JP2579171B2 - Manufacturing method of sintered material - Google Patents

Manufacturing method of sintered material

Info

Publication number
JP2579171B2
JP2579171B2 JP62244794A JP24479487A JP2579171B2 JP 2579171 B2 JP2579171 B2 JP 2579171B2 JP 62244794 A JP62244794 A JP 62244794A JP 24479487 A JP24479487 A JP 24479487A JP 2579171 B2 JP2579171 B2 JP 2579171B2
Authority
JP
Japan
Prior art keywords
sintered material
strength
graphite powder
present
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62244794A
Other languages
Japanese (ja)
Other versions
JPS6487742A (en
Inventor
義孝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP62244794A priority Critical patent/JP2579171B2/en
Publication of JPS6487742A publication Critical patent/JPS6487742A/en
Application granted granted Critical
Publication of JP2579171B2 publication Critical patent/JP2579171B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、構造用機械部品に用いて好適な焼結材料の
製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a sintered material suitable for use in structural mechanical parts.

(従来の技術) 近年、焼結材料の用途が拡大し、例えばギヤ、スプロ
ケット等の機械部品への利用も進みつゝある。かゝる機
械部品は、通常熱処理(焼入れ)によって高強度化が図
られており、したがって焼結材料としても焼入性の良好
なものが要求される。
(Prior Art) In recent years, applications of sintered materials have expanded, and use of such materials for mechanical parts such as gears and sprockets has been progressing. Such mechanical parts are usually made to have high strength by heat treatment (quenching), so that a sintered material having good hardenability is required.

焼入性の向上を図るには、焼入性の向上に寄与する元
素、例えばC,Mn,Cr,Mo,Ni,Cu等を添加するのが有効であ
るが、いたずらにこれら元素の添加量を増加させると、
コスト的に高価になることはもちろん、圧縮成形性の低
下を招いて逆に強度が低下するようになる。そこで、例
えば特開昭54−29170号公報には、Mo0.2〜1.5%,Mn0.05
〜0.25%を含む低Cの低合金鋼粉末が示されており、こ
れによれば、コスト的に有利で、しかも強度的に優れた
機械部品を得ることができることが確認されている。
In order to improve the hardenability, it is effective to add elements that contribute to the hardenability, for example, C, Mn, Cr, Mo, Ni, Cu, etc. Is increased,
Of course, the cost is high, and the compression moldability is lowered, and conversely, the strength is lowered. Therefore, for example, Japanese Patent Application Laid-Open No. 54-29170 discloses that Mo 0.2 to 1.5%, Mn 0.05
A low C low alloy steel powder containing up to 0.25% is shown, and it has been confirmed that according to this, it is possible to obtain a mechanical part which is advantageous in cost and excellent in strength.

(発明が解決しようとする問題点) しかしながら、上記公報に示された合金鋼粉末(焼結
材料)を用いた場合は、熱処理に伴う寸法変化が方向
(部位)によって大きくバラツキ、精度的に安定した機
械部品を得ることが極めて困難であるという問題があっ
た。
(Problems to be Solved by the Invention) However, when the alloy steel powder (sintered material) disclosed in the above publication is used, the dimensional change due to the heat treatment greatly varies depending on the direction (part) and is stable in accuracy. However, there is a problem that it is extremely difficult to obtain such mechanical parts.

本発明は、上記従来の問題点に鑑みてなされたもの
で、それほどのコスト上昇を来すことなく充分なる強度
を確保でき、しかも熱処理時の寸法変化の方向的なバラ
ツキを小さく抑えることができる焼結材料の製造方法を
提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and can secure sufficient strength without causing a significant increase in cost, and can suppress a directional variation in dimensional change during heat treatment. An object of the present invention is to provide a method for manufacturing a sintered material.

