JPH0325029B2 - - Google Patents
Info
- Publication number
- JPH0325029B2 JPH0325029B2 JP6343185A JP6343185A JPH0325029B2 JP H0325029 B2 JPH0325029 B2 JP H0325029B2 JP 6343185 A JP6343185 A JP 6343185A JP 6343185 A JP6343185 A JP 6343185A JP H0325029 B2 JPH0325029 B2 JP H0325029B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor
- layer
- base
- film
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 claims description 38
- 239000012535 impurity Substances 0.000 claims description 16
- 239000010409 thin film Substances 0.000 claims 7
- 239000010408 film Substances 0.000 claims 3
- 239000002184 metal Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 238000001451 molecular beam epitaxy Methods 0.000 description 9
- 239000000758 substrate Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001534 heteroepitaxy Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/167—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1004—Base region of bipolar transistors
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Bipolar Transistors (AREA)
- Junction Field-Effect Transistors (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は新規な構造を有する超高速半導体素子
に係わるものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an ultra-high speed semiconductor device having a novel structure.
新しい超高速素子として、第1図に示す如く、
半導体結晶中に櫛状の金属層を埋め込んだパーミ
アブル・ベース・トランジスタが提案され試作さ
れている(シー・オー・ボズラー,ジー・デー・
アレイ(C.O.Bozler and G.D.Alley);アイ・イ
ー・イー・イー トランズアクシヨン エレクト
ロン デバイス(IEEE Trans.Electorn
Devices)、ED−27 1128(1980))。図において
5はベース領域、1はコレクタ、2はメタルベー
ス、3はエミツタ、6は裏面金属電極である。こ
の種のものは電子の走行距離が非常に短いために
高速化に有利な素子であるが、埋め込み金属2の
線幅のバラツキがトランジスタの動作電圧に大き
な影響を与えるため、いわゆる閾値制御がむずか
しいという欠点がある。そこでクレーマー
(Kroemer)によつて、この金属層を制御電極と
してではなく、バイポーラトランジスタのベース
層用埋め込み配線として利用することが、提案さ
れている。(エイチ クレーマー(H.
Kroemer);ジヤーナル オブ バキユウムサイ
エンス アンド テクノロジー(J.Vac.Sci.
Technol.)BI、126(1983))。バイポーラトラン
ジスタの場合にはp−n接合のビルトイン・ポテ
ンシヤルで閾値電圧は決るので、配線の線幅のバ
ラツキはほとんど影響を及ぼさない。金属膜の抵
抗は半導体に比して低いので、ベース幅を狭くし
てもベース抵抗を低く保てるため、高速化が可能
である。しかしながら、このような素子を実現す
る手段はGaAsを用いたパーミアブルベーストラ
ンジスタの例が知られている程度であり、クレー
マー(Kroemer)の提案を実現できる方法は開
発されていない。これを実現する方法として、シ
リコンとシリサイドの組合せが提案された。しか
し、この方法では半導体と金属とのヘテロエピタ
キシーを用いるために、作製条件の精密な制御が
必要である。この方法では温度等に制約があるた
め、作製を容易にするためには金属のかわりに伝
導度の高い半導体を使うことが望ましい。しかし
通常の半導体では所望の伝導度はえられない状況
にあつた。
As a new ultra-high-speed element, as shown in Figure 1,
A permable base transistor in which a comb-shaped metal layer is embedded in a semiconductor crystal has been proposed and prototyped (C.O. Bosler, G.D.
Arrays (COBozler and GDAlley); IEEE Trans.Electorn Devices
Devices), ED-27 1128 (1980)). In the figure, 5 is a base region, 1 is a collector, 2 is a metal base, 3 is an emitter, and 6 is a back metal electrode. This type of device is advantageous for increasing speed because the distance traveled by electrons is very short, but because variations in the line width of the embedded metal 2 have a large effect on the operating voltage of the transistor, so-called threshold control is difficult. There is a drawback. Therefore, Kroemer proposed that this metal layer be used not as a control electrode but as an embedded wiring for the base layer of a bipolar transistor. (H. Kramer (H.
Kroemer); Journal of Vaccination Science and Technology (J.Vac.Sci.
