JPH03249101A - Iron series powdery raw material for sintering - Google Patents

Iron series powdery raw material for sintering

Info

Publication number
JPH03249101A
JPH03249101A JP4900790A JP4900790A JPH03249101A JP H03249101 A JPH03249101 A JP H03249101A JP 4900790 A JP4900790 A JP 4900790A JP 4900790 A JP4900790 A JP 4900790A JP H03249101 A JPH03249101 A JP H03249101A
Authority
JP
Japan
Prior art keywords
sintering
iron
dewaxing
boric acid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4900790A
Other languages
Japanese (ja)
Inventor
Jinsuke Takada
高田 仁輔
Hiroshi Takigawa
滝川 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4900790A priority Critical patent/JPH03249101A/en
Priority to DE19914106219 priority patent/DE4106219C2/en
Publication of JPH03249101A publication Critical patent/JPH03249101A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/05Controlling thermal expansion

Abstract

PURPOSE:To prevent excess carburization and to improve dimensional accuracy and mechanical characteristic by blending a material, which generates water with heat decomposition at the temp. of A1 transition point or lower, into iron series powder at the prescribed ratio. CONSTITUTION:The material (e.g. boric acid, etc.) which generates the water with the heat decomposition at the A1 transformation point or lower as the water generating material, is prepared. By blending <=1wt.% of this water generating material into the iron series powder, the iron series powdery raw material for sintering is formed. The above-mentioned powdery material is not affected to the dew point of atmosphere gas and temp. Condition, etc., at the time of sintering and the excess carburization is prevented and abnormal expansion at the time of dewaxing is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は焼結用の鉄系粉末原料に関し、殊に寸法精度お
よび機械的特性の優れた焼結体を与える焼結用鉄系粉末
原料に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an iron-based powder raw material for sintering, and in particular to an iron-based powder raw material for sintering that provides a sintered body with excellent dimensional accuracy and mechanical properties. It is related to.

[従来の技術] 還元法やアトマイズ法等により製造した鉄系粉末を圧縮
成形し更に焼結して成形体を得る鉄系粉末冶金法は、任
意の形状のものを簡単に一体成形し得るという利点を有
しているところから、自動車部品をはじめとして各種機
械部品の製造に幅広く利用されており、その需要は最近
急激に増大してきている。
[Prior art] The iron-based powder metallurgy method, in which iron-based powder produced by a reduction method, atomization method, etc., is compression-molded and then sintered to obtain a compact is said to be able to easily form any shape into one piece. Due to its advantages, it is widely used in the production of various mechanical parts including automobile parts, and the demand for it has been increasing rapidly recently.

ところで鉄系粉末冶金においては、圧縮成形時における
鉄系粉末の潤滑性(粉末同士及び粉末と成形型表面との
潤滑性)を高めるため少量の潤滑剤(ステアリン酸亜鉛
やステアリン酸リチウム等)が配合され、また焼結製品
の物性改善のため適量の銅粉やグラファイト粉等が配合
される。また圧縮成形後は以下に示す如く脱ろう、焼結
、冷却の各工程が順次行なわれるが、これらの工程は、
圧縮成形体の酸化、脱炭、浸炭等を防止するため、変成
炭化水素ガス(RXガス)雰囲気で行なうのが通例であ
る。
By the way, in iron-based powder metallurgy, a small amount of lubricant (zinc stearate, lithium stearate, etc.) is used to improve the lubricity of iron-based powder (lubricity between powders and between powder and mold surface) during compression molding. Also, appropriate amounts of copper powder, graphite powder, etc. are blended to improve the physical properties of the sintered product. In addition, after compression molding, the steps of dewaxing, sintering, and cooling are performed sequentially as shown below.
In order to prevent oxidation, decarburization, carburization, etc. of the compression molded body, it is customary to carry out the process in a modified hydrocarbon gas (RX gas) atmosphere.

■鉄系粉末の圧縮成形性を高める為に配合される潤滑剤
を加熱により気化させて除去する脱ろう工程。
■A dewaxing process in which the lubricant that is added to improve the compression moldability of iron-based powder is vaporized and removed by heating.

■潤滑剤が除去された後の圧縮成形体を加熱して焼結さ
せる焼結工程。
■Sintering process in which the compression molded body is heated and sintered after the lubricant has been removed.

