 mm. The polymer electrolyte secondary battery according to claim 1, wherein the size is 2 mm.
【請求項4】ポリマー電解質が、2種以上の重合単位を
含む共重合体であり、かつ該重合単位のうち1種以上が
フルオロオレフィンに基づく重合単位である共重合体を
マトリックスとし、リチウム塩の溶質とリチウム塩を溶
解できる溶媒とからなる溶液を含有するポリマー電解質
である請求項1、2又は3記載のポリマー電解質二次電
池。
4. A lithium salt comprising a copolymer comprising a polymer electrolyte comprising two or more polymerized units, wherein at least one of the polymerized units is a polymer unit based on a fluoroolefin. The polymer electrolyte secondary battery according to claim 1, 2 or 3, which is a polymer electrolyte containing a solution comprising a solute and a solvent capable of dissolving a lithium salt.
【請求項5】ポリマー電解質のマトリックスが、クロロ
トリフルオロエチレン、テトラフルオロエチレン及びフ
ッ化ビニリデンからなる群から選ばれる1種以上に基づ
く重合単位と、パーフルオロビニルエーテル、ヘキサフ
ルオロプロピレン及びビニレンカーボネートからなる群
から選ばれる1種以上に基づく重合単位とを含む共重合
体である請求項4記載のポリマー電解質二次電池。
5. A polymer electrolyte matrix comprising a polymerized unit based on at least one selected from the group consisting of chlorotrifluoroethylene, tetrafluoroethylene and vinylidene fluoride, and perfluorovinyl ether, hexafluoropropylene and vinylene carbonate. The polymer electrolyte secondary battery according to claim 4, which is a copolymer containing a polymerized unit based on at least one selected from the group.
JP9266811A 1997-09-30 1997-09-30 Polymer electrolyte secondary battery Pending JPH11111265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9266811A JPH11111265A (en) 1997-09-30 1997-09-30 Polymer electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9266811A JPH11111265A (en) 1997-09-30 1997-09-30 Polymer electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH11111265A true JPH11111265A (en) 1999-04-23

Family

ID=17436011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9266811A Pending JPH11111265A (en) 1997-09-30 1997-09-30 Polymer electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH11111265A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056336A1 (en) * 1998-04-27 1999-11-04 Sony Corporation Solid electrolytic secondary battery
WO1999056337A1 (en) * 1998-04-27 1999-11-04 Sony Corporation Solid electrolytic secondary battery
WO2002084775A1 (en) * 2001-04-13 2002-10-24 Sharp Kabushiki Kaisha Lithium polymer secondary cell
JP2006114280A (en) * 2004-10-13 2006-04-27 Sharp Corp Lithium secondary battery
CN1309114C (en) * 2003-07-18 2007-04-04 索尼株式会社 Electrolyte and battery using the same electrolyte
JP2007087758A (en) * 2005-09-21 2007-04-05 Nissan Motor Co Ltd Electrode for battery
JP2008059999A (en) * 2006-09-01 2008-03-13 Sony Corp Negative electrode and nonaqueous electrolyte secondary battery using it
JP2010040218A (en) * 2008-07-31 2010-02-18 Idemitsu Kosan Co Ltd Electrode material sheet for lithium battery, solid lithium battery, and device with the solid lithium battery
JP2010092721A (en) * 2008-10-08 2010-04-22 Toyota Motor Corp Manufacturing method of battery electrode
JP2011096444A (en) * 2009-10-28 2011-05-12 Mitsubishi Materials Corp Positive electrode for nonaqueous electrolyte secondary battery
JP2011103278A (en) * 2009-11-12 2011-05-26 Mitsubishi Materials Corp Collector for nonaqueous electrolyte secondary battery, and negative electrode using the same
WO2012111738A1 (en) * 2011-02-18 2012-08-23 住友電気工業株式会社 Electrochemical element
JP2014529876A (en) * 2011-09-07 2014-11-13 24エム・テクノロジーズ・インコーポレイテッド24M Technologies, Inc. Semi-solid electrode cell having a porous current collector and manufacturing method
JP2015520927A (en) * 2012-05-25 2015-07-23 バシウム・カナダ・インコーポレーテッド Electrode materials for lithium electrochemical cells
CN106663835A (en) * 2014-08-30 2017-05-10 Jenax股份有限公司 Flexible secondary battery and method for manufacturing same
US9812674B2 (en) 2012-05-18 2017-11-07 24M Technologies, Inc. Electrochemical cells and methods of manufacturing the same
US10115970B2 (en) 2015-04-14 2018-10-30 24M Technologies, Inc. Semi-solid electrodes with porous current collectors and methods of manufacture
US10181587B2 (en) 2015-06-18 2019-01-15 24M Technologies, Inc. Single pouch battery cells and methods of manufacture
US10637038B2 (en) 2014-11-05 2020-04-28 24M Technologies, Inc. Electrochemical cells having semi-solid electrodes and methods of manufacturing the same
CN114747045A (en) * 2019-10-15 2022-07-12 汉阳大学校Erica产学协力团 Negative electrode, method for preparing same by electrolytic deposition and preparation device thereof

