JP2003187870A - Polymer electrolyte and nonaqueous electrolyte secondary battery - Google Patents

Polymer electrolyte and nonaqueous electrolyte secondary battery

Info

Publication number
JP2003187870A
JP2003187870A JP2001384090A JP2001384090A JP2003187870A JP 2003187870 A JP2003187870 A JP 2003187870A JP 2001384090 A JP2001384090 A JP 2001384090A JP 2001384090 A JP2001384090 A JP 2001384090A JP 2003187870 A JP2003187870 A JP 2003187870A
Authority
JP
Japan
Prior art keywords
copolymer
units
weight
hexafluoropropylene
tetrafluoroethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001384090A
Other languages
Japanese (ja)
Other versions
JP3539564B2 (en
Inventor
Tomohito Okamoto
朋仁 岡本
Shinya Kitano
真也 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2001384090A priority Critical patent/JP3539564B2/en
Publication of JP2003187870A publication Critical patent/JP2003187870A/en
Application granted granted Critical
Publication of JP3539564B2 publication Critical patent/JP3539564B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer electrolyte which has a good electrolyte solution holding property and excellent high temperature characteristics, and to provide a nonaqueous electrolyte secondary battery. <P>SOLUTION: A copolymer, which is formed by copolymerizing a mixture including a vinylidene fluoride monomer, a tetrafluoroethylene monomer, and a hexafluoropropylene monomer, is used as a polymer material composing the polymer electrolyte. The copolymer is characterized in that the ratio of the tetrafluoroethylene unit is not less than 5 wt.% and below 30 wt.%. Alternatively, the copolymer is characterized in that the ratio of the hexafluoropropylene unit is not more than 10 wt.%. As a result, the polymer electrolyte, which has the good electrolyte solution holding property and the excellent high temperature characteristics, and the nonaqueous electrolyte secondary battery can be provided. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ポリマー電解質、
および非水電解質二次電池に関する。
TECHNICAL FIELD The present invention relates to a polymer electrolyte,
And a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、非水電解質二次電池(以下、単に
「電池」と称することがある)にあっては、遊離電解液
量を低減して電池の安全性を向上させる等の目的のため
に、従来の液状電解質に代えてポリマー電解質を使用し
たポリマー電池が注目されつつある。このポリマー電解
質は、固体またはゲル状の網目構造を有する高分子材料
に、イオン伝導性を有する電解液を相溶・保持させた構
成のものである。
2. Description of the Related Art In recent years, non-aqueous electrolyte secondary batteries (hereinafter sometimes simply referred to as "batteries") have the purpose of reducing the amount of free electrolyte and improving battery safety. Therefore, a polymer battery using a polymer electrolyte instead of the conventional liquid electrolyte is attracting attention. This polymer electrolyte has a constitution in which a polymer material having a solid or gel-like network structure is made compatible with and holds an electrolytic solution having ion conductivity.

【0003】このようなポリマー電解質に使用される高
分子材料としては、例えばフッ化ビニリデン−ヘキサフ
ルオロプロピレン共重合体が挙げられる。このものは、
可塑剤としての電解液を含みやすく、容易にゲル状とな
ることから、ポリマー電解質用の高分子材料として好ま
しく使用されている。
Examples of the polymer material used for such a polymer electrolyte include vinylidene fluoride-hexafluoropropylene copolymer. This one is
Since it easily contains an electrolytic solution as a plasticizer and easily forms a gel, it is preferably used as a polymer material for a polymer electrolyte.

【0004】[0004]

【発明が解決しようとする課題】ところが、このような
共重合体をポリマー電解質に適用した電池においては、
高温環境下に長時間放置した場合に、共重合体がその形
状を維持できなくなって電解液中に溶解し、電解液の粘
度が増大して電気伝導度の低下を生じる場合がある。こ
のため、充分な高温特性が得られず、改善が求められて
いた。
However, in a battery in which such a copolymer is applied to a polymer electrolyte,
When left in a high temperature environment for a long time, the copolymer may not be able to maintain its shape and may be dissolved in the electrolytic solution, increasing the viscosity of the electrolytic solution and causing a decrease in electrical conductivity. Therefore, sufficient high temperature characteristics cannot be obtained, and improvement has been demanded.

【0005】特に、ポリマー電解質は固体構造を有する
ため、液状電解質に比べて電気伝導度が低いという問題
がある。この問題の改善策として、共重合体中のヘキサ
フルオロプロピレンの共重合割合を高め、電解液の保持
量を増大させることが一般的である。これにより、ポリ
マー電解質の可塑性が高まるため、リチウムイオンの伝
導性を向上させ、電気伝導度を改善することができる。
しかし、このような構成では、共重合体の機械的強度が
低くなってしまうため、高温環境下での劣化の問題が顕
著となる。
In particular, since the polymer electrolyte has a solid structure, it has a problem that its electric conductivity is lower than that of the liquid electrolyte. As a remedy for this problem, it is common to increase the copolymerization ratio of hexafluoropropylene in the copolymer to increase the amount of electrolyte retained. Thereby, the plasticity of the polymer electrolyte is increased, so that the conductivity of lithium ions can be improved and the electrical conductivity can be improved.
However, in such a structure, the mechanical strength of the copolymer becomes low, so that the problem of deterioration in a high temperature environment becomes remarkable.

【0006】本発明は上記した事情に鑑みてなされたも
のであり、その目的は、電解液の保持性がよく、かつ、
高温特性に優れたポリマー電解質、および非水電解質二
次電池電池を提供することにある。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to have a good electrolyte retention property and
It is intended to provide a polymer electrolyte having excellent high temperature characteristics and a non-aqueous electrolyte secondary battery battery.