■焼結物を大気酸化を受けない温度まで降温させる冷却
工程。
■A cooling process in which the temperature of the sintered product is lowered to a temperature at which it will not undergo atmospheric oxidation.

ところで鉄系粉末冶金においては、上記膜ろう一焼結一
冷却の各工程(以下、−括して焼結工程または単に焼結
ということがある)における種々の要因によってかなり
の膨張または収縮を起こし、焼結の前・後で寸法が変わ
ってくる。そこで従来は、焼結時の寸法変化を見越して
圧縮成形時の金型寸法を調整しておき、焼結後に寸法の
手直しを行なわなくともよい様にしている。しかしそれ
でも十分な寸法精度が得られないことも多く、その様な
場合はサイジング或は機械加工等の2次加工が行なわれ
る。殊に焼結工程における寸法変化が著しい場合は焼結
体寸法のばらつきも大きく、2次加工が不可欠となるば
かりでなく、寸法誤差が極端に大きい場合はサイジング
等による寸法精度の矯正自体が非常に困難になることも
ある。
By the way, in iron-based powder metallurgy, considerable expansion or contraction occurs due to various factors in the film brazing, sintering, and cooling steps (hereinafter sometimes collectively referred to as the sintering step or simply sintering). , the dimensions change before and after sintering. Conventionally, therefore, the dimensions of the mold during compression molding are adjusted in anticipation of dimensional changes during sintering, so that there is no need to adjust the dimensions after sintering. However, even then, sufficient dimensional accuracy is often not obtained, and in such cases, secondary processing such as sizing or machining is performed. In particular, if the dimensional changes during the sintering process are significant, the sintered body dimensions will vary greatly, and not only will secondary processing become essential, but if the dimensional errors are extremely large, it will be extremely difficult to correct the dimensional accuracy by sizing etc. Sometimes it becomes difficult.

また焼結工程における膨張量が大きい場合には成形体の
密度が低下し、機械部品として必要な機械的強度を満足
し得なくなることもある。
Furthermore, if the amount of expansion during the sintering process is large, the density of the compact may decrease, making it impossible to satisfy the mechanical strength required as a mechanical component.

この様なところから機械部品用鉄系粉末冶金材料には、
焼結工程で生ずる寸法変化率に一定の基準が設けられて
おり、現時点で許容される寸法変化率の限界は成形型の
寸法基準で0.4%程度とされている。また多種類の成
形品の製造に用いられる鉄系粉末冶金材料については、
寸法変化率のばらつきの範囲が0.02%程度と非常に
厳しい値が要求されている。
From this point of view, iron-based powder metallurgy materials for machine parts are
Certain standards have been set for the rate of dimensional change that occurs during the sintering process, and the limit of the rate of dimensional change that is currently allowed is approximately 0.4% based on mold dimensions. Regarding iron-based powder metallurgy materials used in the production of various types of molded products,
A very strict range of variation in dimensional change rate of about 0.02% is required.

膨張・収縮現象には様々の原因が考えられ、それらの原
因に対応して色々の解決策が講じられている。そのうち
代表的なものとしては、焼結時の雰囲気ガスを改善要素
とする特公昭57−9601や同5B−10963号記
載の方法、鉄系粉末原料に特殊な添加剤を配合する特公
昭59−3534号記載の方法等が挙げられるが、これ
らの方法でも寸法変化率や寸法精度のばらつきを十分に
小さくすることはできない。
Various causes can be considered for the expansion/contraction phenomenon, and various solutions have been taken in response to these causes. Typical examples include the method described in Japanese Patent Publication No. 57-9601 and Japanese Patent Publication No. 5B-10963, in which atmospheric gas during sintering is used as an improvement factor, and the method described in Japanese Patent Publication No. 59-1989, in which special additives are blended into iron-based powder raw materials. Examples include the method described in No. 3534, but even these methods cannot sufficiently reduce variations in dimensional change rate and dimensional accuracy.