(問題点を解決するための手段) 上記問題点を解決するため、本発明は、重量%で、Mo
0.2〜1.5%,Mn0.05〜0.25%,C0.3〜0.7%,残部Feおよ
び不可避不純物から成る焼結材料の製造において、C源
として最大粒子径35μm以下、平均粒子径10μm以下の
黒鉛粉末を用いるようにしたことを特徴とする。
(Means for Solving the Problems) In order to solve the above problems, the present invention relates to the method of
In the production of sintered materials consisting of 0.2-1.5%, Mn0.05-0.25%, C0.3-0.7%, balance Fe and unavoidable impurities, graphite powder with a maximum particle diameter of 35 μm or less and an average particle diameter of 10 μm or less as a C source Is used.

本発明で製造する焼結材料において、Moは焼入性の向
上に寄与するが、0.2%未満ではその効果が小さく、1.5
%を超えると圧縮成形性を低下させて強度低下を招くの
で、これを0.2〜1.5%とした。また、MnはMoと同様に焼
入性の向上に寄与するが、0.05%未満ではその効果が小
さく、一方0.25%を超えると圧縮成形性の低下を低下さ
せると共に酸化物を増加させて強度低下を招くので、こ
れを0.05〜0.25%とした。さらに、Cは焼入性および強
度の向上に大きく寄与するが、0.3%未満ではその効果
が小さく、一方0.7%を超えると靭性の低下により逆に
強度の低下を招くので、これを0.3〜0.7%とした。
In the sintered material produced in the present invention, Mo contributes to the improvement of hardenability, but if less than 0.2%, its effect is small,
%, The compression moldability is reduced and the strength is reduced. In addition, Mn contributes to the improvement of hardenability like Mo, but if it is less than 0.05%, its effect is small, while if it exceeds 0.25%, the decrease in compression moldability is reduced, and the oxide is increased to decrease the strength. Therefore, the content was set to 0.05 to 0.25%. Further, C greatly contributes to the improvement of hardenability and strength. If less than 0.3%, its effect is small. On the other hand, if it exceeds 0.7%, the strength decreases due to the decrease in toughness. %.

本発明において、C源である黒鉛粉末は、最大粒子径
が35μmを超えかつ平均粒子径が10μmを超えると熱処
理時の寸法変化のバラツキを増大させるので、それぞれ
35μm以下、10μm以下とした。
In the present invention, the graphite powder as the C source has a maximum particle diameter of more than 35 μm and an average particle diameter of more than 10 μm, which increases dimensional variation during heat treatment.
It was 35 μm or less and 10 μm or less.

(作 用) 上記構成の焼結材料の製造方法においては、Mo,Mn,C
が相乗的に焼入性を高めると共にマットリックスを強化
し、熱処理後の強度が向上する。しかもC源である黒鉛
粉末が微細であるため、焼結材料内におけるCの分布が
均一となり、熱処理時の寸法変化の方向的なバラツキが
小さく抑えられる。
(Operation) In the method for producing a sintered material having the above configuration, Mo, Mn, C
Improves the hardenability synergistically, strengthens the matrices, and improves the strength after heat treatment. In addition, since the graphite powder as the C source is fine, the distribution of C in the sintered material becomes uniform, and the directional variation in dimensional change during heat treatment can be suppressed.

(実施例) 以下、本発明の実施例を説明する。なお比較のため比
較例と対比させて説明する。
(Example) Hereinafter, an example of the present invention will be described. For comparison, a description will be given in comparison with a comparative example.