Technol.) BI, 126 (1983)). In the case of a bipolar transistor, the threshold voltage is determined by the built-in potential of the pn junction, so variations in the line width of the wiring have little effect. Since the resistance of a metal film is lower than that of a semiconductor, the base resistance can be kept low even if the base width is narrowed, making it possible to increase the speed. However, the only known means for realizing such a device is a permeable base transistor using GaAs, and no method has been developed that can realize Kroemer's proposal. A combination of silicon and silicide has been proposed as a way to achieve this. However, since this method uses heteroepitaxy between a semiconductor and a metal, precise control of manufacturing conditions is required. Since this method has restrictions on temperature, etc., it is desirable to use a highly conductive semiconductor instead of metal in order to facilitate manufacturing. However, the situation was such that the desired conductivity could not be obtained with ordinary semiconductors.
本発明は、不純物を超格子様にドープするいわ
ゆる不純物超格子のうち、n形ないしはp形層の
濃度が他方の濃度よりも1桁以上大きい場合には
バルク結晶よりも大きい伝導度を有することが判
明したのでこの不純物含有層の多層膜をベース電
極用材料とすることにより新規な超高速素子を実
現できる。 The present invention provides that in a so-called impurity superlattice in which impurities are doped in a superlattice-like manner, when the concentration of the n-type or p-type layer is one order of magnitude or more higher than the concentration of the other layer, the conductivity is higher than that of the bulk crystal. Since it has been found that a new ultrahigh-speed device can be realized by using this multilayer film of impurity-containing layers as a base electrode material.
本発明の目的は、ベース部に接して、所定の不
純物含有層を多層に有する半導体積層体を高伝導
度層として埋め込み型で形成し、ベース抵抗を大
幅に低減させ、もつて高速特性に優れたトランジ
スタを提供することにある。
An object of the present invention is to form a semiconductor stack having multiple predetermined impurity-containing layers in contact with a base part as a buried type as a high conductivity layer, thereby greatly reducing base resistance and having excellent high-speed characteristics. The object of the present invention is to provide a transistor with improved characteristics.
本発明の基本的発想は次の通りである。第2図
に示す如く高濃度のp型半導体層11と低濃度n
型半導体層12を交互に含むように作製した半導
体多層膜では、正孔が二次元ガス的に狭い層に閉
じ込められるために、高キヤリア濃度であるにも
かかわらず高い移動度を実現できることを見い出
した。従つてこの半導体多層膜の伝導度はバルク
よりも高くすることが可能である。特に、各層の
膜厚を10Å〜1000Å、より好ましくは50Å〜500
Åに設定すると最も伝導度を高くすることができ
る。高濃度と低濃度の不純物濃度の差は1桁以上
必要である。高濃度層は1017cm-3以上含有する層
のことを称することとする。その上限は特に制限
はないが、通常1019cm-3程度が限界であろう。こ
の多層膜は単一の半導体材料でも実現できるた
め、ヘテロ接合作製に伴う格子不整合や相互拡散
等による結晶成長の困難さを回避することができ
る特徴を有する。従つて、この半導体膜に加工を
施しても比較的容易にその上へさらにエピタキシ
ヤル成長を実施できるため、埋め込み構成が作成
可能である。本発明は、かかる特徴をバイポーラ
トランジスタに応用し、高速性能を向上させるも
のである。すなわち、通常の構成のnpnトランジ
スタにおいて、ベース領域であるp層の上に選択
的成長あるいは均一成長後の部分エツチングによ
り、櫛上あるいは格子上状に上述の半導体多層膜
を形成してベース抵抗を低減せしめることができ
るのである。
The basic idea of the present invention is as follows. As shown in FIG. 2, a high concentration p-type semiconductor layer 11 and a low concentration n
It was discovered that in a semiconductor multilayer film fabricated to contain alternating type semiconductor layers 12, holes can be confined in a narrow layer in a two-dimensional gas manner, so high mobility can be achieved despite a high carrier concentration. Ta. Therefore, the conductivity of this semiconductor multilayer film can be made higher than that of the bulk. In particular, the film thickness of each layer is 10 Å to 1000 Å, more preferably 50 Å to 500 Å.