こうした状況のもとて本発明者らは、脱ろう雰囲気ガス
として炭素源を含まない非酸化性ガスを使用することに
より寸法変化のばらつきを小さくする方法を開発し、特
開昭62−109902号として提案した。ところが通
常の脱ろう→焼結工程は同一炉内で連続的に行なわれ、
且つ焼結工程では脱炭防止のためRXガスを使用しなけ
ればならないので、上記公開発明の様に脱ろう工程のみ
を炭素源を含まない非酸化性ガス(ArガスやNガス等
)雰囲気とするには現に使用中の脱ろう・焼結炉を改造
しなければならず、実用にそぐわない。
Under these circumstances, the present inventors developed a method for reducing the variation in dimensional changes by using a non-oxidizing gas that does not contain a carbon source as a dewaxing atmosphere gas. proposed as. However, the normal dewaxing → sintering process is performed continuously in the same furnace,
In addition, since RX gas must be used in the sintering process to prevent decarburization, only the dewaxing process is performed in an atmosphere of non-oxidizing gas (Ar gas, N gas, etc.) that does not contain a carbon source, as in the disclosed invention described above. To do this, the dewaxing and sintering furnaces currently in use would have to be modified, which is not practical.

[発明が解決しようとする課題〕 本発明は上記の様な事情に着目してなされたものであっ
て、その目的は、脱ろう工程における雰囲気ガスの種類
や露点、加熱速度の調節等を行なわずとも、脱炭を防止
しつつ寸法精度および機械的性質の優れた焼結体を確実
に得ることのできる焼結用鉄系粉末原料を提供しようと
するものである。
[Problems to be Solved by the Invention] The present invention has been made with attention to the above-mentioned circumstances, and its purpose is to adjust the type of atmospheric gas, dew point, heating rate, etc. in the dewaxing process. The object of the present invention is to provide an iron-based powder raw material for sintering that can reliably produce a sintered body with excellent dimensional accuracy and mechanical properties while preventing decarburization.

[i!題を解決するための手段] 上記i!題を解決することのできた本発明に係る焼結用
鉄系粉末原料とは、鉄系粉末に、A1変態点以下の温度
で熱分解して水を生成する物質を1%以下配合してなる
ところに要旨を有するものである。
[i! Means for solving the problem] The above i! The iron-based powder raw material for sintering according to the present invention that can solve the problem is made by blending iron-based powder with 1% or less of a substance that generates water by thermal decomposition at a temperature below the A1 transformation point. However, there is a gist.

[作用及び実施例] 本発明は、粉末冶金用の鉄系粉末(純鉄粉、各種合金鋼
粉、ハイス粉等を含む)に対し、A1変態点以下で熱分
解して水を生成する物質(たとえば硼酸等二以下、水生
成物質ということがある)を1%以下配合したものであ
り、それにより焼結工程での浸炭現象を安定化せしめ、
且つ焼結時の寸法変化および寸法精度のばらつきを著し
く小さくすることができる。水生成物質の配合によって
この様に優れた効果が得られる事実は以下に示す実験結
果によって確認することができる。
[Operations and Examples] The present invention provides a substance that thermally decomposes iron powder for powder metallurgy (including pure iron powder, various alloy steel powders, high speed steel powder, etc.) at a temperature below the A1 transformation point to produce water. It contains less than 1% of (for example, boric acid, etc., sometimes referred to as water-generating substances), which stabilizes the carburization phenomenon during the sintering process.
In addition, dimensional changes during sintering and variations in dimensional accuracy can be significantly reduced. The fact that such excellent effects can be obtained by blending water-generating substances can be confirmed by the experimental results shown below.

まず第1図(A)〜(E)は、粉末冶金用鉄系粉末原料
の焼結時における挙動を調べるため、5t/cm2で圧
粉成形したFe−2%Cu−0,8%C系成形体をRX
ガス中で焼結したときの熱膨張挙動を示したものである
First, Figures 1 (A) to (E) show a Fe-2%Cu-0.8%C system compacted at 5t/cm2 in order to investigate the behavior during sintering of iron-based powder raw materials for powder metallurgy. RX the molded object
This figure shows the thermal expansion behavior when sintered in gas.

但し、脱ろう条件は下記の通りとした。However, the dewaxing conditions were as follows.

第1図(A);雰囲気ガス(RXガス)の露点ニー5℃
、昇温速度=20℃/sin、 600℃xomin(潤滑剤なし) 同(B)、RXガスの露点:10℃、昇温速度=10℃
/win 、 600℃x s o sin同(C);
RXガスの露点:20℃、昇温速度=30℃/+++i
n、600℃×51in 。
Figure 1 (A); Dew point of atmospheric gas (RX gas) at knee 5°C
, temperature increase rate = 20℃/sin, 600℃ xomin (no lubricant) same (B), RX gas dew point: 10℃, temperature increase rate = 10℃
/win, 600℃ x s o sin same (C);
RX gas dew point: 20°C, heating rate = 30°C/+++i
n, 600°C x 51in.