【0007】[0007]

【課題を解決するための手段】本発明者は、電解液の保
持性がよく、かつ、高温特性に優れたポリマー電解質、
および非水電解質二次電池を提供すべく鋭意研究したと
ころ、フッ化ビニリデン、テトラフルオロエチレン、お
よびヘキサフルオロプロピレンを含む単量体を共重合さ
せることにより形成された共重合体を使用することが有
効であることを見出した。
Means for Solving the Problems The present inventor has found that a polymer electrolyte having good electrolyte retention and excellent high temperature characteristics,
In addition, as a result of intensive research to provide a non-aqueous electrolyte secondary battery, it was found that a copolymer formed by copolymerizing monomers including vinylidene fluoride, tetrafluoroethylene, and hexafluoropropylene can be used. It was found to be effective.

【0008】さらに、共重合体の組成を最適化すること
により、電解液の保持性が高く、優れた高温特性を備え
た電池を提供できることを見出し、本発明を完成するに
至った。本発明は、かかる新規な知見に基づいてなされ
たものである。
Further, it has been found that by optimizing the composition of the copolymer, it is possible to provide a battery having a high electrolyte retaining property and excellent high-temperature characteristics, and completed the present invention. The present invention has been made based on such novel findings.

【0009】すなわち、本発明は、高分子材料に電解液
を保持させてなる非水電解質二次電池用ポリマー電解質
であって、高分子材料に電解液を保持させてなる非水電
解質二次電池用ポリマー電解質であって、前記高分子材
料が、フッ化ビニリデン、テトラフルオロエチレン、お
よびヘキサフルオロプロピレンを含む単量体を共重合さ
せることにより形成された共重合体であり、かつ、フッ
化ビニリデン単位、テトラフルオロエチレン単位、およ
びヘキサフルオロプロピレン単位の合計に対するテトラ
フルオロエチレン単位の比率が5重量%以上30重量%
未満であることを特徴とする。
That is, the present invention is a polymer electrolyte for a non-aqueous electrolyte secondary battery in which a polymer material holds an electrolytic solution, and the polymer electrolyte holds a non-aqueous electrolyte secondary battery. A polymer electrolyte for use, wherein the polymer material is a copolymer formed by copolymerizing a monomer containing vinylidene fluoride, tetrafluoroethylene, and hexafluoropropylene, and vinylidene fluoride The ratio of tetrafluoroethylene units to the total of units, tetrafluoroethylene units, and hexafluoropropylene units is 5% by weight or more and 30% by weight.
It is characterized by being less than.

【0010】また、本発明の非水電解質二次電池は、正
極と、負極と、高分子材料に電解液を保持させてなるポ
リマー電解質とを備えた非水電解質二次電池であって、
前記高分子材料が、フッ化ビニリデン、テトラフルオロ
エチレン、およびヘキサフルオロプロピレンを含む単量
体を共重合させることにより形成され、かつ、フッ化ビ
ニリデン単位、テトラフルオロエチレン単位、およびヘ
キサフルオロプロピレン単位の合計に対するテトラフル
オロエチレン単位の比率が5重量%以上30重量%未満
とされた共重合体であることを特徴とする。
The non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a polymer electrolyte in which a polymer material holds an electrolytic solution,
The polymer material is formed by copolymerizing a monomer containing vinylidene fluoride, tetrafluoroethylene, and hexafluoropropylene, and contains vinylidene fluoride units, tetrafluoroethylene units, and hexafluoropropylene units. The copolymer is characterized in that the ratio of tetrafluoroethylene units to the total is 5% by weight or more and less than 30% by weight.

【0011】本発明に用いられる高分子材料としては、
フッ化ビニリデン、テトラフルオロエチレン、ヘキサフ
ルオロプロピレンの3種の単量体を共重合させた共重合
体が好適に使用できる。上述のように、フッ化ビニリデ
ン−ヘキサフルオロプロピレン共重合体は高温時に溶解
しやすいが、これにテトラフルオロエチレンを共重合さ
せ、共重合体の可塑性を調整することにより、溶解を抑
制できると考えられる。また、これら3種の単量体の他
に、本発明の作用効果を損なわない範囲内で他の単量体
を共重合させたものであってもよい。
The polymer material used in the present invention includes:
A copolymer obtained by copolymerizing three kinds of monomers of vinylidene fluoride, tetrafluoroethylene and hexafluoropropylene can be preferably used. As described above, vinylidene fluoride-hexafluoropropylene copolymer is easily dissolved at high temperature, but it is considered that the dissolution can be suppressed by copolymerizing tetrafluoroethylene with this and adjusting the plasticity of the copolymer. To be Further, in addition to these three kinds of monomers, other monomers may be copolymerized within a range that does not impair the effects of the present invention.

【0012】特に、共重合体中のテトラフルオロエチレ
ン単位の比率は、フッ化ビニリデン単位、テトラフルオ
ロエチレン単位、およびヘキサフルオロプロピレン単位
の合計に対して5重量%以上30重量%未満とされるこ
とが好ましい。30重量%以上では、電解液との相溶性
が悪くなり、充分な電解液保持量が得られなくなるため
である。また、5重量%未満では、共重合体が高温放置
時に溶解しやすくなるためである。
In particular, the proportion of tetrafluoroethylene units in the copolymer should be 5% by weight or more and less than 30% by weight based on the total of vinylidene fluoride units, tetrafluoroethylene units and hexafluoropropylene units. Is preferred. This is because if it is 30% by weight or more, the compatibility with the electrolytic solution becomes poor, and a sufficient amount of the electrolytic solution cannot be retained. On the other hand, if it is less than 5% by weight, the copolymer is likely to dissolve when left at high temperature.