When set to Å, the conductivity can be maximized. The difference in impurity concentration between high concentration and low concentration must be one order of magnitude or more. A high concentration layer refers to a layer containing 10 17 cm -3 or more. There is no particular upper limit, but the limit is usually about 10 19 cm -3 . Since this multilayer film can be realized using a single semiconductor material, it has the characteristic that it can avoid difficulties in crystal growth due to lattice mismatch, interdiffusion, etc. that accompany the fabrication of heterojunctions. Therefore, even if this semiconductor film is processed, further epitaxial growth can be performed thereon relatively easily, so that a buried structure can be created. The present invention applies these characteristics to bipolar transistors to improve high-speed performance. That is, in an npn transistor with a normal configuration, the base resistance is formed by forming the above-mentioned semiconductor multilayer film in a comb or lattice shape on the p-layer, which is the base region, by selective growth or partial etching after uniform growth. It can be reduced.
なお、第3図は前述の半導体多層積層体の積層
方向断面でのエネルギー・バンド構造を示してい
る。図で7は伝導帯の下端、8は価電子帯の上端
を示している。15は正孔を示している。 Note that FIG. 3 shows the energy band structure in a cross section in the stacking direction of the aforementioned semiconductor multilayer stack. In the figure, 7 indicates the lower end of the conduction band, and 8 indicates the upper end of the valence band. 15 indicates a hole.
以下、本発明の実施例を第4図を参酌して説明
する。
Hereinafter, embodiments of the present invention will be described with reference to FIG.
実施例 1
まず、化学洗浄を行つた、Si100基板21を分
子線エピタキシー装置へ導入し、超高真空下で、
熱処理により、Si清浄表面を作成する(第4図
a)なお、分子線エピタキシー装置とは、到達真
空度が10-9Torr以下であり、蒸発源としておの
おのの独立の複数個の分子線ないし原子線の発生
源を有する蒸着装置の一種である。本実施例で用
いた分子線エピタキシー装置は、到達真空度が、
5×10-11Torrで、蒸発源として、Si、Gaおよび
Sb用にそれぞれ別個の分子線源を有するもので
ある。Example 1 First, a chemically cleaned Si100 substrate 21 was introduced into a molecular beam epitaxy apparatus, and under ultra-high vacuum,
A clean Si surface is created by heat treatment (Figure 4a). A molecular beam epitaxy device is one in which the ultimate vacuum is 10 -9 Torr or less, and each uses multiple independent molecular beams or atoms as evaporation sources. It is a type of vapor deposition equipment that has a source of radiation. The molecular beam epitaxy apparatus used in this example has an ultimate vacuum degree of
5×10 -11 Torr, Si, Ga and
Each has a separate molecular beam source for Sb.
次に表面を清浄化したSi基板の温度を約700℃
に設定し、温度が一定になつた時点からSi層22
の成長を開始する。この際、導電型がn型になる
ように、Sbを同時に分子線源より供給するが、
これは、PやAsであつてもかまわない。あるい
はイオン化した不純物であつてもよい。このn型
の濃度は1018cm-3程度である。膜厚が1μmに達し
たところでSb分子線源の温度を低下し、濃度1016
cm-3、幅0.3μmのn型層を成長した後Sbのシヤツ
ターを閉じ、Ga分子線源のシヤツターを開き、
ベース領域となるp型層23を成長する。この
際、GaのかわりにB分子線あるいはイオン線を
用いてもよい。このp型層の濃度は1018cm-3程度
であり、0.2μmの厚成長させた後、Ga分子線源
のシヤツターを閉じる。 Next, the temperature of the surface-cleaned Si substrate was increased to approximately 700°C.
from the point when the temperature becomes constant, the Si layer 22
begins to grow. At this time, Sb is simultaneously supplied from a molecular beam source so that the conductivity type becomes n type.
This may be P or As. Alternatively, it may be an ionized impurity. The n-type concentration is about 10 18 cm -3 . When the film thickness reached 1 μm, the temperature of the Sb molecular beam source was lowered and the concentration was 10 16
After growing an n-type layer with a width of 0.3 μm and a width of 0.3 μm, the Sb shutter was closed, and the Ga molecular beam source shutter was opened.