同(p);     同上 同(E)−同上 第1図(^)について説明すると、a点でFeのα−γ
変態による収縮、b点でC(グラファイト)の浸炭によ
る膨張、0点では融解したCuのFe粒子への浸透・拡
散による膨張、d点で等温加熱中の収縮、e点でγ−α
変態による膨張が夫々起こっている。
Same as above (p); Same as above (E) - Same as above Figure 1 (^) To explain, α-γ of Fe at point a
Contraction due to transformation, expansion due to carburization of C (graphite) at point b, expansion due to penetration and diffusion of melted Cu into Fe particles at point 0, contraction during isothermal heating at point d, and γ-α at point e.
Expansion due to metamorphosis is occurring.

第1図(B)および(C)は、上記成分に潤滑剤として
ステアリン酸亜鉛0.75%を配合したものであり、(
B)は脱ろう時における雰囲気ガスの露点を低くし、且
つ昇温速度を遅くすると共に600℃での保持時間を長
くしたもので、a点から雰囲気ガスの浸炭による異常膨
張やb点のCu融点での異常収縮など、fSi図(^)
とは著しく異なったものとなっている。また第1図(C
)は脱ろう時における雰囲気ガスの露点を高くし、且つ
急速膜ろうを行なった場合であり、a点からの膨張が緩
和されている。
Figures 1 (B) and (C) show the above ingredients mixed with 0.75% zinc stearate as a lubricant;
B) lowers the dew point of the atmospheric gas during dewaxing, slows down the temperature rise rate, and lengthens the holding time at 600°C. fSi diagram (^) showing abnormal contraction at melting point, etc.
It is significantly different from the Also, Figure 1 (C
) is a case in which the dew point of the atmospheric gas during dewaxing is raised and rapid film brazing is performed, and the expansion from point a is relaxed.

第1図(0)は、上記成分に0.75%のステアリン酸
亜鉛と0.1%の硼酸を配合したものであり、a点から
生ずる異常膨張が殆んど見られなくなり、第1図(^)
に似た挙動を示している。
Figure 1 (0) is a mixture of the above ingredients with 0.75% zinc stearate and 0.1% boric acid, and the abnormal expansion that occurs from point a is almost no longer observed; (^)
shows similar behavior.

第1図(E)は、上記第1図(D)の成分における硼酸
の配合量を1.0%に増加したものであり、グラファイ
トの浸炭による膨張が抑制される一方、CuのFe粒子
への浸透・拡散による膨張が大きくなって、a点で特異
な異常膨張を示す。
Figure 1 (E) shows the composition of Figure 1 (D) with the amount of boric acid increased to 1.0%, which suppresses the expansion of graphite due to carburization, while also suppressing the expansion of Cu into Fe particles. The expansion due to penetration and diffusion increases, and a peculiar abnormal expansion occurs at point a.

尚′tS1図(^)〜(E)に示した様な焼結時の挙動
において、昇温開始時の体積と焼結後降温した状態にお
ける寸法の差の小さいものが、寸法安定性に優れ且つ寸
法変化のばらつきも小さいことを表わしており、第1図
(D)の挙動からも明らかである様に粉末冶金用鉄系原
料中に少量の硼酸を加えることによって、焼結時の異常
膨張が抑えられて寸法安定性を著しく改善し得ることが
分かる。
In addition, in the behavior during sintering as shown in tS1 diagrams (^) to (E), those with a small difference between the volume at the start of temperature rise and the size when the temperature cools down after sintering have excellent dimensional stability. It also shows that the variation in dimensional changes is small, and as is clear from the behavior in Figure 1 (D), by adding a small amount of boric acid to the iron-based raw material for powder metallurgy, abnormal expansion during sintering can be suppressed. It can be seen that the dimensional stability can be significantly improved by suppressing the dimensional stability.