【0013】また、共重合体中のヘキサフルオロエチレ
ン単位の比率は、フッ化ビニリデン単位、テトラフルオ
ロエチレン単位、およびヘキサフルオロプロピレン単位
の合計に対して10重量%以下とされることが好まし
い。10重量%を超えれば、共重合体の結晶性が低下
し、高温放置時に溶解しやすくなるためである。
The proportion of hexafluoroethylene units in the copolymer is preferably 10% by weight or less based on the total of vinylidene fluoride units, tetrafluoroethylene units and hexafluoropropylene units. This is because if it exceeds 10% by weight, the crystallinity of the copolymer is lowered and the copolymer is easily dissolved when left at high temperature.

【0014】このような共重合体を用いてポリマー電解
質を形成させる方法としては、非水電解質二次電池の製
造に通常適用される方法であれば特に制限はない。具体
的には、例えば共重合体を適当な溶媒に分散させたもの
を、正極板、負極板にそれぞれ含浸し、精製水等による
溶媒抽出工程を行った後、電解液を保持させてもよい。
あるいは、セパレータに、共重合体を適当な溶媒に分散
させたものを含浸、あるいは塗布して乾燥させた後、こ
れに電解液を保持させてもよい。セパレータとしては、
非水電解質二次電池のセパレータとして通常使用される
ものであればよく、例えばポリプロピレン微多孔膜等を
用いることができる。さらには、セパレータを用いずフ
ィルム状に成形された共重合体に、電解液を保持させて
もよい。
The method of forming a polymer electrolyte using such a copolymer is not particularly limited as long as it is a method usually applied to the production of non-aqueous electrolyte secondary batteries. Specifically, for example, the positive electrode plate and the negative electrode plate may be impregnated with the copolymer dispersed in an appropriate solvent, and the electrolytic solution may be retained after a solvent extraction step using purified water or the like. .
Alternatively, the separator may be impregnated with or coated with a dispersion of the copolymer in a suitable solvent and dried, and then the electrolytic solution may be held therein. As a separator,
What is normally used as a separator of a non-aqueous electrolyte secondary battery may be used, and for example, a polypropylene microporous membrane or the like can be used. Further, the electrolytic solution may be held in a film-shaped copolymer without using a separator.

【0015】本発明の電解液に用いられる溶媒として
は、非水電解質二次電池の電解液に通常用いられるもの
であれば特に制限はなく、例えばエチレンカーボネー
ト、ジエチルカーボネート、ジメチルカーボネート、プ
ロピレンカーボネート、γーブチロラクトン、ジメチル
スルホキシド、テトラヒドロフラン、ジメトキシエタ
ン、ジメチルアセドアミド等が使用できる。これらの溶
媒は、単独で、もしくは2種以上を混合して用いること
ができる。
The solvent used in the electrolytic solution of the present invention is not particularly limited as long as it is a solvent usually used in electrolytic solutions for non-aqueous electrolyte secondary batteries, and examples thereof include ethylene carbonate, diethyl carbonate, dimethyl carbonate, propylene carbonate, γ-butyrolactone, dimethyl sulfoxide, tetrahydrofuran, dimethoxyethane, dimethylacedamide and the like can be used. These solvents may be used alone or in combination of two or more.

【0016】また、電解液に含まれる電解質塩として
は、非水電解質二次電池に通常使用される電解質塩であ
れば特に制限はなく、例えばLiClO、LiB
、LiPF、LiB(C、LiN(S
CF、LiC(SOCF、LiOS
CF等が使用できる。また、電解液には酸化防止
剤、難燃剤、ラジカル捕捉剤、界面活性剤等の添加物が
含まれていてもよい。
The electrolyte salt contained in the electrolytic solution is not particularly limited as long as it is an electrolyte salt normally used in non-aqueous electrolyte secondary batteries, and examples thereof include LiClO 4 and LiB.
F 4, LiPF 6, LiB ( C 6 H 5) 4, LiN (S
O 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiOS
O 2 CF 3 or the like can be used. Further, the electrolytic solution may contain additives such as an antioxidant, a flame retardant, a radical scavenger, and a surfactant.

【0017】[0017]

【発明の作用及び効果】本発明によれば、電解液の保持
性がよく、かつ、高温特性に優れたポリマー電解質、お
よび非水電解質二次電池を提供することができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to provide a polymer electrolyte and a non-aqueous electrolyte secondary battery which have good electrolyte retention and excellent high temperature characteristics.

【0018】[0018]

【実施例】以下、実施例を挙げて本発明を詳細に説明す
る。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0019】<実施例1> 1.リチウムイオン二次電池の作製 1)高分子材料の調製 撹拌機を備えた容量10LのSUS316製オートクレ
ーブを排気し、マロン酸ジエチル1.0g、フルオロオ
クタン酸アンモニウム2.0g、リン酸水素二ナトリウ
ム10.0g、イオン交換水4500gを導入した。次
いで、フッ化ビニリデン54g、テトラフルオロエチレ
ン21g、ヘキサフルオロプロピレン32gの混合ガス
をゲージ圧2.5MPaで、コンプレッサを用いて圧入
した。その後、オートクレーブを80℃に加温し、軽量
ポンプによりペルオキソ硫酸アンモニウム4.0gを導
入し、重合反応を開始させた。
<Example 1> 1. Preparation of Lithium Ion Secondary Battery 1) Preparation of Polymer Material An autoclave made of SUS316 having a capacity of 10 L equipped with a stirrer was evacuated and diethyl malonate 1.0 g, ammonium fluorooctanoate 2.0 g, and disodium hydrogen phosphate 10 were prepared. 0.0 g and ion-exchanged water 4500 g were introduced. Next, a mixed gas of 54 g of vinylidene fluoride, 21 g of tetrafluoroethylene, and 32 g of hexafluoropropylene was injected under a gauge pressure of 2.5 MPa using a compressor. Then, the autoclave was heated to 80 ° C., and 4.0 g of ammonium peroxosulfate was introduced by a lightweight pump to start the polymerization reaction.

