JPH0529328A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH0529328A
JPH0529328A JP18458291A JP18458291A JPH0529328A JP H0529328 A JPH0529328 A JP H0529328A JP 18458291 A JP18458291 A JP 18458291A JP 18458291 A JP18458291 A JP 18458291A JP H0529328 A JPH0529328 A JP H0529328A
Authority
JP
Japan
Prior art keywords
layer
base
semiconductor layer
type
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18458291A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Ikeda
龍彦 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18458291A priority Critical patent/JPH0529328A/en
Publication of JPH0529328A publication Critical patent/JPH0529328A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To eliminate a need for the patterning process, of a semiconductor layer for emitter use, which has been required in conventional cases, to reduce the uneven part of a device and to flatten the device. CONSTITUTION:Carbon and As are ion-implanted into a p-type Si layer 25 for base use on an n-type Si substrate 21; an n-type SiC layer 29 for emitter use is formed in the Si layer 25. Consequently, it is not required to pattern the SiC layer 29, unlike conventional cases, and a process can be simplified. The surface of the SiC layer 29 does not protrude from the Si layer 25, the uneven part of a device can be reduced as compared with conventional cases and the device can be flattened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は半導体装置、特にバイ
ポーラトランジスタ及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a bipolar transistor and its manufacturing method.

【0002】[0002]

【従来の技術】図6は従来の半導体装置であるバイポー
ラトランジスタの断面図であり、IEDM89,P65
9〜662に記載されたものである。
2. Description of the Related Art FIG. 6 is a sectional view of a bipolar transistor which is a conventional semiconductor device.
9 to 662.

【0003】図6に示すように、コレクタとなるn+
のSi基板1上にn型Si層2がエピタキシャル成長さ
れ、その表面に絶縁膜3,4が積層形成され、両絶縁膜
3,4のベース形成領域が選択的にエッチングされて開
口5が形成され、この開口5にn型Si層2が露出され
たのち、光CVD法等の低温エピタキシャル成長によ
り、開口5に露出したn型Si層2上及び絶縁膜4上に
ベース用のp型Si層6が堆積形成される。
As shown in FIG. 6, an n-type Si layer 2 is epitaxially grown on an n + -type Si substrate 1 serving as a collector, and insulating films 3 and 4 are laminated and formed on the surface thereof. Of the base forming region is selectively etched to form the opening 5, the n-type Si layer 2 is exposed in the opening 5, and then the n-type Si layer exposed in the opening 5 is formed by low temperature epitaxial growth such as photo-CVD. A base p-type Si layer 6 is deposited and formed on the insulating film 4 and the insulating film 4.

【0004】このとき、開口5に露出したn型Si層2
上に形成されたp型Si層6は下地のSi層2の結晶性
を反映して単結晶となるが、絶縁膜4上に形成されたp
型Si層6は多結晶となり、このp型Si層6の多結晶
部分はベースの引き出し電極として利用することができ
る。
At this time, the n-type Si layer 2 exposed in the opening 5
The p-type Si layer 6 formed on top of the p-type Si layer 6 becomes a single crystal reflecting the crystallinity of the underlying Si layer 2, but the p-type Si layer 6 formed on the insulating film 4 is formed.
The type Si layer 6 becomes polycrystalline, and the polycrystalline portion of the p-type Si layer 6 can be used as a lead-out electrode of the base.

