JPS6237709A - Traveling control method for unmanned carrier - Google Patents

Traveling control method for unmanned carrier

Info

Publication number
JPS6237709A
JPS6237709A JP60178030A JP17803085A JPS6237709A JP S6237709 A JPS6237709 A JP S6237709A JP 60178030 A JP60178030 A JP 60178030A JP 17803085 A JP17803085 A JP 17803085A JP S6237709 A JPS6237709 A JP S6237709A
Authority
JP
Japan
Prior art keywords
speed
route
difference
output
delivered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60178030A
Other languages
Japanese (ja)
Other versions
JPH0510686B2 (en
Inventor
Hidemitsu Tabata
田畑 秀光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP60178030A priority Critical patent/JPS6237709A/en
Publication of JPS6237709A publication Critical patent/JPS6237709A/en
Publication of JPH0510686B2 publication Critical patent/JPH0510686B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To suppress the fishtailing phenomena and to secure a stable steeling action with an unmanned carrier by increasing the deviation amount delivered from a route sensor which functions to reduce the reference speed delivered from a speed command circuit in accordance with the difference of the revolving speed between right and left drive wheels. CONSTITUTION:A speed difference detector 20 obtains the difference of output between tachogenerators 9 and 13 and delivers it to a comparator 21. The comparator 21 supplies the steady signal S to a speed command circuit 22, a route sensor 28 and amplifier circuits 24 and 25 when the output of the detector 20 exceeds a set level. In such a constitution, the speed difference between both drive wheels 8 and 12 is small and no steady signal S is delivered in a linear drive mode. Therefore the gains of both circuits 24 and 25 are reduced. This suppresses the fishtailing phenomenon and stables the steering actions. While the speed difference between both wheels 8 and 12 increases when the unmanned carrier enters a corner part. Thus the signal S is delivered together with the reduced reference speed (v), the increased deviation amount DELTAv and increased gains of both circuits 24 and 25 respectively. Thus the steering responsiveness is increased and therefore the unmanned carrier can follow a curved drive route.

Description

【発明の詳細な説明】 〔並礪上の+り粗分t!f) この発明は、工場曝倉庫などにおいて用いらnる無人車
の走行制御方法に関する。
[Detailed description of the invention] f) The present invention relates to a method for controlling the running of unmanned vehicles used in factory warehouses and the like.

〔従来技術〕[Prior art]

無人車には、左右の駆!IIIJfaに速度差を与えて
、ステアリングを行なうものがある。このステアリング
方式は、スピンターンが可能である等の利点を41する
反面、独立したステアリング専用憎を用いる方式に比べ
、いわゆる尻振り4象が起き鳴く、ステアリングが不安
定であるという欠点を有している。
Left and right drive for unmanned cars! There is one that performs steering by giving a speed difference to IIIJfa. Although this steering system has advantages such as being able to perform spin turns, it has the disadvantages that the so-called tail shakes and squeals and the steering is unstable compared to systems that use an independent steering wheel. ing.

第2図は、上述した左右の躯(f)I輸に速度系を与え
てステアリングを行なう無人車のブロック図である。こ
の図において1は速度指令回路であり、廣f嗅速j隻V
を出力する。また、2はルートセンサであり、予め定め
らnた走行ルートからの偏位を検出し、偏差隈Δジを出
力する。さらに説明すると、走行ルートには、交流磁界
を発生するステアリング誘導線が布設されており、ルー
トセンサ2は、その交流磁界を検出し、車両が前記ステ
アリング誘4線の真上がらずnると、第3図に示すよう
にそのずrt、tに比例した偏差量Δυを出力する。
FIG. 2 is a block diagram of an unmanned vehicle that performs steering by giving a speed system to the left and right bodies (f)I. In this figure, 1 is a speed command circuit, and 1 is a speed command circuit.
Output. Further, 2 is a route sensor which detects deviation from a predetermined travel route and outputs a deviation Δji. To explain further, a steering guide wire that generates an alternating current magnetic field is laid along the driving route, and the route sensor 2 detects the alternating magnetic field, and if the vehicle does not go directly above the steering guide wire, As shown in FIG. 3, a deviation amount Δυ proportional to the deviations rt and t is output.