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056337A1 (en) * 1998-04-27 1999-11-04 Sony Corporation Solid electrolytic secondary battery
US6506523B1 (en) 1998-04-27 2003-01-14 Sony Corporation Solid electrolyte secondary battery
WO1999056336A1 (en) * 1998-04-27 1999-11-04 Sony Corporation Solid electrolytic secondary battery
WO2002084775A1 (en) * 2001-04-13 2002-10-24 Sharp Kabushiki Kaisha Lithium polymer secondary cell
US7241534B2 (en) 2001-04-13 2007-07-10 Sharp Kabushiki Kaisha Lithium polymer secondary cell
CN1309114C (en) * 2003-07-18 2007-04-04 索尼株式会社 Electrolyte and battery using the same electrolyte
JP2006114280A (en) * 2004-10-13 2006-04-27 Sharp Corp Lithium secondary battery
JP2007087758A (en) * 2005-09-21 2007-04-05 Nissan Motor Co Ltd Electrode for battery
US8329340B2 (en) 2006-09-01 2012-12-11 Sony Corporation Negative electrode, and non-aqueous electrolyte secondary battery using the same
JP2008059999A (en) * 2006-09-01 2008-03-13 Sony Corp Negative electrode and nonaqueous electrolyte secondary battery using it
JP2010040218A (en) * 2008-07-31 2010-02-18 Idemitsu Kosan Co Ltd Electrode material sheet for lithium battery, solid lithium battery, and device with the solid lithium battery
US8252451B2 (en) 2008-10-08 2012-08-28 Toyota Jidosha Kabushiki Kaisha Battery electrode and battery electrode manufacturing method
JP2010092721A (en) * 2008-10-08 2010-04-22 Toyota Motor Corp Manufacturing method of battery electrode
JP2011096444A (en) * 2009-10-28 2011-05-12 Mitsubishi Materials Corp Positive electrode for nonaqueous electrolyte secondary battery
JP2011103278A (en) * 2009-11-12 2011-05-26 Mitsubishi Materials Corp Collector for nonaqueous electrolyte secondary battery, and negative electrode using the same
JP2012256584A (en) * 2011-02-18 2012-12-27 Sumitomo Electric Ind Ltd Electrochemical element
US9337492B2 (en) 2011-02-18 2016-05-10 Sumitomo Electric Industries, Ltd. Electrochemical element
WO2012111738A1 (en) * 2011-02-18 2012-08-23 住友電気工業株式会社 Electrochemical element
US9825280B2 (en) 2011-09-07 2017-11-21 24M Technologies, Inc. Semi-solid electrode cell having a porous current collector and methods of manufacture
JP2014529876A (en) * 2011-09-07 2014-11-13 24エム・テクノロジーズ・インコーポレイテッド24M Technologies, Inc. Semi-solid electrode cell having a porous current collector and manufacturing method
US11309531B2 (en) 2011-09-07 2022-04-19 24M Technologies, Inc. Stationary semi-solid battery module and method of manufacture
US11888144B2 (en) 2011-09-07 2024-01-30 24M Technologies, Inc. Stationary semi-solid battery module and method of manufacture
US10566603B2 (en) 2011-09-07 2020-02-18 24M Technologies, Inc. Stationary semi-solid battery module and method of manufacture
US9812674B2 (en) 2012-05-18 2017-11-07 24M Technologies, Inc. Electrochemical cells and methods of manufacturing the same
US11646437B2 (en) 2012-05-18 2023-05-09 24M Technologies, Inc. Electrochemical cells and methods of manufacturing the same
US11121437B2 (en) 2012-05-18 2021-09-14 24M Technologies, Inc. Electrochemical cells and methods of manufacturing the same
US10566581B2 (en) 2012-05-18 2020-02-18 24M Technologies, Inc. Electrochemical cells and methods of manufacturing the same
JP2018060815A (en) * 2012-05-25 2018-04-12 バシウム・カナダ・インコーポレーテッド Electrode material for lithium electrochemical cell
JP2015520927A (en) * 2012-05-25 2015-07-23 バシウム・カナダ・インコーポレーテッド Electrode materials for lithium electrochemical cells
CN106663835A (en) * 2014-08-30 2017-05-10 Jenax股份有限公司 Flexible secondary battery and method for manufacturing same
EP3188301A4 (en) * 2014-08-30 2018-01-24 Jenax Inc. Flexible secondary battery and method for manufacturing same
JP2017529663A (en) * 2014-08-30 2017-10-05 ジェナックス インコーポレイテッド Flexible secondary battery and manufacturing method thereof
US10637038B2 (en) 2014-11-05 2020-04-28 24M Technologies, Inc. Electrochemical cells having semi-solid electrodes and methods of manufacturing the same
US10886521B2 (en) 2014-11-05 2021-01-05 24M Technologies, Inc. Electrochemical cells having semi-solid electrodes and methods of manufacturing the same
US11611061B2 (en) 2014-11-05 2023-03-21 24M Technologies, Inc. Electrochemical cells having semi-solid electrodes and methods of manufacturing the same
US10115970B2 (en) 2015-04-14 2018-10-30 24M Technologies, Inc. Semi-solid electrodes with porous current collectors and methods of manufacture
US11024903B2 (en) 2015-06-18 2021-06-01 24M Technologies, Inc. Single pouch battery cells and methods of manufacture
US10181587B2 (en) 2015-06-18 2019-01-15 24M Technologies, Inc. Single pouch battery cells and methods of manufacture
US11831026B2 (en) 2015-06-18 2023-11-28 24M Technologies, Inc. Single pouch battery cells and methods of manufacture
CN114747045A (en) * 2019-10-15 2022-07-12 汉阳大学校Erica产学协力团 Negative electrode, method for preparing same by electrolytic deposition and preparation device thereof