【0005】さらに、p型Si層6がパターニングされ
た後、このp型Si層6上に絶縁膜7が堆積され、開口
5部分における単結晶のSi層6上の絶縁膜7に開口8
が形成されて下層のp型Si層6が露出され、開口8に
露出したp型Si層6上及び絶縁膜7上にエミッタ用の
n型多結晶SiC層9が堆積形成され、更にこの多結晶
SiC層9上に、このSiC層9とエミッタ電極とのオ
ーミックコンタクトをとるためにn型多結晶Si層10
が積層形成されたのち、これら多結晶SiC層9及び多
結晶Si層10が開口5の上側部分にのみ残るようにパ
ターニングされる。
Further, after the p-type Si layer 6 is patterned, an insulating film 7 is deposited on the p-type Si layer 6, and the opening 8 is formed in the insulating film 7 on the single crystal Si layer 6 in the opening 5 portion.
Is formed to expose the lower p-type Si layer 6, and an n-type polycrystalline SiC layer 9 for emitter is deposited and formed on the p-type Si layer 6 and the insulating film 7 exposed in the opening 8. An n-type polycrystalline Si layer 10 is provided on the crystalline SiC layer 9 for ohmic contact between the SiC layer 9 and the emitter electrode.
After being laminated, the polycrystalline SiC layer 9 and the polycrystalline Si layer 10 are patterned so as to remain only in the upper portion of the opening 5.

【0006】その後、絶縁膜4上の多結晶のSi層6上
の絶縁膜7に開口11が形成された下層のp型Si層6
が露出され、多結晶Si層10上にアルミニウム等から
成るエミッタ電極12が形成されると共に、開口11に
露出したp型Si層6上にアルミニウム等からなるベー
ス電極13が形成される。
After that, the lower p-type Si layer 6 in which the opening 11 is formed in the insulating film 7 on the polycrystalline Si layer 6 on the insulating film 4 is formed.
Are exposed and an emitter electrode 12 made of aluminum or the like is formed on the polycrystalline Si layer 10, and a base electrode 13 made of aluminum or the like is formed on the p-type Si layer 6 exposed in the opening 11.

【0007】ところで、上記のような構成の場合、ベー
ス用のp型Si層6を低温エピタキシャル成長法より堆
積形成するため、p型Si層6を極めて薄く形成でき、
またエミッタ用にn型多結晶SiC層9を用いているた
め、エミッタ用のSiC層9のバンドギャップはベース
用のSi層6よりも広く、エミッタ・ベースの接合はヘ
テロ接合になっており、その結果高速化を図るためにベ
ースの不純物濃度を増加してベースを低抵抗化しても、
エミッタへのホールの逆注入を抑制することが可能にな
り、所望の増幅率を得ることができ、高速動作が可能に
なるという利点がある。
By the way, in the case of the above structure, since the p-type Si layer 6 for the base is deposited by the low temperature epitaxial growth method, the p-type Si layer 6 can be formed extremely thin,
Further, since the n-type polycrystalline SiC layer 9 is used for the emitter, the band gap of the SiC layer 9 for the emitter is wider than that of the Si layer 6 for the base, and the junction between the emitter and the base is a heterojunction. As a result, even if the impurity concentration of the base is increased to reduce the resistance of the base in order to increase the speed,
There is an advantage that it is possible to suppress the reverse injection of holes into the emitter, obtain a desired amplification factor, and enable high speed operation.

【0008】[0008]

【発明が解決しようとする課題】従来の場合、エミッタ
用の多結晶SiC層9を堆積形成したのちパターニング
しなければならず、パターニングの工程が必要となり、
工程が複雑化するという問題点があった。
In the conventional case, the polycrystalline SiC layer 9 for the emitter has to be deposited and formed and then patterned, which requires a patterning step.
There is a problem that the process becomes complicated.

【0009】また、多結晶SiC層9を堆積することに
より、SiC層9の膜厚分がデバイス全体の厚みとして
加わるため、デバイスの凹凸が大きくなるという問題点
もあった。
Further, since the polycrystalline SiC layer 9 is deposited, the thickness of the SiC layer 9 is added as the thickness of the entire device, so that the unevenness of the device becomes large.

【0010】この発明は、上記のような問題点を解消す
るためになされたもので、従来のようなエミッタ用半導
体層のパターニングの工程を不要にし、しかもデバイス
の凹凸を低減して平坦化を図れるようにすることを目的
とする。
The present invention has been made to solve the above-mentioned problems, and eliminates the conventional patterning step of the semiconductor layer for the emitter, and further reduces the unevenness of the device for planarization. The purpose is to be able to achieve.