A p-type layer 23 is grown to become a base region. At this time, a B molecular beam or an ion beam may be used instead of Ga. The concentration of this p-type layer is about 10 18 cm -3 , and after growing to a thickness of 0.2 μm, the shutter of the Ga molecular beam source is closed.
次に試料をMBE装置より取出した後、熱酸化
法にてSiO2膜24を約2300Å厚形成する(第4
図b)。このSiO2膜に通常のホトリソグラフイ法
にて櫛状に加工する。SiO2膜を除去する領域を
0.4μm以下にする場合には電子線描画法を用いる
(第4図c)。SiO2膜を櫛状に加工し、更に試料
を十分洗滌した後、再びせMBE装置内に導入し、
800℃に加熱清浄化した後、SiのMBE成長を開始
する。この際、基板温度を700℃でGaを1×1018
cm-3含むp型層を300Å成長させ、更にその上に
Sbを1×1016cm-3含むn型層を300Å成長させる。
この操作を5回繰返し半導体積層体を形成する
(第4図d)。こうして形成した半導体積層体の各
層は、分子線エピタキシヤル法に依つており、各
層不純物プロフアイルは成長温度で決まる熱拡散
程度以上の統計的分布は有さない。再び、こうし
て準備した基体をMBE装置からとり出し、SiO2
膜およびその上に堆積したポリシリコン層32と
エツチオフし、不純物多層膜を有するSiエピ層3
1を櫛状に残した構造にする(第4図e)。試料
を洗滌した後、再度基体をMBE装置内に導入し、
加熱清浄化した後、再び基板温度約650℃でp型
半導体層25を100Å程度成長させる。このp型
半導体層は必ずしも必要ではないが、この上に成
長させるn型半導体層26と多層半導体層31と
の間に十分障壁が形成できるようにするためのも
のである。 Next, after taking out the sample from the MBE apparatus, a SiO 2 film 24 with a thickness of about 2300 Å is formed by thermal oxidation method (fourth
Figure b). This SiO 2 film is processed into a comb shape using a normal photolithography method. Area to remove SiO2 film
If the thickness is 0.4 μm or less, electron beam lithography is used (Figure 4c). After processing the SiO 2 film into a comb shape and thoroughly washing the sample, it was introduced into the MBE apparatus again.
After heating and cleaning at 800°C, MBE growth of Si is started. At this time, the substrate temperature was 700℃ and Ga was 1×10 18
A p-type layer containing cm -3 is grown to a thickness of 300 Å, and then
An n-type layer containing 1×10 16 cm −3 of Sb is grown to a thickness of 300 Å.
This operation is repeated five times to form a semiconductor laminate (FIG. 4d). Each layer of the semiconductor laminate thus formed relies on the molecular beam epitaxial method, and the impurity profile of each layer does not have a statistical distribution beyond the degree of thermal diffusion determined by the growth temperature. Again, the substrate prepared in this way was taken out of the MBE equipment and exposed to SiO 2
The film and the polysilicon layer 32 deposited thereon are etched off to form a Si epitaxial layer 3 having an impurity multilayer film.
1 into a comb-like structure (Fig. 4e). After washing the sample, reintroduce the substrate into the MBE device,
After heating and cleaning, a p-type semiconductor layer 25 is grown to a thickness of about 100 Å at a substrate temperature of about 650° C. again. Although this p-type semiconductor layer is not necessarily necessary, it is provided so that a sufficient barrier can be formed between the n-type semiconductor layer 26 grown thereon and the multilayer semiconductor layer 31.