次に第2図は、Fe−2%Cu −0,8%C−〇、7
5%ステアリン酸亜鉛よりなる粉末およびFe−2%C
u −0,8%C−0,75%ステアリン酸亜鉛−0,
1%硼酸よりなる粉末を使用し、脱ろう時における雰囲
気ガス(RXガス)の露点と焼結前後の寸法変化率の関
係を調べた結果を示したものである。但し焼結条件は、
雰囲気ガス(RXガスの露点ニー5℃)中、昇温速度:
20℃/gin。
Next, Figure 2 shows Fe-2%Cu-0,8%C-〇,7
Powder consisting of 5% zinc stearate and Fe-2%C
u -0,8% C-0,75% zinc stearate-0,
This figure shows the results of investigating the relationship between the dew point of the atmospheric gas (RX gas) during dewaxing and the dimensional change rate before and after sintering using powder made of 1% boric acid. However, the sintering conditions are
Temperature increase rate in atmospheric gas (RX gas dew point knee 5°C):
20℃/gin.

加熱時間:1130℃X 20 sinとした。Heating time: 1130°C x 20 sin.

第2図からも明らかな様に、硼酸を添加しないものでは
、脱ろう雰囲気ガスの露点、脱ろうの加熱速度や保持時
間によって寸法変化率が著しく変動するが、適量の硼酸
を配合すると、脱ろう雰囲気ガスの露点、加熱速度や保
持時間が変わフた場合でも寸法変化率への影響は非常に
小さくなっている。
As is clear from Fig. 2, the rate of dimensional change varies significantly depending on the dew point of the dewaxing atmosphere gas, heating rate and holding time for dewaxing when no boric acid is added, but when an appropriate amount of boric acid is added, Even if the dew point of the wax atmosphere gas, heating rate, or holding time changes, the effect on the dimensional change rate is extremely small.

また第3図は、Fe−2%Cu −0,8%C−0,7
5%ステアリン酸亜鉛を基本組成とし、硼酸の配合率を
変えた場合における寸法変化の標準偏差に及ぼす影響を
調べた結果を示した実験グラフである。但し実験条件は
下記の通りとした。
In addition, Fig. 3 shows Fe-2%Cu-0,8%C-0,7
It is an experimental graph showing the results of investigating the effect on the standard deviation of dimensional change when the basic composition is 5% zinc stearate and the blending ratio of boric acid is changed. However, the experimental conditions were as follows.

脱ろう工程: RXガス(露点:20℃)中、昇温速度:20℃/wi
n、 600℃X5m1n焼結工程; RXXガスC8コニ−5)中、昇温速度=20℃/+i
n、 1130℃x 20 win第3図からも明らか
な様に、焼結用Fe系粉末中に少量の硼酸を含有させる
と、焼結時における寸法変化のばらつきの標準偏差は非
常に小さくなる。しかし硼酸量が0.2〜0.3%を超
えると標準偏差は大きくなる傾向を示し、1%を超える
と硼酸無添加のものよりも標準偏差はかえって大きくな
る。この様なところから本発明では硼酸添加量を1%以
下と定めたが、標準偏差を小さくするうえでより好まし
い添加量は0.05〜0.6%の範囲である。
Dewaxing process: Temperature increase rate: 20°C/wi in RX gas (dew point: 20°C)
n, 600°C x 5m1n sintering process; RXX gas C8 cony-5), heating rate = 20°C/+i
As is clear from FIG. 3, when a small amount of boric acid is contained in the Fe-based powder for sintering, the standard deviation of the variation in dimensional changes during sintering becomes very small. However, when the amount of boric acid exceeds 0.2 to 0.3%, the standard deviation tends to increase, and when it exceeds 1%, the standard deviation becomes even larger than that of a product without boric acid. For this reason, in the present invention, the amount of boric acid added is set at 1% or less, but in order to reduce the standard deviation, the more preferable amount is in the range of 0.05 to 0.6%.

第4図は、Fe−2%Cu−0,8%C−0,75%ス
テアリン酸亜鉛粉末またはFe−2%Cu−0,8%C
−0,75%ステアリン酸亜鉛−〇、1%硼酸粉末を使
用し、脱ろう・焼結雰囲気ガスの露点と焼結体中のC量
の関係を調べた結果を示す実験グラフである。但し、焼
結条件は、雰囲気ガス(RXガス、露点ニー5℃)中、
昇温速度:20tl:/win、  1130℃X 2
0 sinとした。
Figure 4 shows Fe-2%Cu-0,8%C-0,75% zinc stearate powder or Fe-2%Cu-0,8%C
It is an experimental graph showing the results of investigating the relationship between the dew point of the dewaxing and sintering atmosphere gas and the amount of C in the sintered body using -0.75% zinc stearate -0.1% boric acid powder. However, the sintering conditions are: in atmospheric gas (RX gas, dew point knee 5°C);
Temperature increase rate: 20tl:/win, 1130℃×2
It was set to 0 sin.