【0011】[0011]

【課題を解決するための手段】この発明に係る半導体装
置は、コレクタとなる第1導電型の半導体基板と、前記
半導体基板上に堆積形成された第2導電型のベース用半
導体層と、前記ベース用半導体層中に炭素及び第1導電
型の不純物の導入により形成された前記ベース用半導体
層よりもバンドギャップの広いエミッタ用半導体層とを
備えたことを特徴としている。
According to another aspect of the present invention, there is provided a semiconductor device having a first conductivity type semiconductor substrate which serves as a collector, a second conductivity type base semiconductor layer deposited and formed on the semiconductor substrate, It is characterized in that the semiconductor layer for base is provided with an emitter semiconductor layer having a wider bandgap than the semiconductor layer for base formed by introducing carbon and impurities of the first conductivity type.

【0012】また、その製造方法とて、コレクタとなる
第1導電型の半導体基板上に第1の絶縁膜を形成する工
程と、前記第1の絶縁膜に開口を形成して前記半導体基
板を露出する工程と、露出した前記半導体基板上及び前
記第1の絶縁膜上に第2導電型のベース用半導体層を堆
積形成する工程と、前記ベース用半導体層上に第2の絶
縁膜を形成する工程と、前記第2の絶縁膜に開口を形成
して前記ベース用半導体層を露出する工程と、露出した
前記ベース用半導体層中に炭素及び第1導電型の不純物
の導入により前記ベース用半導体層よりもバンドギャッ
プの広いエミッタ用半導体層を形成する工程と、前記エ
ミッタ用半導体層上及び前記第2の絶縁膜上に第1導電
型の半導体層を形成する工程とを含むことが効果的であ
る。
In addition, the manufacturing method includes a step of forming a first insulating film on a semiconductor substrate of the first conductivity type serving as a collector, and an opening is formed in the first insulating film to form the semiconductor substrate. Exposing step, depositing and forming a second conductive type base semiconductor layer on the exposed semiconductor substrate and the first insulating film, and forming a second insulating film on the base semiconductor layer And exposing the base semiconductor layer by forming an opening in the second insulating film, and introducing carbon and a first conductivity type impurity into the exposed base semiconductor layer to form the base semiconductor layer. It is advantageous to include the step of forming an emitter semiconductor layer having a wider band gap than the semiconductor layer, and the step of forming a first conductivity type semiconductor layer on the emitter semiconductor layer and the second insulating film. Target.

【0013】[0013]

【作用】この発明の半導体装置においては、半導体基板
上のベース用半導体層中にこのベース用半導体層よりも
バンドギャップの広いエミッタ用半導体層を形成したた
め、従来のようにエミッタ用半導体層をパターニングす
る必要がなく、しかもエミッタ用半導体層の表面がベー
ス用半導体層よりも突出せず、従来よりもデバイスの凹
凸が低減された平坦化が図れる。
In the semiconductor device of the present invention, since the emitter semiconductor layer having a wider bandgap than the base semiconductor layer is formed in the base semiconductor layer on the semiconductor substrate, the emitter semiconductor layer is patterned as in the conventional case. In addition, the surface of the semiconductor layer for the emitter does not protrude beyond the semiconductor layer for the base, and planarization can be achieved with less unevenness of the device than before.

【0014】また、第2の絶縁膜の開口に露出したベー
ス用半導体層に炭素及び第1導電型の不純物を導入して
ベース用半導体層よりバンドギャップの広いエミッタ用
半導体層を形成することにより、ベース用半導体層中に
エミッタ用半導体層が形成される。
Further, carbon and impurities of the first conductivity type are introduced into the base semiconductor layer exposed in the opening of the second insulating film to form an emitter semiconductor layer having a wider band gap than the base semiconductor layer. An emitter semiconductor layer is formed in the base semiconductor layer.

【0015】[0015]

【実施例】図1ないし図5はこの発明の半導体装置及び
その製造方法の一実施例の断面図を示し、以下にその製
造工程について説明する。
1 to 5 are sectional views showing an embodiment of a semiconductor device and a method of manufacturing the same according to the present invention, and the manufacturing process thereof will be described below.