この偏差量ΔVは、加算回路8へ供給さn、同時に利得
−fの反転増幅回路4を介して加算回路5へ供給さrる
。加算回路8は基準速度Vに偏差量ΔVを加え、JJO
暉結果全速反制御回路C1を介してモータ7へ供給する
。モータ7は制御回路C1の制御の下に一方の側の駆動
輪8を駆動する。ここで、制御回路CI は増幅回路(
3とタコジェネレータ9とからなり、タコジェネレータ
9は、駆動輪8の回転速度を電圧(g号に変換して、窄
嘉何路6ヘフイードバツクする。加ば回路5は、基準速
度Uに偏差量−ΔVを加え、加算結果を速度制御回路0
1を介してモータ11へ供給する。モータ11?i制御
回路C8の制御の下に、他方の側の駆#輪12f、駆動
する。ここで、制御回路C2は増幅回路10とタコジェ
ネレータ13とからなり、タコジェネレータ18は、駆
動輪12の回転庫度金成圧信号に変換して、Jf4幅回
路10ヘフィードバックする。
This deviation amount ΔV is supplied to the adder circuit 8, and simultaneously supplied to the adder circuit 5 via the inverting amplifier circuit 4 with a gain of -f. The adder circuit 8 adds the deviation amount ΔV to the reference speed V and calculates the JJO
The result is supplied to the motor 7 via the full speed reverse control circuit C1. The motor 7 drives the drive wheels 8 on one side under the control of the control circuit C1. Here, the control circuit CI is an amplifier circuit (
The tachometer generator 9 converts the rotational speed of the driving wheel 8 into a voltage (g) and feeds it back to the narrowing road 6. -ΔV is added to the speed control circuit 0.
1 to the motor 11. Motor 11? The drive wheel 12f on the other side is driven under the control of the i control circuit C8. Here, the control circuit C2 includes an amplifier circuit 10 and a tachometer generator 13, and the tachometer generator 18 converts it into a rotary compartment temperature pressure signal for the drive wheels 12 and feeds it back to the Jf4 width circuit 10.

以上の購成において、車両が走行ルートのに上を走行し
ているときはルートセンサ2の出力は導であり、したが
って両部動輪8,12は等4度で回転する。ところが、
外乱、走行抵抗、もしくは麿耗による車輪径の差等の原
因により、重両が退行ルートから外nると、ルートセン
サ2から偏差量ΔVが出力さ扛、こnによって左右の駆
動輪に速度差が与えらn、重両が走行ルートの真上に戻
さγしる。捷た、第9図に示すような、走行ルートのコ
ーナ部においては、車両18が上述した制御により、曲
がった走行ルート14に追従する方式で、同走行ルー)
L4上を走行する。
In the above-mentioned purchase, when the vehicle is traveling on the traveling route, the output of the route sensor 2 is a guide, and therefore both driving wheels 8, 12 rotate at an equal angle of 4 degrees. However,
When the heavy vehicle deviates from the regression route due to disturbances, running resistance, or a difference in wheel diameter due to wear, the route sensor 2 outputs a deviation amount ΔV, which causes the left and right drive wheels to change speed. Given the difference, both vehicles are returned directly above the running route. When the vehicle 18 curves around a corner of the traveling route 14 as shown in FIG.
Travel on L4.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上述した左右の駆動輪に速度差を与えてステ
アリングする無人用においては、前述し之ように、尻(
1象が起き易すく、ステアリングが不安定であるという
欠点を本来有している。この尻撮現象を抑えるためには
、増幅回路6.10の利得を小さくすればよいのでめる
が、小さくすることによって直線ルート上を走行する場
合のステアリングは、安定するもののコーナ部走行時に
おいては、駆動輪8は直進走行時に比べて高速で走行し
なけfばならないためステアリング利得の不足によって
オフルート(脱輪)する虞nがある。
By the way, in the above-mentioned unmanned system that gives a speed difference to the left and right drive wheels for steering, as mentioned above, the tail (
This inherently has the drawbacks that the 1st phenomenon is more likely to occur and the steering is unstable. In order to suppress this butt-shooting phenomenon, it is possible to reduce the gain of the amplifier circuit 6.10, but by reducing the gain, the steering becomes stable when driving on a straight route, but when driving around corners. Since the drive wheels 8 have to travel at a higher speed than when traveling straight, there is a risk that the vehicle will go off-route due to insufficient steering gain.

この発明は、上述し)七事情に鑑み、尻損現象を抑えて
ステアリングを安定させると共に、コーナ部でオフルー
トすることのない無人用の走行制御方法を提供すること
を目的とする。
In view of the above-mentioned circumstances, it is an object of the present invention to provide an unmanned driving control method that suppresses the tail loss phenomenon, stabilizes the steering, and prevents the vehicle from going off-route at corners.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成する之めにこの発明は、左右の駆動輪の
回転速度の差に応じて、下記(A) 、 (B) 、 
C1の少なくともtつを行なうことを特徴とする。
In order to achieve the above object, the present invention provides the following (A), (B),
It is characterized by performing at least t of C1.