第4図からも明らかである様に、硼酸末配合のものでは
脱ろう条件によって焼結体のC量がかなり変動するのに
対し、適量の硼酸を加えたものでは脱ろう条件による焼
結体中C量の変動は殆んど見られず、安定したC量の焼
結体を得ることができる。
As is clear from Figure 4, the amount of C in the sintered body varies considerably depending on the dewaxing conditions in the case of the powder containing boric acid, whereas the amount of C in the sintered body varies considerably depending on the dewaxing conditions in the case of the case with the addition of an appropriate amount of boric acid. Almost no fluctuations in the C content were observed, and a sintered body with a stable C content could be obtained.

更に第5図は、硼酸添加量を変えた場合における焼結体
の引張強さに与える影響を調べた結果を示したものであ
り、実験条件は第3図の場合と同じとした。この図から
も明らかである様に、硼酸の添加量が1%を超えると焼
結体の引張強さに悪影響が現われてくるので、こうした
観点から硼酸の添加量は1%以下に抑えるべきである。
Further, FIG. 5 shows the results of investigating the effect of varying the amount of boric acid added on the tensile strength of the sintered body, and the experimental conditions were the same as in FIG. 3. As is clear from this figure, if the amount of boric acid added exceeds 1%, it will have an adverse effect on the tensile strength of the sintered body, so from this perspective, the amount of boric acid added should be kept below 1%. be.

上記第1〜5図からも明らかである様に、焼結用鉄系粉
末中に適量の硼酸を含有させておくと、脱ろうにおける
異常膨張が著しく抑えられ、脱ろう条件や雰囲気ガスの
露点等に殆んど影響を受けることなく、且つ浸炭による
C量の変動が少なくて寸法変化率およびそのばらつきの
小さな焼結体を得ることができる。
As is clear from Figures 1 to 5 above, if an appropriate amount of boric acid is contained in the iron-based powder for sintering, abnormal expansion during dewaxing can be significantly suppressed, and the dewaxing conditions and dew point of the atmospheric gas can be It is possible to obtain a sintered body with a small dimensional change rate and a small variation thereof, without being affected by the above factors, and with little variation in the amount of C due to carburization.

硼酸の添加によってこの様な優れた効果が発揮される理
由はまだ明らかにされていないが、次の様なことが考え
られる。
The reason why such an excellent effect is exhibited by the addition of boric acid has not yet been clarified, but the following may be considered.

■例えば潤滑剤として配合されるステアリン酸亜鉛は脱
ろう乃至焼結条件下で熱分解して金属Znを生成し、こ
のZnは雰囲気ガス(RXガス)中で生じる下記反応の
触媒として作用するものと考えられる。
■For example, zinc stearate, which is blended as a lubricant, is thermally decomposed under dewaxing or sintering conditions to produce metallic Zn, and this Zn acts as a catalyst for the following reaction that occurs in the atmospheric gas (RX gas). it is conceivable that.

2CO→CO,+C CH4→2H2+C そして生成するCは浸炭源となって鉄粉中へ浸入し、異
常膨張を起こす原因になると思われる。
2CO→CO, +C CH4→2H2+C The generated C is thought to become a carburizing source and penetrate into the iron powder, causing abnormal expansion.

しかし上記Znは硼酸の熱分解によって生成する水と反
応して酸化物となり 2HsBOs→B2O3+3H20 Zn+H20→ZnO+H2 上記の様な触媒活性を失なうため、浸炭が起こり難くな
ることが考えられる。
However, the above-mentioned Zn reacts with water produced by thermal decomposition of boric acid and becomes an oxide. 2HsBOs→B2O3+3H20 Zn+H20→ZnO+H2 Since the above-mentioned catalytic activity is lost, carburization becomes difficult to occur.

■硼酸は上記の様に熱分解して水を生成すると共に酸化
硼素に変るが、この酸化硼素は低融点(mp、450℃
)の粘稠物であり、これが鉄粉の表面を覆って浸炭防止
層を形成し、浸炭を抑制することも考えられる。
■Boric acid thermally decomposes as described above to produce water and turns into boron oxide, but this boron oxide has a low melting point (mp, 450℃
) is a viscous substance that covers the surface of the iron powder to form a carburization prevention layer, which may suppress carburization.