【0016】まず、図1に示すように、コレクタとなる
n型の半導体基板であるSi基板21の表面に第1の絶
縁膜として2層の絶縁膜22,23が積層形成され、両
絶縁膜22,23のベース形成領域が選択的にエッチン
グされて開口24が形成され、この開口24にn型Si
基板21の表面の一部が露出されたのち、図2に示すよ
うに、エピタキシャル成長法により、開口24に露出し
たn型Si基板21上及び絶縁膜23上にベース用半導
体層としてのp型Si層25が積層形成され、このp型
Si層25上に第2の絶縁膜26が形成される。
First, as shown in FIG. 1, two layers of insulating films 22 and 23 are laminated as a first insulating film on the surface of a Si substrate 21 which is an n-type semiconductor substrate serving as a collector. The base forming regions of 22 and 23 are selectively etched to form an opening 24, and an n-type Si is formed in the opening 24.
After a part of the surface of the substrate 21 is exposed, as shown in FIG. 2, p-type Si as a base semiconductor layer is formed on the n-type Si substrate 21 and the insulating film 23 exposed in the opening 24 by an epitaxial growth method. The layer 25 is formed by stacking, and the second insulating film 26 is formed on the p-type Si layer 25.

【0017】このとき、従来と同様開口24に露出した
n型Si基板21上に形成されたp型Si層25は下地
のSi基板21の結晶性を反映して単結晶となるが、絶
縁膜23上に形成されたp型Si層25は多結晶とな
り、このp型Si層25の多結晶部分はベースの引出し
電極として利用することができ、p型Si層25の多結
晶部分をベースの引出し電極として利用するためにSi
層25がパターニングされたのち、Si層25上に第2
の絶縁膜26が形成される。
At this time, the p-type Si layer 25 formed on the n-type Si substrate 21 exposed in the opening 24 becomes a single crystal reflecting the crystallinity of the underlying Si substrate 21, as in the conventional case. The p-type Si layer 25 formed on 23 becomes polycrystalline, and the polycrystalline portion of the p-type Si layer 25 can be used as a lead-out electrode of the base. Si for use as an extraction electrode
After the layer 25 is patterned, a second layer is formed on the Si layer 25.
The insulating film 26 is formed.

【0018】さらに、図3に示すように、第2の絶縁膜
26上にフォトレジスト27が塗布形成され、開口24
部分の単結晶のSi層25上のフォトレジスト27及び
第2の絶縁膜26に開口28が形成され、開口28にp
型Si層25が露出され、開口28に露出したp型Si
層25に、イオン注入により、ドーズ量1018cm-2の炭
素イオン及び1014〜1016 cm -2のヒ素(As)イオ
ン等のn型不純物が導入される。
Further, as shown in FIG. 3, a photoresist 27 is applied and formed on the second insulating film 26, and an opening 24 is formed.
An opening 28 is formed in the photoresist 27 and the second insulating film 26 on the portion of the single crystal Si layer 25, and p is formed in the opening 28.
-Type Si layer 25 is exposed, and p-type Si exposed in opening 28
Ion implantation introduces into the layer 25 n-type impurities such as carbon ions with a dose of 10 18 cm -2 and arsenic (As) ions with a dose of 10 14 to 10 16 cm -2 .

【0019】その後フォトレジスト27が除去され、熱
処理が施され、図4に示すように、ベース用のp型Si
層25中にSiよりもバンドギャップの広いn型のエミ
ッタ用SiC層29が形成され、このSiC層29上及
び第2の絶縁膜26上に、SiC層29と後述するエミ
ッタ電極とのオーミックコンタクトをとるためにn型S
i層30が形成されたのち、この多結晶Si層30が開
口24の上側部分にのみ残るようにパターニングされ
る。
After that, the photoresist 27 is removed, and a heat treatment is performed. As shown in FIG. 4, p-type Si for the base is used.
An n-type emitter SiC layer 29 having a wider band gap than Si is formed in the layer 25, and ohmic contact between the SiC layer 29 and an emitter electrode described later is formed on the SiC layer 29 and the second insulating film 26. N-type S to obtain
After the i layer 30 is formed, this polycrystalline Si layer 30 is patterned so as to remain only in the upper portion of the opening 24.