(5)速度指令回路から出力さ詐る基準速度を小さくす
る。
(5) Reduce the reference speed that is output from the speed command circuit.

凹 ルートセンサから出力さ扛る偏差量を大きくする。Increase the amount of deviation output from the concave root sensor.

(C)  増幅回路の利得を上げる。(C) Increase the gain of the amplifier circuit.

〔作用〕[Effect]

左右の駆動輪の回転速度の差に応じて上記AL(B) 
、 (C1(73少なくともlっを行なうことにより、
コーナ部での追従性を高める。
The above AL (B) according to the difference in rotational speed between the left and right drive wheels.
, (C1 (73 By performing at least l,
Improves followability at corners.

〔実施列〕[Implementation row]

以下、図面を参照してこの発明の実施例について説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、この発明の実施列による無人昨のブロック図
であり、第2図と同一の部分については、同一の符号が
付しである。この図に2いて2oは速度差検出器であり
、タコジェネレータ9と13との出力&金求め、コンパ
レータ21へ出力する。
FIG. 1 is a block diagram of an unmanned system according to an embodiment of the present invention, and the same parts as in FIG. 2 are given the same reference numerals. In this figure, 2o is a speed difference detector, which calculates the output of the tachogenerators 9 and 13 and outputs it to the comparator 21.

コンパレータ21は、速度差検出器2oの出方と予め設
定さt”L tt設定値とを比較し、速度差検出dg2
0の出力が前記設定jil<より小さい場合には、その
出力を零とする一方、速度差検出器2oの出力が前記設
定値を4えると定常信号Sを速度指令回路22、ルート
センサ28および増幅回路24゜25へ供給する。
The comparator 21 compares the output of the speed difference detector 2o with a preset value t"Ltt, and detects the speed difference dg2.
When the output of 0 is smaller than the setting jil<, the output is set to zero, while when the output of the speed difference detector 2o exceeds the setting value by 4, the steady signal S is sent to the speed command circuit 22, the route sensor 28 and It is supplied to the amplifier circuits 24 and 25.

速度指令回路22は、前述した第2図に示す速度指令回
路lに相当し、定常信号Sが供給されると、基準速度g
を小さな1直に落とす。基準速度りを清とすことによっ
て、左右側#輪の平均速度が小さくなり、無人車の回転
半径が短かくなり、ステアリングの応答性が上がる。
The speed command circuit 22 corresponds to the speed command circuit l shown in FIG. 2 described above, and when the steady signal S is supplied, the reference speed g
Drop it on a small one. By making the reference speed clearer, the average speed of the left and right wheels becomes smaller, the turning radius of the unmanned vehicle becomes shorter, and the responsiveness of the steering increases.

ルートセンサ28は、前述した第二図に示すルートセン
サ2に相当し、定常信号Sが供給されると、走行ルート
の噴出感度を高め、偏差量ΔVを大きな値にする。偏差
量ΔVが大きな愼になることによって、左右駆動−の速
闇差が大きくなり、こnにより、ステアリングの応答性
が上がる。
The route sensor 28 corresponds to the route sensor 2 shown in FIG. 2 described above, and when supplied with the steady signal S, increases the ejection sensitivity of the travel route and makes the deviation amount ΔV a large value. As the deviation amount ΔV becomes larger, the speed difference between the left and right drives becomes larger, thereby increasing the responsiveness of the steering.

増幅回路24および25は、各々前述した2図に示す増
:福回洛IOおよび6に相当する。壕t、これら増幅回
路24 、Z5の利4は可変であり、コンパレータ21
から定常信号Sが供給さnていない場合には低い値とな
っている一方、コンパレータ21から定常信号Sが供給
されると上がる。
The amplifier circuits 24 and 25 correspond to the circuits IO and 6 shown in FIG. 2 described above, respectively. The gain of the amplifier circuit 24 and Z5 is variable, and the comparator 21
When the steady signal S is not supplied from the comparator 21, the value is low, but when the steady signal S is supplied from the comparator 21, it increases.