実施例1 原料合金粉としてMo0.52%,Mn0.21%,C0.01%以下、
酸素(O2)0.09%,残部Feと不可避不純物とから成る噴
霧合金粉末(−70メッシュ粉)を用意し、これに市販黒
鉛粉末を粉砕して得た、最大粒子径24μm,平均粒子径6
μmの黒鉛粉末を0.5%加え、さらに潤滑剤としてのス
テアリン酸亜鉛0.6%を加えた。そして、これら混合粉
をV型混合器に入れて良く混合し、次にJIS焼結金属用
引張試験片金型および環状(外径:45mm,内径28mm)試験
片金型に充填し、その後圧力を加えて密度7.0g/cm3の圧
粉体を成形した。
Example 1 As raw material alloy powder, Mo 0.52%, Mn 0.21%, C 0.01% or less,
Spray alloy powder (-70 mesh powder) composed of 0.09% oxygen (O 2 ), balance Fe and unavoidable impurities was prepared, and commercially available graphite powder was crushed to obtain a maximum particle diameter of 24 μm and an average particle diameter of 6 μm.
0.5% of graphite powder of 0.5 μm was added, and 0.6% of zinc stearate as a lubricant was further added. These mixed powders are put into a V-type mixer and mixed well, and then filled into a JIS sintered metal tensile test die and an annular (outer diameter: 45 mm, inner diameter 28 mm) test die, and then pressure is applied. Was added to form a green compact having a density of 7.0 g / cm 3 .

上記成形後、窒素と水素との混合ガス雰囲気中にて、
1130℃に30分間、加熱して焼結を完了させ、その後焼入
れ焼もどしの熱処理を施した。熱処理は、窒素雰囲気中
にて840℃に均一加熱した後、油焼入れを行い、引続き1
70℃にて焼もどしをする手順によった。
After the above molding, in a mixed gas atmosphere of nitrogen and hydrogen,
Heating was performed at 1130 ° C. for 30 minutes to complete sintering, and then heat treatment for quenching and tempering was performed. In the heat treatment, after heating uniformly to 840 ° C in a nitrogen atmosphere, oil quenching was performed, and then
The procedure of tempering at 70 ° C. was used.

実施例2〜4 上記実施例1と同一の噴霧合金粉末を用い、これに添
加する黒鉛粉末の粒子径あるいは添加量を次表に示すよ
うに種々変化させた。黒鉛粉末添加後の処理は実施例1
と全く同じ手順とした。
Examples 2 to 4 The same atomized alloy powder as in Example 1 was used, and the particle size or the amount of graphite powder added thereto was variously changed as shown in the following table. The treatment after the addition of graphite powder was performed in Example 1.
The procedure was exactly the same.

比較例1〜5 上記実施例1と同一の噴霧合金粉末を用い、これに添
加する黒鉛粉末の添加量あるいは粒子径を次表に示すよ
うに種々変化させた。黒鉛粉末添加後の処理は実施例1
と全く同じ手順とした。
Comparative Examples 1 to 5 The same spray alloy powder as in Example 1 was used, and the amount of the graphite powder added or the particle size was varied as shown in the following table. The treatment after the addition of graphite powder was performed in Example 1.
The procedure was exactly the same.

なお、上記のようにして得た焼結体の組成を次表に一
括して示す。
The composition of the sintered body obtained as described above is collectively shown in the following table.

以下、上記実施例1〜4並びに比較例1〜5で得た引
張試験片を用いて行なった引張試験の結果、および環状
試験片を用いて行なった寸法変化試験の結果について述
べる。寸法変化試験は、熱処理の前・後において直交す
る2方向の外径を測定し、この2方向の測定量の熱処理
前・後の差を求め、この差をバラツキ量として評価する
方法によった。
Hereinafter, the results of the tensile tests performed using the tensile test pieces obtained in Examples 1 to 4 and Comparative Examples 1 to 5 and the results of the dimensional change test performed using the annular test pieces will be described. The dimensional change test was based on a method of measuring the outer diameter in two orthogonal directions before and after the heat treatment, determining the difference between the measured amounts in the two directions before and after the heat treatment, and evaluating the difference as a variation. .