【0020】そして、図5に示すように、絶縁膜23上
の多結晶のSi層25上の第2の絶縁膜26に開口31
が形成されて下層のp型Si層25が露出され、多結晶
Si層30上にアルミニウム等からなるエミッタ電極3
2が形成されると共に、開口11に露出したp型Si層
25上にアルミニウム等からなるベース電極33が形成
され、半導体装置であるバイポーラトランジスタが完成
する。
Then, as shown in FIG. 5, an opening 31 is formed in the second insulating film 26 on the polycrystalline Si layer 25 on the insulating film 23.
Is formed to expose the lower p-type Si layer 25, and the emitter electrode 3 made of aluminum or the like is formed on the polycrystalline Si layer 30.
2 is formed, and the base electrode 33 made of aluminum or the like is formed on the p-type Si layer 25 exposed in the opening 11 to complete a bipolar transistor which is a semiconductor device.

【0021】従って、Si基板21上のベース用のSi
層25中にエミッタ用のSiC層29を形成したため、
従来のようなSiC層29のパターニングが不要とな
り、従来より簡単な工程でヘテロ接合のエミッタ・ベー
ス接合を形成でき、所望の高速動作が可能なバイポーラ
トランジスタを得ることができる。
Therefore, the Si for the base on the Si substrate 21
Since the SiC layer 29 for the emitter is formed in the layer 25,
Since the conventional patterning of the SiC layer 29 is not necessary, a heterojunction emitter / base junction can be formed by a simpler process than the conventional one, and a desired bipolar transistor capable of high-speed operation can be obtained.

【0022】また、ベース用Si層25中にエミッタ用
のSiC層29を形成することにより、SiC層29の
表面がSi層25より突出せず、従来よりもデバイスの
凹凸を低減することができ、平坦化を図ることが可能に
なる。
Further, by forming the SiC layer 29 for the emitter in the Si layer 25 for the base, the surface of the SiC layer 29 does not protrude from the Si layer 25, and the unevenness of the device can be reduced as compared with the conventional case. Therefore, it becomes possible to achieve flattening.

【0023】さらに、第2の絶縁膜26に露出したベー
ス用Si層25に炭素及びAs等のn型不純物をイオン
注入することにより、Si層25中にエミッタ用のSi
C層29を形成してヘテロ接合のエミッタ・ベース接合
を得ることができる。
Further, by ion-implanting n-type impurities such as carbon and As into the Si layer 25 for base exposed in the second insulating film 26, Si for emitter is formed in the Si layer 25.
The C layer 29 can be formed to obtain a heterojunction emitter-base junction.

【0024】なお、ベース用Si層25中に形成するエ
ミッタ用のSiC層29は従来と同様多結晶であっても
よいのは勿論である。
Of course, the emitter SiC layer 29 formed in the base Si layer 25 may be polycrystalline as in the conventional case.

【0025】[0025]

【発明の効果】以上のように、この発明によれば、半導
体基板上のベース用半導体層中にこのベース用半導体層
よりもバンドギャップの広いエミッタ用半導体層を形成
したため、従来のようなエミッタ用半導体層のパターニ
ングが不要となり、従来に比べ工程を簡略化でき、しか
もエミッタ用半導体層の表面がベース用半導体層よりも
突出せず、従来よりもデバイスの凹凸を低減して平坦化
を図ることが可能となり、高速動作が可能なバイポーラ
トランジスタ等として好適である。
As described above, according to the present invention, the emitter semiconductor layer having a wider bandgap than the base semiconductor layer is formed in the base semiconductor layer on the semiconductor substrate. Since the patterning of the semiconductor layer for use is unnecessary, the process can be simplified compared to the conventional method, and the surface of the semiconductor layer for the emitter does not protrude more than the semiconductor layer for the base. Therefore, it is suitable as a bipolar transistor or the like that can operate at high speed.