従ってこうしたことから考えると、硼酸以外にも、熱分
解によって水を放出し或は浸炭防止膜形成物質を生成し
得る種々の物質が同様の効果を発揮し得るものと考えら
れる。そこで硼酸以外の種々の物質についてその添加効
果を調べたところ、添加される鉄系粉末のA3点以下の
温度で分解して水を生成する物質であれば、硼酸に似た
作用効果を発揮し得ることが確認された。この様な物質
の具体例としては硼砂などの硼酸塩、蓚酸やその塩等が
挙げられ、これらについても1%以下の添加でその効果
が有効に発揮されることが確認された。しかし熱分解温
度がA1点を超えるものではグラファイトの鉄への浸炭
を阻害するなど、むしろ有害に作用する。
Therefore, in view of the above, it is thought that, in addition to boric acid, various substances capable of releasing water or producing carburization-preventing film-forming substances by thermal decomposition may exhibit similar effects. Therefore, we investigated the effects of adding various substances other than boric acid, and found that any substance that decomposes to produce water at a temperature below the A3 point of the iron-based powder to which it is added exhibits effects similar to boric acid. It has been confirmed that you can get it. Specific examples of such substances include borates such as borax, oxalic acid and its salts, and it has been confirmed that their effects can be effectively exhibited even when added in an amount of 1% or less. However, those whose thermal decomposition temperature exceeds the A1 point have a rather harmful effect, such as inhibiting the carburization of graphite into iron.

[発明の効果] 本発明は以上の様に構成されており、焼結用鉄系粉末中
に、特定温度以下で熱分解して水を生成する物質を少量
含有させておくだけで、脱ろう・焼結時の雰囲気ガスの
露点や温度条件等に殆んど影響されることなく過度な浸
炭を阻止することができ、それに伴なって脱ろう時の異
常膨張が防止され、寸法変化率が小さく且つそのばらつ
きの少ない焼結体を提供し得ることになった。
[Effects of the Invention] The present invention is configured as described above, and dewaxing can be achieved by simply adding a small amount of a substance that thermally decomposes to produce water below a specific temperature into the iron-based powder for sintering.・Excessive carburization can be prevented almost unaffected by the dew point and temperature conditions of the atmospheric gas during sintering, and as a result, abnormal expansion during dewaxing is prevented and the dimensional change rate is reduced. It has become possible to provide a sintered body that is small and has little variation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は粉末冶金用鉄系粉末の焼結時における膨張率の
変化を示すグラフ、第2図は脱ろう雰囲気の露点と焼結
体の寸法変化率の関係を示すグラフ、第3図は硼酸の添
加量と焼結体寸法のばらつきの標準偏差との関係を示す
グラフ、第4図は脱ろう雰囲気の露点と焼結体のC量と
の関係を示すグラフ、第5図は硼酸の添加量と焼結体の
引張強さとの関係を示すグラフである。 温 度 f ℃ ) 脱ろう雰囲気の露点(1) 硼酸配合量(%)
Figure 1 is a graph showing the change in expansion coefficient during sintering of iron-based powder for powder metallurgy, Figure 2 is a graph showing the relationship between the dew point of the dewaxing atmosphere and the dimensional change rate of the sintered body, and Figure 3 is a graph showing the relationship between the dew point of the dewaxing atmosphere and the dimensional change rate of the sintered body. A graph showing the relationship between the amount of boric acid added and the standard deviation of the variation in the dimensions of the sintered body. Figure 4 is a graph showing the relationship between the dew point of the dewaxing atmosphere and the amount of C in the sintered body. It is a graph showing the relationship between the addition amount and the tensile strength of the sintered body. Temperature f °C) Dew point of dewaxing atmosphere (1) Boric acid content (%)

Claims (1)

【特許請求の範囲】[Claims]  鉄系粉末に、A_1変態点以下の温度で熱分解して水
を生成する物質を1重量%以下配合してなることを特徴
とする焼結用鉄系粉末原料。
An iron-based powder raw material for sintering, characterized in that the iron-based powder is blended with 1% by weight or less of a substance that thermally decomposes to produce water at a temperature below the A_1 transformation point.
JP4900790A 1990-02-27 1990-02-27 Iron series powdery raw material for sintering Pending JPH03249101A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4900790A JPH03249101A (en) 1990-02-27 1990-02-27 Iron series powdery raw material for sintering
DE19914106219 DE4106219C2 (en) 1990-02-27 1991-02-27 Sintered steel powder for dimensionally stable sintered bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4900790A JPH03249101A (en) 1990-02-27 1990-02-27 Iron series powdery raw material for sintering