図は、上記引張試験の結果および寸法変化試験の結果
を示したものである。これにより、本実施例1〜4のも
のは、何れも引張強さが85〜90Kgf/mm2で、しかも寸法
変化のバラツキ量は0.01mm前後と小さい水準に安定して
いる。一方組成が本実施例1、2のものとほゞ同じで黒
鉛粉末の粒子径が本発明の範囲を外れる比較例1〜3の
ものは、本実施例のものと同等の引張強さを有するもの
の、寸法変化のバラツキ量は本実施例のものに比し著し
く大きくなっている。また、黒鉛粉末の粒子径が本発明
の範囲に含まれるが、黒鉛添加量すなわちC含有量が本
発明の範囲を外れる比較例4、5のものは、寸法変化の
バラツキ量は本実施例のものと同水準であるものの、引
張強さが著しく低下することが明らかである。
The figure shows the result of the tensile test and the result of the dimensional change test. As a result, in all of Examples 1 to 4, the tensile strength is 85 to 90 kgf / mm 2 , and the variation in dimensional change is stable at a small level of about 0.01 mm. On the other hand, the compositions of Comparative Examples 1 to 3 whose compositions are almost the same as those of Examples 1 and 2 and the particle size of the graphite powder is out of the range of the present invention have the same tensile strength as that of Examples. However, the amount of variation in the dimensional change is significantly larger than that of the present embodiment. In addition, although the particle size of the graphite powder is included in the range of the present invention, the amount of graphite added, that is, the C content is out of the range of the present invention, in Comparative Examples 4 and 5, the variation in the dimensional change is less than that of the present example. It is clear that, although at the same level as the one, the tensile strength is significantly reduced.

(発明の効果) 以上、詳細に説明したように、本発明にかゝる焼結材
料の製造方法によれば、Mo,Mn,Cの適量含有により、そ
れほどコスト上昇を来すことなく充分なる強度を確保で
きる。また、C源としての黒鉛粉末の粒子大きさを規定
することにより、熱処理時の寸法変化のバラツキを小さ
く抑えることが可能になり、精度保証が容易となる。
(Effects of the Invention) As described above in detail, according to the method for producing a sintered material according to the present invention, the appropriate amount of Mo, Mn, and C is sufficient without increasing the cost so much. Strength can be secured. Further, by defining the particle size of the graphite powder as the C source, it is possible to suppress the variation in the dimensional change during the heat treatment, and it is easy to guarantee the accuracy.

【図面の簡単な説明】[Brief description of the drawings]

図は、本発明の実施例および比較例により得た焼結材料
の引張試験結果および寸法変化試験結果を示すグラフで
ある。
The figure is a graph showing the results of the tensile test and the results of the dimensional change test of the sintered materials obtained by the examples of the present invention and the comparative examples.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−38352(JP,A) 特開 昭61−295302(JP,A) 特開 昭63−227751(JP,A) 特公 昭35−17103(JP,B1) 特公 昭49−28827(JP,B1) 特公 昭54−28367(JP,B2) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-38352 (JP, A) JP-A-61-295302 (JP, A) JP-A-63-227751 (JP, A) 17103 (JP, B1) JP 49-28827 (JP, B1) JP 54-28367 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、Mo0.2〜1.5%,Mn0.05〜0.25%,
C0.3〜0.7%,残部Feおよび不可避不純物から成る焼結
材料の製造において、C源として最大粒子径35μm以
下、平均粒子径10μm以下の黒鉛粉末を用いることを特
徴とする焼結材料の製造方法。
(1) Mo 0.2-1.5%, Mn 0.05-0.25%,
Production of a sintered material characterized by using a graphite powder having a maximum particle diameter of 35 μm or less and an average particle diameter of 10 μm or less as a C source in the production of a sintered material composed of 0.3 to 0.7% C, balance Fe and unavoidable impurities. Method.
JP62244794A 1987-09-29 1987-09-29 Manufacturing method of sintered material Expired - Lifetime JP2579171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62244794A JP2579171B2 (en) 1987-09-29 1987-09-29 Manufacturing method of sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62244794A JP2579171B2 (en) 1987-09-29 1987-09-29 Manufacturing method of sintered material

Publications (2)