【0026】また、第2の絶縁膜の開口に露出したベー
ス用半導体層に炭素及び第1導電型の不純物を導入して
ベース用半導体層よりバンドギャップの広いエミッタ用
半導体層を形成することにより、ベース用半導体層中に
エミッタ用半導体層を形成できる。
Further, by introducing carbon and impurities of the first conductivity type into the base semiconductor layer exposed in the opening of the second insulating film, an emitter semiconductor layer having a wider bandgap than the base semiconductor layer is formed. The semiconductor layer for emitter can be formed in the semiconductor layer for base.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の半導体装置及びその製造方法の一実
施例の製造工程を示す断面図である。
FIG. 1 is a sectional view showing a manufacturing process of an embodiment of a semiconductor device and a manufacturing method thereof according to the present invention.

【図2】この発明の一実施例の製造工程を示す断面図で
ある。
FIG. 2 is a cross-sectional view showing a manufacturing process of an embodiment of the present invention.

【図3】この発明の一実施例の製造工程を示す断面図で
ある。
FIG. 3 is a cross-sectional view showing a manufacturing process of an embodiment of the present invention.

【図4】この発明の一実施例の製造工程を示す断面図で
ある。
FIG. 4 is a cross-sectional view showing a manufacturing process of an embodiment of the present invention.

【図5】この発明の一実施例の製造工程を示す断面図で
ある。
FIG. 5 is a cross-sectional view showing the manufacturing process of the embodiment of the present invention.

【図6】従来の半導体装置の断面図である。FIG. 6 is a cross-sectional view of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

21 Si基板 22,23 第1の絶縁膜 24 開口 25 ベース用Si層 26 第2の絶縁膜 29 エミッタ用SiC層 30 多結晶Si層 21 Si substrate 22, 23 First insulating film 24 openings 25 Si layer for base 26 Second insulating film 29 SiC layer for emitter 30 Polycrystalline Si layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コレクタとなる第1導電型の半導体基板
と、前記半導体基板上に堆積形成された第2導電型のベ
ース用半導体層と、前記ベース用半導体層中に炭素及び
第1導電型の不純物の導入により形成された前記ベース
用半導体層よりもバンドギャップの広いエミッタ用半導
体層とを備えたことを特徴とする半導体装置。
1. A first-conductivity-type semiconductor substrate serving as a collector, a second-conductivity-type semiconductor layer deposited on and formed on the semiconductor substrate, carbon in the base-semiconductor layer, and a first-conductivity type A semiconductor device for an emitter having a wider bandgap than the semiconductor layer for a base, which is formed by introducing the impurity of 1.
【請求項2】 コレクタとなる第1導電型の半導体基板
上に第1の絶縁膜を形成する工程と、前記第1の絶縁膜
に開口を形成して前記半導体基板を露出する工程と、露
出した前記半導体基板上及び前記第1の絶縁膜上に第2
導電型のベース用半導体層を堆積形成する工程と、前記
ベース用半導体層上に第2の絶縁膜を形成する工程と、
前記第2の絶縁膜に開口を形成して前記ベース用半導体
層を露出する工程と、露出した前記ベース用半導体層中
に炭素及び第1導電型の不純物の導入により前記ベース
用半導体層よりもバンドギャップの広いエミッタ用半導
体層を形成する工程と、前記エミッタ用半導体層上及び
前記第2の絶縁膜上に第1導電型の半導体層を形成する
工程とを含むことを特徴とする半導体装置の製造方法。
2. A step of forming a first insulating film on a semiconductor substrate of the first conductivity type which serves as a collector, a step of forming an opening in the first insulating film to expose the semiconductor substrate, and an exposing step. A second layer on the semiconductor substrate and on the first insulating film
Depositing and forming a conductive type semiconductor layer for base; forming a second insulating film on the semiconductor layer for base;
A step of forming an opening in the second insulating film to expose the base semiconductor layer; and introducing carbon and a first conductivity type impurity into the exposed base semiconductor layer so that the base semiconductor layer is more exposed than the base semiconductor layer. A semiconductor device comprising: a step of forming an emitter semiconductor layer having a wide bandgap; and a step of forming a first conductivity type semiconductor layer on the emitter semiconductor layer and the second insulating film. Manufacturing method.
JP18458291A 1991-07-24 1991-07-24 Semiconductor device and manufacture thereof Pending JPH0529328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18458291A JPH0529328A (en) 1991-07-24 1991-07-24 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18458291A JPH0529328A (en) 1991-07-24 1991-07-24 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0529328A true JPH0529328A (en) 1993-02-05