【0020】重合反応開始後、フッ化ビニリデン325
g、テトラフルオロエチレン61g、ヘキサフルオロプ
ロピレン47gの混合ガスを2時間かけて分添した。分
添終了後、オートクレーブを室温まで冷却した。次い
で、残存ガスをパージし、乳濁液をオートクレーブから
取り出し、1重量%の塩化カルシウム水溶液中に撹拌し
ながら滴下した。滴下終了後、凝析した生成物を濾別
し、超純水(20℃でイオン伝導度1.0μS/cm)
で撹拌、洗浄し、ろ過後、乾燥させた。このようにし
て、白色粉末状のポリフッ化ビニリデン−テトラフルオ
ロエチレン−ヘキサフルオロプロピレン(P(VdF−
TFE−HFP))共重合体が得られた。
After initiation of the polymerization reaction, vinylidene fluoride 325
g, tetrafluoroethylene 61 g, and hexafluoropropylene 47 g were mixed and added over 2 hours. After the addition was completed, the autoclave was cooled to room temperature. Then, the residual gas was purged, and the emulsion was taken out from the autoclave and dropped into a 1 wt% calcium chloride aqueous solution with stirring. After completion of the dropping, the coagulated product was filtered off and ultrapure water (ionic conductivity of 1.0 μS / cm at 20 ° C.)
The mixture was stirred, washed with water, filtered, and dried. Thus, white powdery polyvinylidene fluoride-tetrafluoroethylene-hexafluoropropylene (P (VdF-
A TFE-HFP)) copolymer was obtained.

【0021】得られた共重合体の共重合組成(19F−
NMRによる)は、フッ化ビニリデン82重量%、テト
ラフルオロエチレン15重量%、ヘキサフルオロプロピ
レン3重量%であった。
Copolymer composition of the obtained copolymer ( 19 F-
(By NMR) was 82% by weight vinylidene fluoride, 15% by weight tetrafluoroethylene, 3% by weight hexafluoropropylene.

【0022】2)正極の作製 コバルト酸リチウムを正極活物質とし、この正極活物質
に対して結着剤としてフッ化ビニリデンを、導電剤とし
てアセチレンブラックを、重量比91:5:4の割合で
混合し、N−メチルピロリドンを加えて正極合剤ペース
トを調製した。このペーストを、厚さ20μmのアルミ
ニウム箔からなる集電体の両面に均一に塗布し、乾燥、
プレスした。このようにして、正極活物質層を備えた帯
状の正極シートを作製した。この正極シートの一端部に
は、正極リードを溶着した。
2) Preparation of Positive Electrode Lithium cobalt oxide was used as a positive electrode active material, and vinylidene fluoride as a binder and acetylene black as a conductive agent were added to the positive electrode active material at a weight ratio of 91: 5: 4. The mixture was mixed, and N-methylpyrrolidone was added to prepare a positive electrode mixture paste. This paste was evenly applied to both sides of a current collector made of an aluminum foil having a thickness of 20 μm, dried,
Pressed. In this way, a strip-shaped positive electrode sheet having the positive electrode active material layer was produced. A positive electrode lead was welded to one end of this positive electrode sheet.

【0023】3)負極の作製 グラファイトを負極活物質とし、このグラファイトに対
して結着剤としてフッ化ビニリデンを、重量比92:8
の割合で混合し、N−メチルピロリドンを加えて負極合
剤ペーストを調製した。このペーストを、厚さ10μm
の銅箔からなる集電体の両面に均一に塗布し、乾燥、プ
レスした後に裁断した。このようにして、負極活物質層
を備えた帯状の負極シートを作製した。この負極シート
の一端部には、負極リードを溶着した。
3) Preparation of Negative Electrode Graphite was used as a negative electrode active material, and vinylidene fluoride as a binder was added to the graphite in a weight ratio of 92: 8.
And mixed with N-methylpyrrolidone to prepare a negative electrode mixture paste. This paste is 10μm thick
The current collector made of copper foil was evenly applied on both sides, dried, pressed, and then cut. In this way, a strip-shaped negative electrode sheet provided with the negative electrode active material layer was produced. A negative electrode lead was welded to one end of this negative electrode sheet.

【0024】4)電解液の調製 エチレンカーボネート、およびジメチルカーボネート
を、体積比3:7の割合で混合して、非水溶媒を調製し
た。この非水溶媒に、電解質塩としてLiPFを1.
2mol/lの濃度で加え、電解液を調製した。
4) Preparation of Electrolyte Solution Ethylene carbonate and dimethyl carbonate were mixed in a volume ratio of 3: 7 to prepare a non-aqueous solvent. LiPF 6 as an electrolyte salt was added to the non-aqueous solvent in an amount of 1.
An electrolyte solution was prepared by adding at a concentration of 2 mol / l.