次にドーパントGaからSbに切りかえ、エミツ
タ層となるべきn型半導体層26を形成する(第
4図f)。この時の不純物濃度は5×1019cm-3、
膜厚は0.2μmである。こうして準備した半導体基
体を、MBE装置より取出した後、通常のバイポ
ーラトランジスタと同様のプロセスにより、素子
分離、電極形成を行い、素子作製が完了する。第
4図gはこれまでの第4図a〜fに示された断面
とは直角方向の断面を示している。30は絶縁
層、27はエミツタ、28はベース電極、29は
コレクタ電極を示している。この時ベース電極2
8は当該半導体積層体31に接して設けられる。 Next, the dopant Ga is changed to Sb, and an n-type semiconductor layer 26 to be an emitter layer is formed (FIG. 4f). The impurity concentration at this time is 5×10 19 cm -3 ,
The film thickness is 0.2 μm. After the semiconductor substrate prepared in this manner is taken out from the MBE apparatus, device isolation and electrode formation are performed using the same process as for a normal bipolar transistor, and device fabrication is completed. FIG. 4g shows a cross section perpendicular to the cross sections shown in FIGS. 4a to 4f. 30 is an insulating layer, 27 is an emitter, 28 is a base electrode, and 29 is a collector electrode. At this time, base electrode 2
8 is provided in contact with the semiconductor stack 31 .
このようにして作製されたバイポーラトランジ
スタは前述の不純物多層膜を除いて他はすべて同
じ構造を有する従来型のバイポーラトランジスタ
に較べて、ベース抵抗はほぼ1/3となり、しや断
周波数は1.5倍となり高速性能の向上がみられた。 The bipolar transistor fabricated in this way has a base resistance approximately 1/3 and a cut-off frequency 1.5 times that of a conventional bipolar transistor, which has the same structure except for the impurity multilayer film mentioned above. As a result, an improvement in high-speed performance was observed.
なお、電極の形状は櫛形であることは本質では
なく、開口部を有すればどのような形状でもよ
く、種々変形が可能である。 Note that the shape of the electrode does not necessarily have to be comb-shaped; it may have any shape as long as it has an opening, and various modifications are possible.
本発明により、シリコンバイポーラトランジス
タにおいて、ベース層厚を薄くした場合に生ずる
ベース抵抗の増大を防げ、その結果、トランジス
タ特性の特に高速性に2倍以上の改善がみられ
る。
According to the present invention, in a silicon bipolar transistor, an increase in base resistance that occurs when the base layer thickness is made thinner can be prevented, and as a result, transistor characteristics, particularly high speed performance, are improved by more than twice.
第1図はパーミアブルベーストランジスタの断
面図、第2図は不純物多層膜の構造を示す断面
図、第3図はそのバンド構造を示す図、第4図は
本発明の半導体装置の作製工程と完成後の装置を
示す断面図である。
1:コレクタ領域、2:メタルグリツド電極、
3:エミツタ電極、11:p形層、12:n形
層、15:正孔、21:シリコン基板、22:コ
レクタ領域(n形層)、23:ベース層(p形)、
24:SiO2膜、25:p形層、26:エミツタ
領域(n形層)、27:エミツタ電極、28:ベ
ース電極、29:コレクタ電極、31:不純物多
層膜、32:ポリシリコン不純物多層膜。
Figure 1 is a cross-sectional view of a permable base transistor, Figure 2 is a cross-sectional view showing the structure of an impurity multilayer film, Figure 3 is a diagram showing its band structure, and Figure 4 is a diagram showing the manufacturing process of the semiconductor device of the present invention. FIG. 3 is a cross-sectional view showing the device after completion. 1: Collector area, 2: Metal grid electrode,
3: emitter electrode, 11: p-type layer, 12: n-type layer, 15: hole, 21: silicon substrate, 22: collector region (n-type layer), 23: base layer (p-type),
24: SiO 2 film, 25: P-type layer, 26: Emitter region (n-type layer), 27: Emitter electrode, 28: Base electrode, 29: Collector electrode, 31: Impurity multilayer film, 32: Polysilicon impurity multilayer film .