Publications (1)

Publication Number Publication Date
JPH03249101A true JPH03249101A (en) 1991-11-07

Family

ID=12819110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4900790A Pending JPH03249101A (en) 1990-02-27 1990-02-27 Iron series powdery raw material for sintering

Country Status (2)

Country Link
JP (1) JPH03249101A (en)
DE (1) DE4106219C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214097A (en) * 2010-03-31 2011-10-27 Jfe Steel Corp Alloy-steel-powder mixed powder with small variation of sintering strength
JP2016035105A (en) * 2014-07-31 2016-03-17 Jfeスチール株式会社 Mixed powder for iron-based powder metallurgy, iron-based sintered alloy and sintered machine component, and method for producing iron-based sintered alloy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE889600C (en) * 1941-07-01 1953-09-10 Eisen & Stahlind Ag Process for reducing or preventing shrinkage when manufacturing workpieces by sintering
DE2731845A1 (en) * 1977-07-14 1979-01-25 Devender Dr Ing Dhingra Metal powder prodn. in a rotary kiln - by reducing oxide starting material which contains an added organic substance
JPS5435805A (en) * 1977-08-26 1979-03-16 Honda Motor Co Ltd Method of producing ferrous powder sintered body
JPS5810963B2 (en) * 1978-08-30 1983-02-28 中外炉工業株式会社 Continuous sintering furnace for powder metallurgy
JPS593534B2 (en) * 1979-07-28 1984-01-24 日立粉末冶金株式会社 Production method of iron-copper-based high-density sintered alloy
JPH079004B2 (en) * 1985-11-08 1995-02-01 株式会社神戸製鋼所 Sintering method for iron-based powder compacts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214097A (en) * 2010-03-31 2011-10-27 Jfe Steel Corp Alloy-steel-powder mixed powder with small variation of sintering strength
JP2016035105A (en) * 2014-07-31 2016-03-17 Jfeスチール株式会社 Mixed powder for iron-based powder metallurgy, iron-based sintered alloy and sintered machine component, and method for producing iron-based sintered alloy

Also Published As

Publication number Publication date
DE4106219A1 (en) 1991-09-12
DE4106219C2 (en) 1994-06-09

Similar Documents

Publication Publication Date Title
EP2659014B1 (en) Iron based powders for powder injection molding
US5856625A (en) Stainless steel powders and articles produced therefrom by powder metallurgy
US3183127A (en) Heat treatable tool steel of high carbide content
US3461069A (en) Self-lubricating bearing compositions
JPS593534B2 (en) Production method of iron-copper-based high-density sintered alloy
JPH02153063A (en) Making of nitriding-alloy
US4284431A (en) Method for the production of sintered powder ferrous metal preform
US4824734A (en) Tin-containing iron base powder and process for making
JPH03249101A (en) Iron series powdery raw material for sintering
US4618473A (en) Iron powder article having improved toughness
GB2298869A (en) Stainless steel powders and articles produced therefrom by powder metallurgy
US3615917A (en) Process for diffusing silicon into sheet steel
GB1590953A (en) Making articles from metallic powder
KR102258486B1 (en) Method For Manufacturing Sintered Products With Improved Corrosion Resistance By Using Stainless Steel Powder
US4069043A (en) Wear-resistant shaped magnetic article and process for making the same
RU2425166C1 (en) Procedure for production of mechanically alloyed nitrogen containing steel
JP3841455B2 (en) Method for producing high density sintered stainless steel
Danninger et al. Oxygen transfer reactions during sintering of ferrous powder compacts
JPS62109902A (en) Method for sintering green compact of iron-base powder
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
US2944893A (en) Method for producing tool steels containing titanium carbide
GB1412415A (en) Metal powder compacts
JP2857751B2 (en) Manufacturing method of cast iron based high density powder sintered compact
JPS60103101A (en) Manufacture of fe-cr-co type sintered magnet alloy
CA2549175C (en) Methods of preparing high density powder metallurgy parts by iron based infiltration