利得が上がることによって、左右駆動輪の速1隻弗が犬
きくなり、こnにより、ステアリングの応答性が上がる
つ 以上の嘴成において、直線走行時においては左右の@≦
動11@に与えられるA度差は小さく、コンパレータ2
1から定常イぎ一=Sが出力されることはない。したか
つて、増1唱回路24および25の40得は小さく、尻
4M+jt象が抑えらn1ステアリングが安定する。一
方、無人車がコーナ一部へ侵入すると、左右の駆動輪に
与えらnる迷度度が大きくなり、こnによってコンパレ
ータ21から定常信号Sが出力され、基準遂1隻Vが落
ち、かつ偏肩1政Δνが大きくなり、かつ謂g回路24
.25の利得が上がって、ステアリングの応答性が上が
り、無人車はコーナ一部における曲かっfc走行ルート
に1旦従できるようになる。
As the gain increases, the speed of the left and right drive wheels becomes sharper, and this increases the responsiveness of the steering.When driving in a straight line, the speed of the left and right wheels becomes faster.
The A degree difference given to the motion 11 @ is small, and the comparator 2
From 1 to 1, the steady-state power = S is never output. However, the 40 gain of the increase circuits 24 and 25 is small, the tail 4M+jt phenomenon is suppressed, and the n1 steering is stabilized. On the other hand, when the unmanned vehicle enters a part of the corner, the degree of uncertainty given to the left and right drive wheels increases, and as a result, the steady signal S is output from the comparator 21, and the reference vehicle V falls, and The eccentricity Δν increases, and the so-called g circuit 24
.. The gain of 25 is increased, the responsiveness of the steering is increased, and the unmanned vehicle is able to follow the curved FC driving route at some corners.

なお、速度指令回路22のW準運度v、1 ルートセン
サ28の偏差量Δνおよび肩幅回路24゜25の杓14
)は、定常信号Sを受けてステップ状にt1府加又は減
少するようにしたが、速庶差憾出器20の出力を直接受
けて、その出力の増加に伴なって連続的番こ増加もしく
は減少するようにしてもよい。
In addition, the W semi-operation v of the speed command circuit 22, 1, the deviation amount Δν of the root sensor 28, and the ladle 14 of the shoulder width circuit 24°25.
) is configured to increase or decrease t1 stepwise in response to the steady signal S, but it directly receives the output of the speed difference generator 20 and continuously increases as the output increases. Alternatively, it may be decreased.

まt、本実施例においては、定常信号Sを速度指令回路
22、ルートセンサz3および増幅回路24.25の全
てに同時に供給したが、速度指令回路22もしくはルー
トセ/す28もしくは増電回路24.25の少なくとも
1つに供給するようにしてもよい。
In addition, in this embodiment, the steady signal S is simultaneously supplied to all of the speed command circuit 22, route sensor z3, and amplifier circuit 24. 25 may be supplied.

1−ヒ、*’4施例は退行ルートに沿って進行する無人
車について述ベアtが、退行ルートに因らない自立走行
無人車にもA用できることは明らかである。
1-hi, *'4 The embodiment describes an unmanned vehicle traveling along a regressive route, but it is clear that A can also be applied to an autonomously traveling unmanned vehicle that does not follow a regressive route.

〔発明の幼果〕[Young fruit of invention]

以上説明しtように、この発明によれば、左右の躯1L
IIJ輪の回転速度の差に応じて、八 速度指令回路か
ら出力される基準速I!ILを小さくする。
As explained above, according to the present invention, the left and right torso 1L
According to the difference in rotational speed of wheels IIJ, the reference speed I! is output from the speed command circuit. Reduce IL.

CB+  ルートセンサから出力される偏差量を大きく
する。
CB+ Increase the amount of deviation output from the route sensor.

(C)増幅回路の+IJ得を上げる。(C) Increase the +IJ gain of the amplifier circuit.

の、少なくとも1つを行なうようにし、化ので、直線走
行時のス臂・幅回路の利得を小さくでき、尻糸現象を抑
えてステアリングを安定させることができると共に、コ
ーナ一部においては走行ルートのIRfit性が高めら
nオフルートすることがなくなる。
By doing at least one of the following, it is possible to reduce the gain of the arm/width circuit when driving in a straight line, suppressing the heeling phenomenon and stabilizing the steering, and also making it possible to stabilize the steering in some corners. Improves IR fit and eliminates off-route.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例による無人Fkので4成
金示すブロック図、第2図は従来の無人車の傳成金示す
ブロック図、第3図はルートセンサにおけるずれ瞳と1
扁篭喰との関1系金示すグラフ、第9図は、無人*1f
3がコーナ部を走行する状態を姑す瞠略図である。
Fig. 1 is a block diagram illustrating an unmanned vehicle according to an embodiment of the present invention, Fig. 2 is a block diagram illustrating a conventional unmanned vehicle, and Fig. 3 is a block diagram illustrating a conventional unmanned vehicle.
The graph showing Seki 1 series gold with Biankagui, Figure 9 is unmanned * 1f
FIG. 3 is a schematic diagram showing a state in which the vehicle No. 3 travels around a corner.