【0025】5)正極シート、負極シートへの高分子材
料の含浸 上記1)で調製したP(VdF−TFE−HFP)共重
合体を、N−メチルピロリドンに10%濃度となるよう
に溶解して、共重合体溶液を調製した。この共重合体溶
液に、上記2)、3)で作製した正極シートおよび負極
シートを浸漬して、溶液を充分に含浸させた。次に、こ
れらの両シートを水中に浸漬して、溶媒であるN−メチ
ルピロリドンを水と置換した。その後、両シートを乾燥
させて、網目構造を有する高分子材料を保持した正極シ
ート、負極シートを作製した。
5) Impregnation of positive electrode sheet and negative electrode sheet with polymer material The P (VdF-TFE-HFP) copolymer prepared in 1) above was dissolved in N-methylpyrrolidone to a concentration of 10%. Thus, a copolymer solution was prepared. The positive electrode sheet and the negative electrode sheet prepared in 2) and 3) above were immersed in this copolymer solution to sufficiently impregnate the solution. Next, both of these sheets were immersed in water to replace the solvent N-methylpyrrolidone with water. Then, both sheets were dried to prepare a positive electrode sheet and a negative electrode sheet holding a polymer material having a network structure.

【0026】6)電池の作製 ポリエチレンテレフタレート製のフィルム、アルミニウ
ム箔、接着剤層、第1変性ポリオレフィン層、第2変性
ポリオレフィン層を順に重ねたラミネートフィルムを、
第2変性ポリオレフィン層側を内側として折り返し、底
辺部及び側辺部を溶着することにより、袋状の電池ケー
スを作成した。
6) Preparation of Battery A laminated film in which a polyethylene terephthalate film, an aluminum foil, an adhesive layer, a first modified polyolefin layer and a second modified polyolefin layer are laminated in this order,
A bag-shaped battery case was prepared by folding back the second modified polyolefin layer side as the inside and welding the bottom side and the side side.

【0027】上記5)で作製した、高分子材料を保持し
た正極シートおよび負極シートを積層した後、巻回して
発電素子を作製した。そして、この発電素子を電池ケー
ス内に収納した。
The positive electrode sheet and the negative electrode sheet holding the polymer material produced in the above 5) were laminated and then wound to produce a power generating element. Then, this power generating element was housed in a battery case.

【0028】電池ケース内に上記4)で調製した電解液
を注入し、高分子材料に電解液を保持させて、ゲル状の
ポリマー電解質とした。その後、電池ケースの開口部を
加熱圧着により封口して、電池を完成させた。なお、作
製された電池の公称容量は600mAhとした。
The electrolytic solution prepared in the above 4) was poured into the battery case, and the electrolytic solution was held in the polymer material to obtain a gel polymer electrolyte. Then, the opening of the battery case was sealed by thermocompression bonding to complete the battery. The nominal capacity of the manufactured battery was 600 mAh.

【0029】2.充放電試験および放置試験 上記の方法で作成した電池について、25℃の温度雰囲
気下で、600mA(1C)の定電流で4.2Vまで充
電後、4.2Vの定電圧で2.5時間充電を行った。次
いで、600mAの定電流で3.0Vまで放電を行い、
放電容量(以下、1C放電容量という)を測定した。次
に、この電池について、25℃の温度雰囲気下で、60
0mAの定電流で4.2Vまで充電後、4.2Vの定電
圧で2.5時間充電を行った。次いで、1200mA
(2C)の定電流で3.0Vまで放電を行い、放電容量
(以下、2C放電容量という)を測定した。さらに、こ
の電池について、25℃の温度雰囲気下で、600mA
の定電流で4.2Vまで充電後、4.2Vの定電圧で
2.5時間充電を行った。充電後、この電池を80℃で
48時間放置した。放置後、この電池について600m
Aの定電流で3.0Vまで放電を行い、放電容量(以
下、放置後放電容量という)を測定し、容量保持率を求
めた。なお、容量保持率は、1C放電容量に対する放置
後放電容量の割合で示した。
2. Charge / Discharge Test and Leave Test The battery prepared by the above method was charged at a constant current of 600 mA (1 C) to 4.2 V in a temperature atmosphere of 25 ° C. and then charged at a constant voltage of 4.2 V for 2.5 hours. I went. Then, discharge at a constant current of 600 mA to 3.0 V,
The discharge capacity (hereinafter referred to as 1C discharge capacity) was measured. Next, about this battery, in a temperature atmosphere of 25 ° C., 60
After charging to 4.2 V with a constant current of 0 mA, charging was performed for 2.5 hours at a constant voltage of 4.2 V. Then 1200mA
Discharge was performed to 3.0 V with a constant current of (2C), and the discharge capacity (hereinafter, referred to as 2C discharge capacity) was measured. Furthermore, about this battery, in a temperature atmosphere of 25 ° C., 600 mA
After being charged to 4.2V with a constant current of No. 2, the battery was charged with a constant voltage of 4.2V for 2.5 hours. After charging, this battery was left at 80 ° C. for 48 hours. 600m about this battery after leaving
A constant current of A was discharged up to 3.0 V, the discharge capacity (hereinafter, referred to as discharge capacity after standing) was measured, and the capacity retention rate was obtained. The capacity retention rate is indicated by the ratio of the discharge capacity after standing to the 1C discharge capacity.

【0030】<実施例2>実施例1の高分子材料に代え
て、共重合組成(19F−NMRによる)が、フッ化ビ
ニリデン75重量%、テトラフルオロエチレン20重量
%、ヘキサフルオロプロピレン5重量%である共重合体
を使用し、実施例1と同様に電池を組み立てた。この電
池について、実施例1と同様に試験を行った。
Example 2 Instead of the polymer material of Example 1, the copolymer composition (by 19 F-NMR) was 75% by weight of vinylidene fluoride, 20% by weight of tetrafluoroethylene, and 5% by weight of hexafluoropropylene. % Of the copolymer was used to assemble a battery as in Example 1. This battery was tested in the same manner as in Example 1.