Publication Number Publication Date
JPS6487742A JPS6487742A (en) 1989-03-31
JP2579171B2 true JP2579171B2 (en) 1997-02-05

Family

ID=17124031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62244794A Expired - Lifetime JP2579171B2 (en) 1987-09-29 1987-09-29 Manufacturing method of sintered material

Country Status (1)

Country Link
JP (1) JP2579171B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2420369C2 (en) * 2005-12-30 2011-06-10 Хеганес Аб Lubricant for powder metallurgical compositions
KR200447428Y1 (en) * 2007-02-23 2010-01-25 (주) 영진기획 Bus stop marking board with a lamp

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE397780B (en) * 1976-06-24 1977-11-21 Hoeganaes Ab KIT FOR PRODUCTION OF SINTER STEEL WITH HIGH STRENGTH AND GOOD DUCTIVITY
JPS5745442A (en) * 1980-09-01 1982-03-15 Hokkaido Electric Power Co Inc:The Timber corrosion decision device
JPS58126958A (en) * 1982-01-22 1983-07-28 Mitsubishi Metal Corp Sintered material having cast iron structure and its manufacture
JPS6110546A (en) * 1984-06-22 1986-01-18 Toyo Eng Corp Production of urea
JPS6110549A (en) * 1984-06-27 1986-01-18 Mitsui Petrochem Ind Ltd Sulfonamide
JPS6140028A (en) * 1984-07-31 1986-02-26 Toshiba Corp Diffusion device
JPS6237709A (en) * 1985-08-13 1987-02-18 Shinko Electric Co Ltd Traveling control method for unmanned carrier

Also Published As

Publication number Publication date
JPS6487742A (en) 1989-03-31

Similar Documents

Publication Publication Date Title
US8287615B2 (en) High-strength composition iron powder and sintered part made therefrom
KR20110099336A (en) A method of producing a diffusion alloyed iron or iron-based powder, a diffusional alloyed powder, a composition including the diffusion alloyed powder, and a compacted and sintered part produced from the composition
EP3018228A1 (en) Sintered mechanical component and manufacturing method therefor
JP3177482B2 (en) Low alloy steel powder for sinter hardening
JPH10504353A (en) Iron-based powder containing chromium, molybdenum and manganese
JP2579171B2 (en) Manufacturing method of sintered material
JPH07157803A (en) Water atomized iron powder for powder metallurgy and production thereof
JPH06306403A (en) High-strength and high-toughness cr alloy steel powder sintered compact and its production
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
WO2019111834A1 (en) Partial diffusion alloyed steel powder
JPS61231102A (en) Powder based on iron containing ni and mo for producing highstrength sintered body
JP7039692B2 (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
JP3351844B2 (en) Alloy steel powder for iron-based sintered material and method for producing the same
WO1988000505A1 (en) Alloy steel powder for powder metallurgy
KR20050088353A (en) Iron-based sintered alloy, iron-based sintered alloy member, method of manufacturing the same, and oil pump rotor
JP2704064B2 (en) Iron-based powder for sintering and method for producing the same
JP3303030B2 (en) Connecting rod excellent in fatigue strength and toughness and method for manufacturing the same
JP3347773B2 (en) Pure iron powder mixture for powder metallurgy
JPH07138602A (en) Low alloy steel powder for powder metallurgy
JPH04337001A (en) Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding
WO2021044869A1 (en) Iron-based pre-alloyed powder for powder metallurgy, diffusion-bonded powder for powder metallurgy, iron-based alloy powder for powder metallurgy, and sinter-forged member
JPH05263181A (en) Manufacture of fe base sintered alloy member having high strength and high toughness
JP3303026B2 (en) High strength iron-based sintered alloy and method for producing the same
JP3341675B2 (en) Iron-based sintered alloy excellent in strength and toughness and method for producing the same
WO2023157386A1 (en) Iron-based mixed powder for powder metallurgy, and iron-based sintered body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term