Family

ID=16155735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18458291A Pending JPH0529328A (en) 1991-07-24 1991-07-24 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0529328A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064105A (en) * 2000-08-16 2002-02-28 Fujitsu Ltd HETERO BIPOLAR TRANSISTOR AND METHOD OF FORMING SiGeC MIXED-CRYSTAL FILM
JP2007148818A (en) * 2005-11-28 2007-06-14 Ntt Docomo Inc Software operation modeling device, software operation monitor, software operation modeling method and software operation monitoring method
JP2007148962A (en) * 2005-11-30 2007-06-14 Fuji Xerox Co Ltd Subprogram, information processor for executing subprogram, and program control method in information processor for executing subprogram

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064105A (en) * 2000-08-16 2002-02-28 Fujitsu Ltd HETERO BIPOLAR TRANSISTOR AND METHOD OF FORMING SiGeC MIXED-CRYSTAL FILM
JP2007148818A (en) * 2005-11-28 2007-06-14 Ntt Docomo Inc Software operation modeling device, software operation monitor, software operation modeling method and software operation monitoring method
JP4732874B2 (en) * 2005-11-28 2011-07-27 株式会社エヌ・ティ・ティ・ドコモ Software behavior modeling device, software behavior monitoring device, software behavior modeling method, and software behavior monitoring method
JP2007148962A (en) * 2005-11-30 2007-06-14 Fuji Xerox Co Ltd Subprogram, information processor for executing subprogram, and program control method in information processor for executing subprogram

Similar Documents

Publication Publication Date Title
US4896203A (en) Heterojunction bipolar transistor
US5962879A (en) Super self-aligned bipolar transistor
JPS6252963A (en) Manufacture of bipolar transistor
JPH08228001A (en) Semiconductor device and manufacture thereof
JPH08274108A (en) Semiconductor device and its manufacture
JP3634627B2 (en) Insulated gate bipolar transistor and manufacturing method thereof
JPH0529328A (en) Semiconductor device and manufacture thereof
KR940007658B1 (en) Manufacturing method of self-aligned homo, hetero-junction bipplar transistor using thin film crystal growth method
JPS63248168A (en) Hetero-junction bipolar transistor and manufacture thereof
JP2576574B2 (en) Bipolar transistor
JPH05211158A (en) Semiconductor device and manufacture thereof
JPH04312926A (en) Semiconductor device and its manufacture
JPH04322432A (en) Semiconductor device and manufacture thereof
JPH03131037A (en) Manufacture of semiconductor device
JPH05308077A (en) Bipolar semiconductor device and manufacture thereof
JPH08115921A (en) Heterojunction bipolar transistor, and its manufacture
JPH02192731A (en) Bipolar transistor and its manufacture
JPS61224365A (en) Manufacture of thin film transistor and manufacturing equipment
JPH06168951A (en) Manufacture of semiconductor device
JPH04271126A (en) Semiconductor device and its manufacture
JPH04348037A (en) Semiconductor device and its manufacture
JPH05175209A (en) Semiconductor device and its manufacture
JPH021933A (en) Manufacture of semiconductor device
JPS63155664A (en) Semiconductor device and its manufacture
JP2000208531A (en) Hetero-junction bipolar transistor