Claims (1)

【特許請求の範囲】 基準速度を出力する速度指令回路と、車両位置の偏位を
検出して速度の偏差量を出力するルートセンサと、前記
基準速度に前記偏差量を加えた値に基づいて一方の駆動
手段の回転を制御する第1の期間増幅回路と、前記基準
速度から前記偏差量を差し引いた値に基づいて他方の駆
動手段の回転を制御する第2の期間増幅回路とを具備し
てなり、前記一方および他方の駆動手段により、左右の
駆動輪を個別に駆動して走行する無人車において、前記
左右の駆動輪の回転速度の差に応じて、下記(A)、(
B)、(C)の少なくとも1つを行なうことを特徴とす
る無人車の走行制御方法。 (A)前記速度指令回路から出力される基準速度を小さ
くする。 (B)前記ルートセンサから出力される偏差量を大きく
する。 (C)前記第1および第2の期間増幅回路の利得を上げ
る。
[Claims] A speed command circuit that outputs a reference speed, a route sensor that detects a deviation in the vehicle position and outputs a speed deviation amount, and a speed command circuit that outputs a reference speed based on a value obtained by adding the deviation amount to the reference speed. A first period amplification circuit that controls the rotation of one drive means, and a second period amplification circuit that controls the rotation of the other drive means based on a value obtained by subtracting the deviation amount from the reference speed. Therefore, in an unmanned vehicle that travels by driving the left and right drive wheels individually by the one and the other drive means, the following (A), (
A driving control method for an unmanned vehicle, characterized by performing at least one of B) and (C). (A) Decrease the reference speed output from the speed command circuit. (B) Increase the amount of deviation output from the route sensor. (C) increasing the gains of the first and second period amplifier circuits;
JP60178030A 1985-08-13 1985-08-13 Traveling control method for unmanned carrier Granted JPS6237709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60178030A JPS6237709A (en) 1985-08-13 1985-08-13 Traveling control method for unmanned carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60178030A JPS6237709A (en) 1985-08-13 1985-08-13 Traveling control method for unmanned carrier

Publications (2)

Publication Number Publication Date
JPS6237709A true JPS6237709A (en) 1987-02-18
JPH0510686B2 JPH0510686B2 (en) 1993-02-10

Family

ID=16041361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60178030A Granted JPS6237709A (en) 1985-08-13 1985-08-13 Traveling control method for unmanned carrier

Country Status (1)

Country Link
JP (1) JPS6237709A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487742A (en) * 1987-09-29 1989-03-31 Toyota Motor Corp Manufacture of sintering material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487742A (en) * 1987-09-29 1989-03-31 Toyota Motor Corp Manufacture of sintering material

Also Published As

Publication number Publication date
JPH0510686B2 (en) 1993-02-10

Similar Documents

Publication Publication Date Title
JP3216388B2 (en) Electric motor driven four-wheel steering system
JP4468509B2 (en) Vehicle steering system
JP4665864B2 (en) Travel controller for automated guided vehicle
JPS6237709A (en) Traveling control method for unmanned carrier
JPS6237710A (en) Traveling control method for unmanned carrier
JPH0692250A (en) Steering gear
JPH01111538A (en) Vehicle attitude controller
JPH01161410A (en) Automatic steering control system
JPH08272443A (en) Attitude control method for unmanned carrier using front and back wheels
JPS61241276A (en) Four wheel steering device for automobile
JPS61245213A (en) Self-traveling robot
JP3044266B2 (en) Travel control method for carrier vehicles
JPH03282705A (en) Steering angle controller for unmanned carrier vehicle
JPS60169912A (en) Method and apparatus for controlling travelling of moving body
JPH0811544B2 (en) Vehicle steering system controller
JP2913655B2 (en) Speed control method of automatic guided vehicle
JPH08275310A (en) Speed controller for self-traveling vehicle
JPS63184111A (en) Method for controlling steering of automatic traveling vehicle
JPH04238505A (en) Truck traveling control device
JPH0981240A (en) Method for controlling traveling of autonomously traveling automated guided vehicle
JPH06255512A (en) Steering force controller
JPS6113312A (en) Steering controlling method
JPH04283167A (en) Rear wheel steering device for vehicle
JPH04306169A (en) Rear wheel steering angle controller of four-wheel steering vehicle
JPH01161412A (en) Automatic steering control system