Claims (1)
域が順次積層して設けられ、該ベース領域に接し
て互いに反対導電型を有する半導体薄膜を積層し
た半導体多層膜を配し、該半導体多層膜に接して
ベース電極を形成した半導体装置であつて、且前
記反対導電型を有する両半導体薄膜の不純物濃度
は1桁以上の濃度差を有し、当該半導体薄膜の膜
厚は10Å〜1000Åなることを特徴とする半導体装
置。 2 前記互いに反対導電型を有する半導体薄膜に
おける高濃度に不純物を含有する薄膜がn導電型
なることを特徴とする特許請求の範囲第1項記載
の半導体装置。 3 前記互いに反対導電型を有する半導体薄膜に
おける高濃度に不純物を含有する薄膜がp導電型
なることを特徴とする特許請求の範囲第1項記載
の半導体装置。 4 前記半導体多層膜は櫛状ないしは格子状に加
工され前記ベース領域に接して設けられているこ
とを特徴とする特許請求の範囲第1項〜第3項の
いずれかに記載の半導体装置。[Scope of Claims] 1. An emitter region, a base region, and a collector region are sequentially stacked, and a semiconductor multilayer film in which semiconductor thin films having mutually opposite conductivity types are stacked in contact with the base region is disposed, and the semiconductor multilayer A semiconductor device in which a base electrode is formed in contact with a film, and the impurity concentrations of the two semiconductor thin films having opposite conductivity types have a concentration difference of one digit or more, and the thickness of the semiconductor thin film is 10 Å to 1000 Å. A semiconductor device characterized by: 2. The semiconductor device according to claim 1, wherein the thin film containing impurities at a high concentration in the semiconductor thin films having conductivity types opposite to each other is of n-conductivity type. 3. The semiconductor device according to claim 1, wherein the thin film containing impurities at a high concentration in the semiconductor thin films having conductivity types opposite to each other is of p conductivity type. 4. The semiconductor device according to claim 1, wherein the semiconductor multilayer film is processed into a comb shape or a lattice shape and is provided in contact with the base region.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6343185A JPS61224365A (en) | 1985-03-29 | 1985-03-29 | Manufacture of thin film transistor and manufacturing equipment |
US06/839,349 US4785340A (en) | 1985-03-29 | 1986-03-13 | Semiconductor device having doping multilayer structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6343185A JPS61224365A (en) | 1985-03-29 | 1985-03-29 | Manufacture of thin film transistor and manufacturing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61224365A JPS61224365A (en) | 1986-10-06 |
JPH0325029B2 true JPH0325029B2 (en) | 1991-04-04 |
Family
ID=13229077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6343185A Granted JPS61224365A (en) | 1985-03-29 | 1985-03-29 | Manufacture of thin film transistor and manufacturing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61224365A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0611056B2 (en) * | 1985-12-03 | 1994-02-09 | 富士通株式会社 | High-speed semiconductor device |
-
1985
- 1985-03-29 JP JP6343185A patent/JPS61224365A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61224365A (en) | 1986-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5001534A (en) | Heterojunction bipolar transistor | |
JP2679639B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH06507274A (en) | Metastable oxides and nitrides of group 15 alloys, nitrides of group 15 elements, and semiconductor devices formed from them | |
JPH0766366A (en) | Semiconductor multilayered structure and semiconductor device using same | |
JPH03225870A (en) | Manufacture of heterojunction bipolar transistor | |
US5106766A (en) | Method of making a semiconductor device that comprises p-type III-V semiconductor material | |
US4785340A (en) | Semiconductor device having doping multilayer structure | |
JP2576828B2 (en) | High gain MIS transistor | |
JPH05259077A (en) | Semiconductor device and manufacture thereof | |
JP3368449B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS6152990B2 (en) | ||
JPH0325029B2 (en) | ||
JP3062065B2 (en) | Method for manufacturing semiconductor device | |
JP2576574B2 (en) | Bipolar transistor | |
JPH0422329B2 (en) | ||
JPH0529328A (en) | Semiconductor device and manufacture thereof | |
JP3183468B2 (en) | Heterojunction bipolar transistor and method of manufacturing the same | |
KR0144831B1 (en) | Method of manufacturing dipole transistor using selective crystal growth method | |
JPH02260430A (en) | Horizontal-type bipolar transistor | |
JP2576770B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH0573353B2 (en) | ||
KR930001558B1 (en) | Manufacturing method of bipolar transistor | |
JP2770586B2 (en) | Method for manufacturing heterojunction bipolar transistor | |
JP3206514B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH02161729A (en) | Manufacture of bipolar semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |