JPH079004B2 - Sintering method for iron-based powder compacts - Google Patents

Sintering method for iron-based powder compacts

Info

Publication number
JPH079004B2
JPH079004B2 JP60251604A JP25160485A JPH079004B2 JP H079004 B2 JPH079004 B2 JP H079004B2 JP 60251604 A JP60251604 A JP 60251604A JP 25160485 A JP25160485 A JP 25160485A JP H079004 B2 JPH079004 B2 JP H079004B2
Authority
JP
Japan
Prior art keywords
iron
sintering
dewaxing
gas
based powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60251604A
Other languages
Japanese (ja)
Other versions
JPS62109902A (en
Inventor
仁輔 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60251604A priority Critical patent/JPH079004B2/en
Publication of JPS62109902A publication Critical patent/JPS62109902A/en
Publication of JPH079004B2 publication Critical patent/JPH079004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は鉄系粉末成形体の焼結方法に関し、殊に潤滑剤
としてステアリン酸金属塩(例えばステアリン酸亜鉛や
ステアリン酸リチウム等)を配合してなる鉄系粉末成形
体の焼結時における寸法変化率(成形圧方向と直角方
向)のばらつきを少なくし、最終製品の寸法精度を高め
ることのできる技術に関するものである。
TECHNICAL FIELD The present invention relates to a method for sintering an iron-based powder compact, and in particular, a metal salt of stearic acid (eg, zinc stearate or lithium stearate) is blended as a lubricant. The present invention relates to a technique capable of reducing the variation in the dimensional change rate (direction perpendicular to the molding pressure direction) at the time of sintering of an iron-based powder molded body and improving the dimensional accuracy of the final product.

[従来の技術] 還元法やアトマイズ法等により製造した鉄系粉末を圧縮
成形し焼結して得られる鉄系粉末圧縮成形製品は、任意
の形状のものを製造し得るという利点に加えて製品の寸
法精度も優れているところから、自動車部品をはじめと
して各種機械部品の製造に幅広く利用されており、その
生産量は最近急激に増大してきている。
[Prior Art] An iron-based powder compression-molded product obtained by compression-molding and sintering iron-based powder manufactured by a reduction method, an atomizing method, or the like, has the advantage that it can be manufactured in any shape. Because of its excellent dimensional accuracy, it is widely used in the manufacture of various machine parts including automobile parts, and the production amount thereof has been rapidly increasing in recent years.

ところで鉄系粉末冶金においては、圧縮成形時における
鉄系粉末の潤滑性(粉末同士及び粉末と成形型表面との
潤滑性)を高める為に少量のステアリン酸塩(主として
ステアリン酸亜鉛やステアリン酸リチウム)が配合さ
れ、また物性改善の為に適量の銅粉や炭素粉等が配合さ
れる。そして圧縮成形後は、以下に示す如く脱ろう、焼
結、冷却の各工程が順次行なわれるが、これらの工程は
圧縮成形体の酸化、脱炭、浸炭等を防止すべき、変成炭
化水素ガス(RXガス)雰囲気中で行なうのが通例であ
る。
By the way, in iron-based powder metallurgy, a small amount of stearate (mainly zinc stearate or lithium stearate) is used to improve the lubricity of the iron-based powder during compression molding (lubricity between the powders and between the powder and the mold surface). ) Is added, and an appropriate amount of copper powder, carbon powder, or the like is added to improve the physical properties. After compression molding, the steps of dewaxing, sintering, and cooling are sequentially performed as described below. These steps should prevent oxidation, decarburization, carburization, etc. of the compression molded body. It is customary to do this in an (RX gas) atmosphere.

鉄系粉末の圧縮成形性を高める為に添加される潤滑剤
(ステアリン酸亜鉛等)を、加熱により気化させて除去
する脱ろう工程。
A dewaxing process in which a lubricant (zinc stearate, etc.) added to improve the compression moldability of the iron-based powder is vaporized and removed by heating.

潤滑剤が除去された後の圧縮成形体を加熱して焼結さ
せる焼結工程。
A sintering step of heating and compressing the compression molded body after the lubricant is removed.

焼結物を大気中で酸化を受けない温度まで降温させる
冷却工程。
A cooling process in which the temperature of the sintered product is lowered to a temperature at which it will not be oxidized.

前述の如く粉末冶金製品には寸法精度が高いという特徴
があるが、それでも上記脱ろう→焼結→冷却の各工程
(以下一括して焼結工程又は単に焼結ということがあ
る)における種々の要因によって膨張又は収縮を起こ
し、焼結の前・後で寸法がかなり変わってくる。そこで
従来は、圧縮成形時の成形型寸法について、焼結時の寸
法変化を見越した寸法に調整しておき、焼結後に寸法の
手直を行なわなくともよい様にしている。しかしながら
それでも十分な寸法精度が得られないことも多く、その
様な場合はサイジング或はコイニング等の2次加工が行
なわれる。殊に焼結工程における寸法変化が著しい場合
は焼結体寸法のばらつきも大きく、2次加工が不可欠と
なるばかりでなく、寸法誤差が極端に大きい場合はサイ
ジング等による寸法精度の矯正自体が非常に困難となる
こともある。
As described above, powder metallurgical products are characterized by high dimensional accuracy, but nonetheless, various processes in the above-mentioned dewaxing → sintering → cooling processes (hereinafter sometimes collectively referred to as sintering process or simply sintering) are performed. It causes expansion or contraction depending on the factor, and the dimensions change considerably before and after sintering. Therefore, conventionally, the dimension of the molding die during compression molding is adjusted to a dimension that allows for a dimensional change during sintering, and it is not necessary to adjust the dimension after sintering. However, even then, sufficient dimensional accuracy is often not obtained, and in such a case, secondary processing such as sizing or coining is performed. Especially when the dimensional change in the sintering process is significant, the dimensional variation of the sintered body is large, and not only is secondary processing indispensable, but when the dimensional error is extremely large, the dimensional accuracy correction itself by sizing etc. is extremely difficult. It can be difficult.

また焼結工程における膨張量が大きい場合には圧縮成形
体の密度が低下し、機械部品として必要な機械的強度を
満足し得なくなることもある。
Further, if the expansion amount in the sintering step is large, the density of the compression-molded product may decrease, and the mechanical strength required as a mechanical part may not be satisfied.

この様なところから機械部品用鉄系粉末冶金材料には、
焼結工程で生ずる寸法変化率に一定の基準が設けられて
おり、現時点で許容される寸法変化率の限界は成形型の
寸法基準で0.4%程度とされている。また多種類の成形
品の製造に適用される鉄系粉末冶金材料については、寸
法変化率のばらつきの標準偏差がσ=0.02%程度と非常
に厳しい値が要求されている。
From such a place, iron-based powder metallurgy materials for machine parts are
A fixed standard is set for the dimensional change rate that occurs in the sintering process, and the limit of the dimensional change rate allowed at this time is about 0.4% based on the dimensional standard of the forming die. For iron-based powder metallurgy materials applied to the production of many types of molded products, the standard deviation of the variation in the dimensional change rate is required to be a very strict value of σ = 0.02%.

上記の様な焼結工程における膨張・収縮現象については
様々の原因が考えられ、それらの原因に対応して色々の
解決策が提案されている。これらのうち代表的なものと
しては、焼結時の雰囲気ガスを改善要素とする特公昭57
-9601号や同58-10963号記載の方法、或は鉄系粉末冶金
材料に対する添加剤に工夫を加えた特公昭59-3534号記
載の方法等が挙げられ、夫々それなりの効果を得てい
る。
There are various possible causes for the expansion / contraction phenomenon in the above-described sintering process, and various solutions have been proposed in response to these causes. Typical of these is Japanese Patent Publication No. Sho 57, which uses the atmospheric gas during sintering as an improvement factor.
-9601 and 58-10963, or the method described in Japanese Examined Patent Publication No. 59-3534 in which an additive is added to the iron-based powder metallurgy material, and each has its own effects. .

また「粉体および粉末冶金」第29巻第3号(1982年4
月)の第9〜13頁には、潤滑剤としてステアリン酸亜鉛
を用いた鉄系圧粉体を脱ろう・焼結するに際し、脱ろう
と焼結をいずれも分解アンモニアガス雰囲気で行なう手
法も開示されているが、この方法では焼結時に表面が激
しく脱炭され、焼結体の硬度及び強度が著しく損なわれ
る。
Also, "Powder and Powder Metallurgy" Vol. 29, No. 3 (April 1982)
(Page 9 to 13) (Mon.), a method of dewaxing and sintering an iron-based green compact using zinc stearate as a lubricant is also disclosed in a decomposed ammonia gas atmosphere. However, in this method, the surface is severely decarburized during sintering, and the hardness and strength of the sintered body are significantly impaired.

[発明が解決しようとする問題点] ところが上記公報記載の改善技術にしても、焼結工程前
後における寸法変化率を満足のいく程度まで小さくする
ことができる訳ではなく、特にステアリン酸金属塩系の
潤滑剤を含む鉄系粉末圧縮成形体に適用した場合、「当
該変化率のばらつきの標準偏差をσ=0.02%の範囲に納
める」という現在の厳しい要請には到底答えることがで
きない。
[Problems to be Solved by the Invention] However, even with the improved technique described in the above publication, the dimensional change rate before and after the sintering step cannot be reduced to a satisfactory degree, and particularly, stearic acid metal salt-based When applied to an iron-based powder compression molding containing the above lubricant, the current strict requirement that "the standard deviation of the variation in the rate of change is within the range of σ = 0.02%" cannot be met at all.

この様な状況のもとで本発明は、焼結時の膨張・収縮に
伴う焼結部品の寸法変化率のばらつきをσ=0.02%それ
以下に抑え得る様な方法を提供しようとするものであ
る。
Under such circumstances, the present invention intends to provide a method capable of suppressing the variation of the dimensional change rate of the sintered part due to the expansion / contraction during sintering to σ = 0.02% or less. is there.

[問題点を解決する為の手段] 本発明に係る焼結方法の構成は、潤滑剤としてステアリ
ン酸金属塩を配合してなる鉄系粉末を圧縮成形した後該
成形体を脱ろう・焼結処理するに当たり、脱ろう工程に
おける雰囲気ガスとして炭素源を含まない非酸化性ガス
を非酸化性ガスを使用し、次の焼結工程における雰囲気
ガスとしてRXガスを使用して、脱ろう・焼結工程前後で
の該成形体の寸法変化率のばらつきを、標準偏差σ=0.
02%以下に抑えるところに要旨を有するものである。
[Means for Solving Problems] The constitution of the sintering method according to the present invention is such that the iron-based powder containing a metal stearate as a lubricant is compression-molded, and then the molded body is dewaxed and sintered. When processing, the non-oxidizing gas containing no carbon source is used as the atmosphere gas in the dewaxing process, and the RX gas is used as the atmosphere gas in the next sintering process. The variation of the dimensional change rate of the molded product before and after the process is standard deviation σ = 0.
The point is to keep it below 02%.

[作用] 以下実験の経緯を追って本発明の作用を順次明確にして
行く。
[Operation] The operation of the present invention will be clarified one after another by following the background of the experiment.

本発明者等は鉄系粉末冶金材料の代表例として最も汎用
されている[鉄粉:96.45%、銅粉:2%、炭素粉:0.8%、
ステアリン酸亜鉛:0.75%]を選択し、下記の実験を行
なった。即ち上記粉末冶金材料を用いて常法により直方
体の成形体を圧縮成形した後、この種の分野では最も一
般的なRXガスを雰囲気ガスとし、脱ろう工程ではその露
点を20℃、焼結及び冷却工程ではその露点を−5℃と
し、第2図に示す最も一般的なヒートパターンで脱ろう
→焼結→冷却を行ない、その間の寸法変化を調べた。結
果は第3図に示す通りであり、潤滑剤としてステアリン
酸金属塩を配合した圧縮成形体の場合、脱ろう工程にお
いて異常な体積膨張が認められる。しかも焼結工程に入
って温度が銅の融点(1083℃)を超えると、成形体が収
縮現象を起こす。
The present inventors are most widely used as a representative example of iron-based powder metallurgy materials [iron powder: 96.45%, copper powder: 2%, carbon powder: 0.8%,
Zinc stearate: 0.75%] was selected and the following experiment was conducted. That is, after compression-molding a rectangular parallelepiped molded body by a conventional method using the powder metallurgical material, the most common RX gas in this kind of field is used as an atmospheric gas, and the dewaxing process has a dew point of 20 ° C., sintering and In the cooling step, the dew point was set to −5 ° C., dewaxing → sintering → cooling was performed in the most general heat pattern shown in FIG. 2, and the dimensional change during that time was investigated. The results are as shown in FIG. 3, and in the case of the compression molded product containing the metal stearate as a lubricant, abnormal volume expansion is observed in the dewaxing process. Moreover, when the temperature exceeds the melting point of copper (1083 ° C.) in the sintering process, the molded body causes a shrinkage phenomenon.

そこでまず焼結時に使用する雰囲気ガスの露点に注目
し、脱ろう工程で生ずる膨張及び銅の融点付近で生ずる
収縮の夫々に及ぼす影響を明確にすべく実験を行なった
ところ、第4図に示す結果を得た。
Therefore, the dew point of the atmosphere gas used at the time of sintering was first paid attention to, and an experiment was conducted to clarify the effects on the expansion that occurs during the dewaxing process and the contraction that occurs near the melting point of copper. I got the result.

第4図からも明らかな様に、脱ろう時の膨張量は雰囲気
ガスの露点が高くなるほど小さくなり、また理由は不明
であるが銅の融点付近で生ずる収縮量は雰囲気ガスの露
点が高くなる程小さくなっている。そして雰囲気ガスの
露点による膨張・収縮量の変動が最終的に寸法変化のば
らつきとして現われてくるものと考えられた。
As is clear from FIG. 4, the expansion amount at the time of dewaxing becomes smaller as the dew point of the atmospheric gas becomes higher, and the reason why the contraction amount near the melting point of copper becomes higher as the dew point of the atmospheric gas becomes higher. It is getting smaller. Then, it is considered that the fluctuation of the expansion / contraction amount due to the dew point of the atmospheric gas finally appears as the variation of the dimensional change.

次に雰囲気ガスの種類による影響、殊に寸法変化量の大
きい脱ろう工程での雰囲気ガスの影響を調べるため、焼
結工程における雰囲気ガスとしては、脱炭を防止するた
めRXガスとし、脱ろう工程の雰囲気ガスのみを変えた場
合の寸法変化を調べた。但し雰囲気ガスとしては炭素源
を含まない非酸化性ガスであるAr,N2及びH2を選択し
た。結果は第5図に示す通りであり、脱ろう工程で炭素
源を含まない雰囲気ガスを使用した場合は、当該ガスの
露点には殆んど無関係に脱ろう時の寸法変化を激減させ
ることができた。またこれらのガスを使用すると銅の溶
融時における寸法変化の変動も大幅に抑制し得ることが
分かった。ちなみに第1図は、脱ろう時の雰囲気ガスと
してArを使用し、焼結時の雰囲気ガスとして従来通りの
RXを用いた場合の膨張曲線を示したものであり、この図
からも明らかな様に雰囲気ガスとしてArを使用すると脱
ろう時の膨張は殆んど見られなくなる。尚焼結工程に入
ると銅の融点付近で若干の膨張現象を認めたが、こうし
た傾向は、ステアリン酸金属塩を添加しない鉄系粉末を
圧縮成形した後の脱ろう・焼結工程で生ずる銅融点付近
の膨張量とほぼ同等である(第6図…ステアリン酸亜鉛
無添加物の膨張曲線)。尚第1図及び第6図の膨張曲線
で観察される銅融点付近の膨張は、銅の溶融により鉄と
合金化を生じ、或は溶融した銅がマトリックス金属組織
の決勝粒界部へ浸透拡散して金属組織を押し広げる為に
発生したものと考えられる。何れにしても銅溶融時にお
ける寸法変化は、第5図からも明らかな様に雰囲気ガス
の露点には殆んど影響を受けることなくほぼ一定であ
り、又脱ろう時の膨張量は前述の如く殆んど無視し得る
程度に抑えられるから、結局のところ脱ろう・焼結を通
じて発生する膨張量は雰囲気ガスの露点に関係なく略一
定の値が得られ、ばらつきは非常に小さい値に抑えられ
る。しかもその膨張量は予備実験により予め求めておく
ことができるので、当該膨張量を見越して圧縮成形時の
成形型寸法を適正に設計することができ、焼結成形体の
寸法精度を満足の行く程度にまで高めることができる。
尚上記では少量の銅及び炭素粉を含む鉄系粉末冶金材料
をとり上げて説明したが、この他本発明はNi,Sn,Mn,S,
B,P.Sb,Zn,MnS,CaS等を含む鉄系粉末冶金材料について
も同様に適用することができる。
Next, in order to investigate the effect of the type of atmospheric gas, especially the effect of the atmospheric gas in the dewaxing process where the dimensional change is large, the RX gas is used as the atmospheric gas in the sintering process to prevent decarburization. The dimensional change was investigated when only the atmospheric gas in the process was changed. However, Ar, N 2 and H 2 which are non-oxidizing gases containing no carbon source were selected as the atmosphere gas. The results are shown in Fig. 5, and when an atmospheric gas containing no carbon source was used in the dewaxing process, the dimensional change during dewaxing could be drastically reduced irrespective of the dew point of the gas. did it. It was also found that the use of these gases can significantly suppress the variation in dimensional change when copper is melted. By the way, Fig. 1 shows that Ar is used as the atmosphere gas during dewaxing and that the conventional atmosphere gas is used during sintering.
This is the expansion curve when using RX, and as is clear from this figure, when Ar is used as the atmosphere gas, the expansion at the time of dewaxing is hardly seen. Although a slight expansion phenomenon was observed near the melting point of copper during the sintering process, this tendency is due to the fact that copper that occurs in the dewaxing / sintering process after compression molding of iron-based powder without the addition of metal stearate is pressed. It is almost equivalent to the amount of expansion near the melting point (Fig. 6 ... Expansion curve of zinc stearate-free additive). The expansion near the copper melting point observed in the expansion curves of FIGS. 1 and 6 causes alloying with iron due to melting of copper, or the molten copper permeates and diffuses into the final grain boundary part of the matrix metallographic structure. It is thought that this occurred because the metal structure was expanded. In any case, the dimensional change during copper melting is almost constant without being affected by the dew point of the atmospheric gas, as is clear from FIG. 5, and the expansion amount during dewaxing is as described above. As a result, the expansion amount generated during dewaxing / sintering can be kept at a substantially constant value regardless of the dew point of the atmospheric gas, and the variation can be suppressed to a very small value. To be Moreover, since the expansion amount can be obtained in advance by preliminary experiments, it is possible to properly design the molding die size during compression molding in anticipation of the expansion amount, and the dimensional accuracy of the sintered compact can be satisfied. Can be increased to
In the above, the iron-based powder metallurgy material containing a small amount of copper and carbon powder was taken as an explanation, but in addition to this, the present invention is Ni, Sn, Mn, S,
The same can be applied to iron-based powder metallurgy materials containing B, P.Sb, Zn, MnS, CaS and the like.

[実施例] 鉄粉:96.45%、銅粉:2%、炭素粉:0.8%、ステアリン酸
亜鉛:0.75%からなる鉄系粉末冶金材料を使用し、成形
圧5t/cm2で5×5×30mmの圧縮成形体を製作した。得ら
れた圧縮成形体を使用し第2図に示したヒートパターン
に準じ、下記第1表に示す雰囲気ガスの存在下で夫々5
回ずつの脱ろう・焼結実験を行ない、焼結成形体の寸法
変化のばらつきを調べた。また各焼結成形品中における
炭素量の増減も調べた。結果を一括して第1表に示す。
[Example] An iron-based powder metallurgy material consisting of iron powder: 96.45%, copper powder: 2%, carbon powder: 0.8%, and zinc stearate: 0.75% was used at a molding pressure of 5 t / cm 2 and 5 x 5 x. A 30 mm compression molded body was produced. Using the obtained compression-molded article, according to the heat pattern shown in FIG.
The dewaxing / sintering experiments were conducted one by one to examine the variation in dimensional change of the sintered compact. The increase / decrease in carbon content in each sintered molded product was also examined. The results are collectively shown in Table 1.

第1表からも明らかな様に、脱ろう時の雰囲気ガスとし
てRXガスを用いた従来例(No.1,2)では、脱ろう時の膨
張が著しく且つそのばらつきが大きい為、焼結成形体の
寸法変化のばらつき(σ)は0.02%を超えており、且つ
焼結工程で浸炭現象が起こり炭素量の増大が見られる。
これに対し脱ろう時の雰囲気ガスとして炭素源を含まな
いガスを用いた場合(No.3〜8)は、当該ガスの露点と
は殆んど無関係に脱ろう時の膨張が回避され、焼結成形
体の寸法変化のばらつきは0.013%以下の非常に小さい
値が得られており、しかも炭素量の変動も全く起こって
いない。尚実験No.9は潤滑剤(ステアリン酸亜鉛)無添
加の鉄系粉末圧縮成形体を用いた場合の例であり、この
場合は脱ろう雰囲気ガスとしてRXガスを用いた場合でも
寸法変化についてそれ程大きなばらつきは見られない。
これに対し本発明の実施例では、適量のステアリン酸金
属塩を併用した場合でも、ステアリン酸金属塩無添加の
場合を陵駕する高レベルの寸法精度を確保し得ることが
分かる。
As can be seen from Table 1, in the conventional example (No. 1 and 2) in which RX gas was used as the atmosphere gas during dewaxing, the expansion during dewaxing was significant and the variation was large, so the sintered compact The variation (σ) in dimensional change exceeds 0.02%, and a carburization phenomenon occurs in the sintering process, and an increase in carbon content is observed.
On the other hand, when a gas that does not contain a carbon source is used as the atmosphere gas during dewaxing (No. 3 to 8), expansion during dewaxing is avoided and firing is almost independent of the dew point of the gas. The variation in the dimensional change of the binder was as small as 0.013% or less, and the carbon content did not fluctuate at all. Experiment No. 9 is an example of using an iron-based powder compression molding without a lubricant (zinc stearate). In this case, even when RX gas was used as the dewaxing atmosphere gas, the dimensional changes No large variations are seen.
On the other hand, in the examples of the present invention, it can be seen that even when an appropriate amount of metal stearate is used in combination, a high level of dimensional accuracy surpassing the case where no metal stearate is added can be ensured.

尚上記の実験では脱ろう時の雰囲気ガスとしてAr,N2,H
2を夫々単独で用いた例を示したが、これらのガスを混
合して用いた場合でも同様の効果を得ることができ、殊
にArやN2を用いる場合は、脱ろう時の酸化を防止する為
5〜70%程度のH2ガスを併用した場合の方が好ましい結
果を得ることができる。
In the above experiment, Ar, N 2 and H were used as the atmosphere gas during dewaxing.
Although the examples using 2 respectively were shown, the same effect can be obtained even when these gases are mixed and used, and particularly when Ar or N 2 is used, oxidation during dewaxing is prevented. In order to prevent it, more preferable results can be obtained when H 2 gas of about 5 to 70% is used together.

[発明の効果] 本発明は以上の様に構成されるが、要は鉄系粉末冶金材