【0031】<実施例3>実施例1の高分子材料に代え
て、共重合組成(19F−NMRによる)が、フッ化ビ
ニリデン65重量%、テトラフルオロエチレン25重量
%、ヘキサフルオロプロピレン5重量%である共重合体
を使用し、実施例1と同様に電池を組み立てた。この電
池について、実施例1と同様に試験を行った。
Example 3 Instead of the polymer material of Example 1, the copolymer composition (by 19 F-NMR) was 65% by weight of vinylidene fluoride, 25% by weight of tetrafluoroethylene, and 5% by weight of hexafluoropropylene. % Of the copolymer was used to assemble a battery as in Example 1. This battery was tested in the same manner as in Example 1.

【0032】<実施例4>実施例1の高分子材料に代え
て、共重合組成(19F−NMRによる)が、フッ化ビ
ニリデン87重量%、テトラフルオロエチレン12重量
%、ヘキサフルオロプロピレン1重量%である共重合体
を使用し、実施例1と同様に電池を組み立てた。この電
池について、実施例1と同様に試験を行った。
Example 4 Instead of the polymer material of Example 1, the copolymer composition (by 19 F-NMR) was 87% by weight of vinylidene fluoride, 12% by weight of tetrafluoroethylene, and 1% by weight of hexafluoropropylene. % Of the copolymer was used to assemble a battery as in Example 1. This battery was tested in the same manner as in Example 1.

【0033】<実施例5>実施例1の高分子材料に代え
て、共重合組成(19F−NMRによる)が、フッ化ビ
ニリデン90重量%、テトラフルオロエチレン10重量
%である共重合体を使用し、実施例1と同様に電池を組
み立てた。この電池について、実施例1と同様に試験を
行った。
Example 5 A copolymer having a copolymerization composition (by 19 F-NMR) of 90% by weight of vinylidene fluoride and 10% by weight of tetrafluoroethylene was used instead of the polymer material of Example 1. Used and assembled a battery as in Example 1. This battery was tested in the same manner as in Example 1.

【0034】<比較例1>実施例1の高分子材料に代え
て、ポリフッ化ビニリデンを使用し、実施例1と同様に
電池を組み立てた。この電池について、実施例1と同様
に試験を行った。
Comparative Example 1 A battery was assembled in the same manner as in Example 1 except that polyvinylidene fluoride was used instead of the polymer material of Example 1. This battery was tested in the same manner as in Example 1.

【0035】<比較例2>実施例1の高分子材料に代え
て、共重合組成(19F−NMRによる)が、フッ化ビ
ニリデン96重量%、テトラフルオロエチレン4重量%
である共重合体を使用し、実施例1と同様に電池を組み
立てた。この電池について、実施例1と同様に試験を行
った。
Comparative Example 2 Instead of the polymer material of Example 1, the copolymer composition (by 19 F-NMR) was 96% by weight of vinylidene fluoride and 4% by weight of tetrafluoroethylene.
A battery was assembled in the same manner as in Example 1 using the copolymer This battery was tested in the same manner as in Example 1.

【0036】<比較例3>実施例1の高分子材料に代え
て、共重合組成(19F−NMRによる)が、フッ化ビ
ニリデン83重量%、テトラフルオロエチレン5重量
%、ヘキサフルオロプロピレン12重量%である共重合
体を使用し、実施例1と同様に電池を組み立てた。この
電池について、実施例1と同様に試験を行った。
Comparative Example 3 Instead of the polymer material of Example 1, the copolymer composition (by 19 F-NMR) was 83% by weight of vinylidene fluoride, 5% by weight of tetrafluoroethylene, and 12% by weight of hexafluoropropylene. % Of the copolymer was used to assemble a battery as in Example 1. This battery was tested in the same manner as in Example 1.

【0037】<比較例4>実施例1の高分子材料に代え
て、共重合組成(19F−NMRによる)が、フッ化ビ
ニリデン60重量%、テトラフルオロエチレン35重量
%、ヘキサフルオロプロピレン5重量%である共重合体
を使用し、実施例1と同様に電池を組み立てた。この電
池について、実施例1と同様に試験を行った。
Comparative Example 4 Instead of the polymer material of Example 1, the copolymer composition (by 19 F-NMR) was 60% by weight vinylidene fluoride, 35% by weight tetrafluoroethylene, 5% by weight hexafluoropropylene. % Of the copolymer was used to assemble a battery as in Example 1. This battery was tested in the same manner as in Example 1.