Similar Documents

Publication Publication Date Title
JPH10294131A (en) Lithium battery having polymer electrolyte
JPH11111265A (en) Polymer electrolyte secondary battery
US6306215B1 (en) Apparatus for coating current collectors
JP4884774B2 (en) Method for producing electrode for electrochemical cell
US5851504A (en) Carbon based electrodes
CA2288886A1 (en) Methods of fabricating electrochemical cells
EP1381105B1 (en) Lithium polymer secondary cell
EP3425720A1 (en) Fluoride shuttle secondary battery
JP6927038B2 (en) Lithium ion secondary battery
JP6965932B2 (en) Electrodes for power storage devices and their manufacturing methods
WO2002027854A1 (en) Lithium polymer secondary cell and the method for manufacture thereof
JPH1186875A (en) Positive electrode for nonaqueous secondary battery
JP2008066047A (en) Nonaqueous electrolyte battery and separator thereof
KR101502898B1 (en) Composite anode active material for lithium rechargeable battery, its preparation and lithium battery using same
JP4152279B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JPH10284128A (en) Lithium battery
WO2015132845A1 (en) All-solid-state battery
JP4915025B2 (en) Nonaqueous electrolyte and lithium secondary battery
JPH08106897A (en) Positive electrode for lithium secondary battery and its manufacture
WO1993014528A1 (en) Secondary battery
US5972055A (en) Binary solvent method for battery
JPH11329448A (en) Nonaqueous secondary battery positive electrode current collector and nonaqueous secondary battery having this current collector
JP2002134111A (en) Carbon material for lithium ion secondary battery negative electrode and lithium ion secondary battery
JPH10334945A (en) Improved lithium battery
JPH10284127A (en) Lithium battery