料中に潤滑剤としてステアリン酸金属塩を配合した場合
の脱ろう工程で生ずる体積変化を、脱ろう雰囲気ガスを
特定することによって可及的に少なくしたので、脱ろう
・焼結時における寸法変化のばらつきを非常に小さく抑
えることができ、焼結成形体の寸法精度を飛躍的に高め
ることができると共に、その焼結工程の雰囲気ガスはRX
ガスとすることにより、脱炭による硬度及び強度の低下
を阻止することができ、寸法精度及び物性の共に優れた
焼結成形体を得ることができる。
[Effects of the Invention] The present invention is configured as described above, but the point is to reduce the volume change occurring in the dewaxing step when a metal stearate salt is mixed as a lubricant in an iron-based powder metallurgy material, in a dewaxing atmosphere. By specifying the gas as much as possible, the variation in dimensional change during dewaxing / sintering can be suppressed to a very small level, and the dimensional accuracy of the sintered compact can be dramatically improved. The atmosphere gas of the sintering process is RX
By using gas, it is possible to prevent a decrease in hardness and strength due to decarburization, and it is possible to obtain a sintered compact having excellent dimensional accuracy and physical properties.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明法を採用した場合における膨張曲線を示
す図、第2図は実験で採用したヒートパターンを示す
図、第3図は従来法における膨張曲線を示す図、第4図
は従来法を採用した場合における雰囲気ガスの露点と脱
ろう時及び銅融解時の寸法変化を示すグラフ、第5図は
本発明法を採用した場合における雰囲気ガスの露点と脱
ろう時及び銅融解時の寸法変化を示すグラフ、第6図は
ステアリン酸金属塩無添加の鉄系粉末冶金材料を用いた
場合の膨張曲線を示す図である。
FIG. 1 is a diagram showing an expansion curve when the method of the present invention is adopted, FIG. 2 is a diagram showing a heat pattern adopted in an experiment, FIG. 3 is a diagram showing an expansion curve in the conventional method, and FIG. Fig. 5 is a graph showing the dew point of the atmospheric gas and the dimensional changes during dewaxing and copper melting when the method is adopted, and Fig. 5 shows the dew point of the atmospheric gas and the time during dewaxing and copper melting when the method of the present invention is adopted. FIG. 6 is a graph showing a dimensional change, and is a diagram showing an expansion curve when an iron-based powder metallurgy material containing no metal stearate added is used.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】潤滑剤としてステアリン酸金属塩を配合し
てなる鉄系粉末を圧縮成形した後該成形体を脱ろう・焼
結処理するに当たり、脱ろう工程における雰囲気ガスと
して炭素源を含まない非酸化性ガスを使用し、次の焼結
工程における雰囲気ガスとしてRXガスを使用して、脱ろ
う・焼結工程前後での該成形体の寸法変化率のばらつき
を標準偏差σ=0.02%以下に抑えることを特徴とする鉄
系粉末成形体の焼結方法。
1. An iron-based powder containing a metal salt of stearic acid as a lubricant is compression-molded, and then a dewaxing / sintering process is performed on the green body. Using non-oxidizing gas and RX gas as the atmosphere gas in the next sintering process, the standard deviation σ = 0.02% or less of the variation in the dimensional change rate of the molded product before and after the dewaxing / sintering process. A method for sintering an iron-based powder compact, characterized in that
JP60251604A 1985-11-08 1985-11-08 Sintering method for iron-based powder compacts Expired - Lifetime JPH079004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60251604A JPH079004B2 (en) 1985-11-08 1985-11-08 Sintering method for iron-based powder compacts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60251604A JPH079004B2 (en) 1985-11-08 1985-11-08 Sintering method for iron-based powder compacts

Publications (2)

Publication Number Publication Date
JPS62109902A JPS62109902A (en) 1987-05-21
JPH079004B2 true JPH079004B2 (en) 1995-02-01

Family

ID=17225292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60251604A Expired - Lifetime JPH079004B2 (en) 1985-11-08 1985-11-08 Sintering method for iron-based powder compacts

Country Status (1)

Country Link
JP (1) JPH079004B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03249101A (en) * 1990-02-27 1991-11-07 Kobe Steel Ltd Iron series powdery raw material for sintering
EP1170075B1 (en) 1999-12-14 2006-08-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Powder green body forming method
WO2021199370A1 (en) * 2020-04-01 2021-10-07 昭和電工マテリアルズ株式会社 Method for manufacturing iron-based sintered body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3120501C2 (en) * 1981-05-22 1983-02-10 MTU Motoren- und Turbinen-Union München GmbH, 8000 München "Process and device for the production of molded parts"

Also Published As

Publication number Publication date
JPS62109902A (en) 1987-05-21

Similar Documents

Publication Publication Date Title
EP2659014B1 (en) Iron based powders for powder injection molding
US5754937A (en) Hi-density forming process
KR100249006B1 (en) Water spray iron powder for powder plating and its manufacturing method
EP3362210B1 (en) Iron based powders for powder injection molding
EP0378702B1 (en) Sintered alloy steel with excellent corrosion resistance and process for its production
EP1027467B1 (en) Method for manufacturing high carbon sintered powder metal steel parts of high density
EP0038558B1 (en) Process for producing sintered ferrous alloys
EP0421811B1 (en) Alloy steel for use in injection molded sinterings produced by powder metallurgy
US5963771A (en) Method for fabricating intricate parts with good soft magnetic properties
US4284431A (en) Method for the production of sintered powder ferrous metal preform
JPS593534B2 (en) Production method of iron-copper-based high-density sintered alloy
JPH079004B2 (en) Sintering method for iron-based powder compacts
JPH07157803A (en) Water atomized iron powder for powder metallurgy and production thereof
EP0601042B1 (en) Powder-metallurgical composition having good soft magnetic properties
US4824734A (en) Tin-containing iron base powder and process for making
JP3351844B2 (en) Alloy steel powder for iron-based sintered material and method for producing the same
GB1590953A (en) Making articles from metallic powder
JP3694968B2 (en) Mixed powder for powder metallurgy
JPH10317009A (en) Production of stainless sintered body
JPS6249345B2 (en)
JP3492884B2 (en) Method for producing soft magnetic sintered metal
JP2579171B2 (en) Manufacturing method of sintered material
JPS62254408A (en) Manufacture of sintered rare earth magnet
JPH03249101A (en) Iron series powdery raw material for sintering
JP3300420B2 (en) Alloy for sintered sealing material