【0038】<結果と考察>各実施例および比較例につ
いて、表1には高分子材料の共重合組成を、表2には1
C放電容量、2C放電容量、放置後放電容量、および容
量保持率を示した。なお、比較例1、比較例2、および
比較例4の電池については、2C放電容量が大きく低下
したため、高温放置試験は行わなかった。
<Results and Discussion> For each Example and Comparative Example, Table 1 shows the copolymer composition of the polymer material, and Table 2 shows 1
The C discharge capacity, the 2C discharge capacity, the discharge capacity after standing and the capacity retention rate are shown. The batteries of Comparative Example 1, Comparative Example 2, and Comparative Example 4 were not subjected to the high temperature storage test because the 2C discharge capacity was significantly reduced.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】表1および表2より、実施例1〜実施例5
では、いずれの電池においても2C放電容量は1C放電
容量の90%以上であった。また、容量保持率は93%
であり、優れた高温特性を示していた。これに対して、
比較例1、比較例2、および比較例4の電池において
は、2C放電容量が1C放電容量の約60%に低下して
おり、高率放電特性に劣っていた。これらの電池におい
ては、ヘキサフルオロプロピレン単位の含有量が少ない
か、あるいはテトラフルオロエチレン単位の含有量が多
いために、共重合体と電解液との相溶性が悪く、この結
果高率放電特性が低下したものと考えられる。また、比
較例3の電池では、2C放電容量については1C放電容
量の約90%に保持されたものの、高温放置試験による
容量保持率が74%まで低下していた。この電池では、
ヘキサフルオロプロピレン単位の含有量が多いか、ある
いはテトラフルオロエチレン単位の含有量が少ないため
に、ポリマー電解質の可塑性が大きく、高温放置による
共重合体の溶解が生じたものと考えられる。
From Table 1 and Table 2, Examples 1 to 5 are shown.
Then, in all the batteries, the 2C discharge capacity was 90% or more of the 1C discharge capacity. The capacity retention rate is 93%
And showed excellent high temperature characteristics. On the contrary,
In the batteries of Comparative Example 1, Comparative Example 2, and Comparative Example 4, the 2C discharge capacity was reduced to about 60% of the 1C discharge capacity, and the high rate discharge characteristics were inferior. In these batteries, the content of the hexafluoropropylene unit is low or the content of the tetrafluoroethylene unit is high, so that the compatibility between the copolymer and the electrolytic solution is poor, and as a result, the high rate discharge characteristics are low. It is considered to have decreased. Further, in the battery of Comparative Example 3, the 2C discharge capacity was maintained at about 90% of the 1C discharge capacity, but the capacity retention rate in the high temperature storage test was lowered to 74%. With this battery,
It is considered that because the content of hexafluoropropylene unit is large or the content of tetrafluoroethylene unit is small, the plasticity of the polymer electrolyte is large and the copolymer is dissolved by standing at high temperature.

【0042】なお、本発明の技術的範囲は、上記した実
施形態によって限定されるものではなく、均等の範囲に
まで及ぶものである。
The technical scope of the present invention is not limited to the above-described embodiments, but extends to an equivalent range.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J100 AC24P AC26Q AC27R CA05 FA03 JA43 5H029 AJ02 AK03 AL07 AM00 AM03 AM05 AM07 AM16 EJ14 HJ01   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4J100 AC24P AC26Q AC27R CA05                       FA03 JA43                 5H029 AJ02 AK03 AL07 AM00 AM03                       AM05 AM07 AM16 EJ14 HJ01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高分子材料に電解液を保持させてなる非
水電解質二次電池用ポリマー電解質であって、 前記高分子材料が、フッ化ビニリデン、テトラフルオロ
エチレン、およびヘキサフルオロプロピレンを含む単量
体を共重合させることにより形成された共重合体であ
り、かつ、フッ化ビニリデン単位、テトラフルオロエチ
レン単位、およびヘキサフルオロプロピレン単位の合計
に対するテトラフルオロエチレン単位の比率が5重量%
以上30重量%未満であることを特徴とするポリマー電
解質。
1. A polymer electrolyte for a non-aqueous electrolyte secondary battery, wherein a polymer material holds an electrolytic solution, wherein the polymer material contains vinylidene fluoride, tetrafluoroethylene, and hexafluoropropylene. It is a copolymer formed by copolymerizing a monomer, and the ratio of tetrafluoroethylene units to the total of vinylidene fluoride units, tetrafluoroethylene units, and hexafluoropropylene units is 5% by weight.
A polymer electrolyte characterized by being at least 30% by weight.
【請求項2】 前記共重合体は、フッ化ビニリデン単
位、テトラフルオロエチレン単位、およびヘキサフルオ
ロプロピレン単位の合計に対するヘキサフルオロプロピ
レン単位の比率が10重量%以下であることを特徴とす
る請求項1に記載のポリマー電解質。
2. The copolymer, wherein the ratio of hexafluoropropylene units to the total of vinylidene fluoride units, tetrafluoroethylene units, and hexafluoropropylene units is 10% by weight or less. The polymer electrolyte according to 1.
【請求項3】 正極と、 負極と、 高分子材料に電解液を保持させてなるポリマー電解質と
を備えた非水電解質二次電池であって、 前記高分子材料が、フッ化ビニリデン、テトラフルオロ
エチレン、およびヘキサフルオロプロピレンを含む単量
体を共重合させることにより形成され、かつ、フッ化ビ
ニリデン単位、テトラフルオロエチレン単位、およびヘ
キサフルオロプロピレン単位の合計に対するテトラフル
オロエチレン単位の比率が5重量%以上30重量%未満
とされた共重合体であることを特徴とする非水電解質二
次電池。
3. A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a polymer electrolyte in which a polymer material holds an electrolytic solution, wherein the polymer material is vinylidene fluoride or tetrafluoro It is formed by copolymerizing a monomer containing ethylene and hexafluoropropylene, and the ratio of tetrafluoroethylene units to the total of vinylidene fluoride units, tetrafluoroethylene units, and hexafluoropropylene units is 5% by weight. A non-aqueous electrolyte secondary battery, characterized in that it is a copolymer whose content is at least 30% by weight.
JP2001384090A 2001-12-18 2001-12-18 Polymer electrolyte and non-aqueous electrolyte secondary battery Expired - Fee Related JP3539564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001384090A JP3539564B2 (en) 2001-12-18 2001-12-18 Polymer electrolyte and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001384090A JP3539564B2 (en) 2001-12-18 2001-12-18 Polymer electrolyte and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003187870A true JP2003187870A (en) 2003-07-04
JP3539564B2 JP3539564B2 (en) 2004-07-07

Family

ID=27593909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001384090A Expired - Fee Related JP3539564B2 (en) 2001-12-18 2001-12-18 Polymer electrolyte and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3539564B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063515A (en) * 2005-09-02 2007-03-15 Ricoh Co Ltd Resin material, method for producing the same, ion conducting film, fuel cell, power source, and electronic equipment
JP2007141467A (en) * 2005-11-14 2007-06-07 Sony Corp Gel electrolyte and gel electrolyte battery
WO2011096564A1 (en) * 2010-02-05 2011-08-11 ダイキン工業株式会社 Composite gel electrolyte film for secondary battery, and secondary battery
JP2012227066A (en) * 2011-04-21 2012-11-15 Sony Corp Separator and nonaqueous electrolyte battery, battery pack, electronic apparatus, electric vehicle, power storage device and power system
WO2023286787A1 (en) * 2021-07-12 2023-01-19 Daikin America, Inc. Composite fluoropolymer binder and methods of making same, composite binder material and method for producing same, electrode, energy storage device, binder powder for electrochemical device and method for producing same, binder for electrochemical device, electrode mixture, electrode for secondary battery, and secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284124A (en) * 1997-04-03 1998-10-23 Asahi Glass Co Ltd Lithium battery containing polymer electrolyte
JPH10284127A (en) * 1997-04-02 1998-10-23 Asahi Glass Co Ltd Lithium battery
JPH11149825A (en) * 1997-09-10 1999-06-02 Tdk Corp Slid polymer electrolyte and electrochemical device using the same
JPH11242951A (en) * 1997-12-27 1999-09-07 Tdk Corp Separator, its manufacture and electrochemical device using the same
JPH11329061A (en) * 1998-05-11 1999-11-30 Asahi Chem Ind Co Ltd Bridging high polymer composite electrolyte and battery
JP2001026661A (en) * 1997-08-25 2001-01-30 Nec Corp Preparation of ion-conductive polymer composition and polymer cell
JP2001202996A (en) * 2000-01-18 2001-07-27 Matsushita Battery Industrial Co Ltd Lithium-polymer secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284127A (en) * 1997-04-02 1998-10-23 Asahi Glass Co Ltd Lithium battery
JPH10284124A (en) * 1997-04-03 1998-10-23 Asahi Glass Co Ltd Lithium battery containing polymer electrolyte
JP2001026661A (en) * 1997-08-25 2001-01-30 Nec Corp Preparation of ion-conductive polymer composition and polymer cell
JPH11149825A (en) * 1997-09-10 1999-06-02 Tdk Corp Slid polymer electrolyte and electrochemical device using the same
JPH11242951A (en) * 1997-12-27 1999-09-07 Tdk Corp Separator, its manufacture and electrochemical device using the same
JPH11329061A (en) * 1998-05-11 1999-11-30 Asahi Chem Ind Co Ltd Bridging high polymer composite electrolyte and battery
JP2001202996A (en) * 2000-01-18 2001-07-27 Matsushita Battery Industrial Co Ltd Lithium-polymer secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063515A (en) * 2005-09-02 2007-03-15 Ricoh Co Ltd Resin material, method for producing the same, ion conducting film, fuel cell, power source, and electronic equipment
JP4486013B2 (en) * 2005-09-02 2010-06-23 株式会社リコー Resin material and manufacturing method thereof, ion conductive membrane, fuel cell, power source and electronic device
JP2007141467A (en) * 2005-11-14 2007-06-07 Sony Corp Gel electrolyte and gel electrolyte battery
WO2011096564A1 (en) * 2010-02-05 2011-08-11 ダイキン工業株式会社 Composite gel electrolyte film for secondary battery, and secondary battery
JPWO2011096564A1 (en) * 2010-02-05 2013-06-13 ダイキン工業株式会社 Gel electrolyte composite film for secondary battery and secondary battery
JP2012227066A (en) * 2011-04-21 2012-11-15 Sony Corp Separator and nonaqueous electrolyte battery, battery pack, electronic apparatus, electric vehicle, power storage device and power system
WO2023286787A1 (en) * 2021-07-12 2023-01-19 Daikin America, Inc. Composite fluoropolymer binder and methods of making same, composite binder material and method for producing same, electrode, energy storage device, binder powder for electrochemical device and method for producing same, binder for electrochemical device, electrode mixture, electrode for secondary battery, and secondary battery

Also Published As

Publication number Publication date
JP3539564B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
KR100633713B1 (en) An electrolytic-solution-supporting polymer film, a polymer electrolyte secondary battery using the same and a process for producing the battery
US20120301794A1 (en) Composite gel electrolyte film for secondary battery, and secondary battery
JP4050251B2 (en) Organic electrolyte and lithium battery using the same
JP2008053212A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP2007200605A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution battery equipped with it
JP2008041296A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same
EP3605651A1 (en) Resin composition, separator of secondary battery, and secondary battery
JP2008041413A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same
JP2008258022A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery equipped with it
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP4942249B2 (en) Method for producing lithium ion secondary battery
KR20190080697A (en) Binder for rechargable battery, binder resin composition for rechargable battery, electrode for rechargable battery, and rechargable battery
JP3539564B2 (en) Polymer electrolyte and non-aqueous electrolyte secondary battery
JP3587982B2 (en) Polymer solid electrolyte and lithium secondary battery and electric double layer capacitor using the same
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2002280077A (en) Method of producing sheet lithium secondary battery and sheet lithium secondary battery obtained by using the same
JP4198997B2 (en) Lithium polymer battery
JP2008052988A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
KR20030005254A (en) A multi-layered polymer electrolyte and lithium secondary battery comprising the same
KR20040078596A (en) Electrolyte and battary using the same
JP2009021040A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte battery equipped with it
JP2002216849A (en) Manufacturing method of lithium ion secondary cell
JP4325098B2 (en) Gel composition
JP2008041308A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same
JPH11242964A (en) Solid electrolyte

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040317

R151 Written notification of patent or utility model registration

Ref document number: 3539564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees