JPH03246342A - Abnormality detecting device for fuel injection system - Google Patents

Abnormality detecting device for fuel injection system

Info

Publication number
JPH03246342A
JPH03246342A JP4130890A JP4130890A JPH03246342A JP H03246342 A JPH03246342 A JP H03246342A JP 4130890 A JP4130890 A JP 4130890A JP 4130890 A JP4130890 A JP 4130890A JP H03246342 A JPH03246342 A JP H03246342A
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
injection valve
air
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4130890A
Other languages
Japanese (ja)
Inventor
Katsuhiko Hirose
雄彦 広瀬
Kenichi Nomura
野村 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4130890A priority Critical patent/JPH03246342A/en
Publication of JPH03246342A publication Critical patent/JPH03246342A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To facilitate repair or the like, by calculating the shift of an air-fuel ratio against a target air-fuel ratio from a correction value by means of each correction means at the time of fuel injection from each fuel injection valve provided plurality at one combustion chamber, and deciding that when the shift is outside a predetermined range, it is the abnormality of each injection system. CONSTITUTION:An injection control means A which makes fuel injected selectively from two fuel injecting valves 10, 11 provided at one combustion chamber, is provided. Also, a calculating means B which calculates a basic fuel injection time that is in accordance with an engine operation condition, is provided, and an air-fuel ratio is converged to a target air-fuel ratio by correcting this basic fuel injection time by means of a correcting means C on the basis of the output of an oxygen density detector 19. Also, at the time of fuel injection from each fuel injecting valve 10, 11, the shift of the air-fuel ratio against the target air-fuel ratio is calculated by means of a calculating means D from a correction value by means of each correcting means C. And whether or not the slip of the air-fuel ratio at the time of fuel injection from each fuel injecting valve 10, 11 is within a predetermined range, is decided, and the abnormality of the injection system of each fuel injecting valve 10, 11 is decided by means of a deciding means E according to its result.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料噴射系の異常検出装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an abnormality detection device for a fuel injection system.

〔従来の技術〕[Conventional technology]

一気筒当り複数個の燃料噴射弁を設け、機関負荷に応じ
ていずれかの燃料噴射弁から燃料を噴射させるようにし
た内燃機関が公知である(特開昭60−36719号公
報参照)。
An internal combustion engine is known in which a plurality of fuel injection valves are provided per cylinder, and fuel is injected from one of the fuel injection valves depending on the engine load (see Japanese Patent Application Laid-open No. 36719/1983).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながらこのように−気筒当り複数個の燃料噴射弁
を設けるとそれだけ各燃料噴射弁の噴射系の故障の確率
が高くなり、しかも機関が不調になったときにいずれの
燃料噴射弁の噴射系が故障しているのかがわからない。
However, if multiple fuel injectors are provided per cylinder, the probability of failure of the injection system of each fuel injector increases accordingly, and furthermore, when the engine malfunctions, the injection system of any one of the fuel injectors will fail. I don't know if it is malfunctioning.

従って故障している噴射系をつきとめるのに多くの労力
と時間を要するという問題がある。
Therefore, there is a problem in that it takes a lot of effort and time to locate the malfunctioning injection system.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するために本発明によれば第1図の発
明の構成図に示されるように第1の燃料噴射弁10およ
び第2の燃料噴射弁11からなる一対の燃料噴射弁と、
第1の燃料噴射弁10或いは第2の燃料噴射弁11から
選択的に燃料を噴射させる噴射制御手段Aと、機関の運
転状態に応じた基本燃料噴射時間を算出する噴射時間算
出手段Bと、機関排気通路18内に設けた酸素濃度検出
器19の出力信号に基いて空燃比が目標空燃比となるよ
うに基本燃料噴射時間を補正する補正手段Cと、第1燃
料噴射弁10からの燃料噴射時および第2燃料噴射弁1
1からの燃料噴射時に補正手段Cによる補正値から目標
空燃比に対する空燃比のずれを算出する空燃比のずれ算
出手段りと、第1燃料噴射弁10からの燃料噴射時に空
燃比のずれが予め定められた範囲内にありかつ第2燃料
噴射弁11からの燃料噴射時に空燃比のずれが予め定め
られた範囲を越えたときは第2燃料噴射弁11の噴射系
に異常があると判断し、第2燃料噴射弁11からの燃料
噴射時に空燃比のずれが予め定められた範囲内にありか
つ第1燃料噴射弁10からの噴射時に空燃比のずれが予
め定められた範囲を越えたときは第1燃料噴射弁10の
噴射系に異常があると判断する判断手段Eとを具備して
いる。
In order to solve the above problems, according to the present invention, as shown in the configuration diagram of the invention in FIG. 1, a pair of fuel injection valves consisting of a first fuel injection valve 10 and a second fuel injection valve 11,
injection control means A that selectively injects fuel from the first fuel injection valve 10 or the second fuel injection valve 11; injection time calculation means B that calculates the basic fuel injection time according to the operating state of the engine; a correction means C that corrects the basic fuel injection time so that the air-fuel ratio becomes the target air-fuel ratio based on the output signal of the oxygen concentration detector 19 provided in the engine exhaust passage 18; and the fuel from the first fuel injection valve 10. During injection and second fuel injection valve 1
The air-fuel ratio deviation calculation means calculates the deviation of the air-fuel ratio from the target air-fuel ratio from the correction value by the correction means C at the time of fuel injection from the first fuel injection valve 10, and the air-fuel ratio deviation is calculated in advance from the correction value by the correction means C at the time of fuel injection from the first fuel injection valve 10. If the difference in air-fuel ratio is within a predetermined range and exceeds the predetermined range when fuel is injected from the second fuel injector 11, it is determined that there is an abnormality in the injection system of the second fuel injector 11. , when the air-fuel ratio deviation is within a predetermined range during fuel injection from the second fuel injection valve 11 and the air-fuel ratio deviation exceeds the predetermined range during injection from the first fuel injection valve 10. is equipped with a determining means E for determining that there is an abnormality in the injection system of the first fuel injection valve 10.

〔作 用〕[For production]

いずれか一方の燃料噴射弁から燃料が噴射されたときの
空燃比のずれが予め定められた範囲にあるときにはその
燃料噴射弁の噴射系は正常であり、このとき空燃比のず
れが予め定められた範囲を越えたときはその燃料噴射弁
の噴射系に異常がある。
If the deviation in air-fuel ratio when fuel is injected from either fuel injection valve is within a predetermined range, the injection system of that fuel injection valve is normal; If the value exceeds the specified range, there is an abnormality in the injection system of that fuel injector.

いずれか一方の噴射系が正常なときに他方の噴射系に異
常があるかを判断しているのでいずれの噴射系に異常が
あるのかがわかる。
Since it is determined whether there is an abnormality in the other injection system when one of the injection systems is normal, it is possible to know which injection system has the abnormality.

〔実施例〕〔Example〕

第2図から第4図は本発明を2サイクル内燃機関に適用
した場合を示している。
2 to 4 show the case where the present invention is applied to a two-stroke internal combustion engine.

第2図から第4図を参照すると、1はシリンダブロック
、2はピストン、3はシリンダヘッド、4は燃焼室、5
は点火栓、6は一対の給気弁、7は給気ボート、8は一
対の排気弁、9は排気ポートを夫々示し、燃焼室4内に
は第1の燃料噴射弁10と第2の燃料噴射弁11が配置
される。第2図に示す実施例では機関低負荷運転時には
第1燃料噴射弁10のみから燃料が噴射されるので以下
この第1燃料噴射弁10を低負荷用燃料噴射弁と称する
2 to 4, 1 is a cylinder block, 2 is a piston, 3 is a cylinder head, 4 is a combustion chamber, 5 is a cylinder block, 2 is a piston, 3 is a cylinder head, 4 is a combustion chamber, 5
6 is a spark plug, 6 is a pair of air supply valves, 7 is an air supply boat, 8 is a pair of exhaust valves, and 9 is an exhaust port. Inside the combustion chamber 4, there are a first fuel injection valve 10 and a second fuel injection valve. A fuel injection valve 11 is arranged. In the embodiment shown in FIG. 2, fuel is injected only from the first fuel injection valve 10 during low-load engine operation, so the first fuel injection valve 10 will hereinafter be referred to as a low-load fuel injection valve.

一方、第2の燃料噴射弁11のノズル口の径は低負荷用
燃料噴射弁10のノズル口の径よりも大きく、第2図に
示す実施例では機関高負荷運転時に第2燃料噴射弁11
のみから燃料が噴射されるので以下この第1燃料噴射弁
11を高負荷用燃料噴射弁と称する。これらの低負荷用
燃料噴射弁10および高負荷用燃料噴射弁11からの燃
料噴射は電子制御ユニット20の出力信号に基いて制御
される。
On the other hand, the diameter of the nozzle opening of the second fuel injection valve 11 is larger than the diameter of the nozzle opening of the low-load fuel injection valve 10, and in the embodiment shown in FIG.
Since fuel is injected from only the first fuel injection valve 11, this first fuel injection valve 11 will hereinafter be referred to as a high-load fuel injection valve. Fuel injection from these low-load fuel injection valves 10 and high-load fuel injection valves 11 is controlled based on output signals from an electronic control unit 20.

第2図を参照すると給気ボート7はサージタンク12、
給気ダクト13、機関により駆動される機械式過給機1
4およびエアフローメータ15を介してエアクリーナ1
6に接続され、給気ダクト13内にはスロットル弁17
が配置される。一方、排気ポート9は排気通路18に接
続され、排気通路18内には酸素濃度検出器(以下02
センサと称する)19が配置される。
Referring to FIG. 2, the air supply boat 7 includes a surge tank 12,
Air supply duct 13, mechanical supercharger 1 driven by the engine
4 and air cleaner 1 via air flow meter 15
6, and a throttle valve 17 is installed in the air supply duct 13.
is placed. On the other hand, the exhaust port 9 is connected to an exhaust passage 18, and an oxygen concentration detector (hereinafter referred to as 02) is installed in the exhaust passage 18.
(referred to as a sensor) 19 is arranged.

電子制御ユニット20はディジタルコンビエータからな
り、双方向性バス21を介して互いに接続されたROM
(リードオンリメモリ)22、RAM(ランダムアクセ
スメモリ) 23、CPU (マイクロプロセッサ)2
4、バックアップRAM 25、入力ポート26および
出力ポート27を具備する。エアフローメータ15は吸
入空気量Qに比例した出力電圧を発生し、この出力電圧
がAD変換器28を介して入力ポート26に入力される
。また、0.センサ19の出力信号がAD変換器29を
介して入力ポート26に入力される。更に入力ポート2
6には機関回転数Nを表わす出力信号を発生する回転数
センサ30が接続される。一方、出力ボート27は対応
する駆動回路31.32を介して夫々低負荷用燃料噴射
弁10および高負荷用燃料噴射弁11に接続される。
The electronic control unit 20 consists of a digital combiator with ROMs connected to each other via a bidirectional bus 21.
(Read-only memory) 22, RAM (Random access memory) 23, CPU (Microprocessor) 2
4, a backup RAM 25, an input port 26, and an output port 27. Air flow meter 15 generates an output voltage proportional to intake air amount Q, and this output voltage is input to input port 26 via AD converter 28 . Also, 0. The output signal of sensor 19 is input to input port 26 via AD converter 29 . Furthermore, input port 2
6 is connected to a rotational speed sensor 30 which generates an output signal representing the engine rotational speed N. On the other hand, the output boat 27 is connected to the low-load fuel injection valve 10 and the high-load fuel injection valve 11 via corresponding drive circuits 31 and 32, respectively.

ピストン2が下降するとまず始めに排気弁8が開弁じ、
燃焼室4内の既燃ガスが排気ポート9内に排出される。
When the piston 2 descends, the exhaust valve 8 opens first.
Burnt gas in the combustion chamber 4 is discharged into the exhaust port 9.

次いで給気弁6が開弁すると機械式過給機14から送り
出された新気が給気ポート7から燃焼室4内に送り込ま
れる。次いで下死点を過ぎてピストン2が上昇すると排
気弁8が閉弁し、次いで給気弁6が閉弁する。排気弁8
が閉弁するといずれか一方の燃料噴射弁10.11から
燃料が噴射され、この噴射燃料が点火栓5によって着火
せしめられる。第3図および第4図に示されるようにシ
リンダヘッド3の内壁面上には排気弁8側の給気弁6開
口を給気弁6の全開弁期間に亘って閉鎮するマスク壁3
3が形成される。従って給気弁6が開弁すると新気が排
気弁8と反対側の給気弁6開口を通って燃焼室4内に流
入し、次いでこの新気は第4図においてWで示されるよ
うに燃焼室4内をループ状に流れるので良好なループ掃
気が行われることになる。
Next, when the intake valve 6 opens, fresh air sent out from the mechanical supercharger 14 is sent into the combustion chamber 4 from the intake port 7. Next, when the piston 2 moves up past the bottom dead center, the exhaust valve 8 closes, and then the air supply valve 6 closes. Exhaust valve 8
When the fuel injection valves 10 and 11 close, fuel is injected from one of the fuel injection valves 10 and 11, and this injected fuel is ignited by the ignition plug 5. As shown in FIGS. 3 and 4, a mask wall 3 is provided on the inner wall surface of the cylinder head 3 to close the opening of the air intake valve 6 on the exhaust valve 8 side during the full opening period of the air intake valve 6.
3 is formed. Therefore, when the intake valve 6 opens, fresh air flows into the combustion chamber 4 through the opening of the intake valve 6 on the opposite side of the exhaust valve 8, and then this fresh air flows as indicated by W in FIG. Since the air flows in a loop within the combustion chamber 4, good loop scavenging is performed.

各燃料噴射弁10.11からの燃料噴射時間TAUは次
式に基いて計算される。
The fuel injection time TAU from each fuel injection valve 10.11 is calculated based on the following formula.

TAtl=K −TP−FAF −C−GここでKは各
燃料噴射弁10.11に対して予め定められている定数 TPは基本燃料噴射時間 FAFはフィードバック補正係数 Cは機関冷却水温等により定まる補正係数Gは学習係数
を夫々示す。
TAtl=K -TP-FAF -C-G where K is a constant predetermined for each fuel injection valve 10.11 TP is the basic fuel injection time FAF is the feedback correction coefficient C is determined by the engine cooling water temperature, etc. The correction coefficients G each indicate a learning coefficient.

基本燃料噴射時間TPは第8図に示すように機関負荷Q
/N (吸入空気量Q/機関回転数N)および機関回転
数Nの関数として予めROM 22内に証憶されている
。定数Kについては低負荷用燃料噴射弁lOに対してK
Iが、高負荷用燃料噴射弁11に対してに2が与えられ
ている。これらのTP、に、。
The basic fuel injection time TP is determined by the engine load Q as shown in Figure 8.
/N (intake air amount Q/engine speed N) and is stored in the ROM 22 in advance as a function of the engine speed N. Regarding the constant K, it is K for the low load fuel injection valve lO.
I is given 2 for the high-load fuel injection valve 11. To these TPs.

K2は低負荷用燃料噴射弁10からに、−TP待時間け
燃料を噴射したとき、および高負荷用燃料噴射弁11か
らに2・TP待時間け燃料を噴射したときに空燃比がほ
ぼ目標空燃比となるように定められている。
K2 is such that the air-fuel ratio is almost the target when fuel is injected for -TP waiting time from the fuel injection valve 10 for low load and when fuel is injected for 2.TP waiting time from the fuel injection valve 11 for high load. The air-fuel ratio is determined to be the same.

以下、発明を理解しやすくするために目標空燃比を理論
空燃比とした場合に基いて説明する。
Hereinafter, in order to make the invention easier to understand, the explanation will be based on the case where the target air-fuel ratio is the stoichiometric air-fuel ratio.

02センサ19は空燃比が理論空燃比よりも大きいとき
、即ちリーンのとき0.1 (V)程度の出力電圧を発
生し、空燃比が理論空燃比よりも小さいとき、即ちリッ
チのとき0.9 (V)程度の出力電圧を発生する。従
って0□センサ19の出力電圧からリーンであるかリッ
チであるかを判別することができる。
The 02 sensor 19 generates an output voltage of about 0.1 (V) when the air-fuel ratio is larger than the stoichiometric air-fuel ratio, that is, when it is lean, and generates an output voltage of about 0.1 (V) when the air-fuel ratio is smaller than the stoichiometric air-fuel ratio, that is, when it is rich. Generates an output voltage of about 9 V. Therefore, it is possible to determine whether the fuel is lean or rich from the output voltage of the 0□ sensor 19.

第5図は02センサ19の出力電圧に基いてフィードバ
ック補正係数FAFを計算するためのルーチンを示して
おり、このルーチンは例えば一定時間毎の割込みによっ
て実行される。
FIG. 5 shows a routine for calculating the feedback correction coefficient FAF based on the output voltage of the 02 sensor 19, and this routine is executed, for example, by interruption at regular intervals.

第5図を参照するとまず初めにステップ40において0
2センサ19の出力電圧に基いてリーンであるか否かが
判別される。リーンであるときはステップ41に進んで
前回の処理サイクルにおいてリッチであったか否か、即
ち前回の処理サイクルから今回の処理サイクルの間にリ
ッチからリーンに変化したか否かが判別される。前回の
処理サイクルから今回の処理サイクルの間にリッチから
リーンに変化したときはステップ42に進んでフィード
バック補正係数FAFにスキップ値Rが加算される。
Referring to FIG. 5, first, in step 40, 0
Based on the output voltage of the second sensor 19, it is determined whether or not the engine is lean. If it is lean, the process proceeds to step 41, where it is determined whether it was rich in the previous processing cycle, that is, whether it changed from rich to lean between the previous processing cycle and the current processing cycle. When there is a change from rich to lean between the previous processing cycle and the current processing cycle, the process proceeds to step 42, where the skip value R is added to the feedback correction coefficient FAF.

これに対して前回の処理サイクルにおいてもり−ンであ
ったときはステップ43に進んでフィードバック補正係
数FAFに積分値k (k(:R)が加算される。
On the other hand, if it was positive in the previous processing cycle, the process proceeds to step 43, where the integral value k (k(:R)) is added to the feedback correction coefficient FAF.

一方、ステップ40においてリッチであると判別された
ときはステップ44に進んで前回の処理サイクルにおい
てリーンであったか否か、即ち前回の処理サイクルから
今回の処理サイクルの間にり−ンからリッチに変化した
か否かが判別される。前回の処理サイクルから今回の処
理サイクルの間にリーンからリッチに変化したときはス
テップ45に進んでフィードバック補正係数FAFから
スキップ値Rが減算される。これに対して前回の処理サ
イクルにおいてもリッチであったときはステップ43に
進んでフィードバック補正係数FAFから積分値kが減
算される。従ってフィードバック補正係数FAFは第6
図に示すように変化することになる。
On the other hand, if it is determined in step 40 that the condition is rich, the process proceeds to step 44 to determine whether the condition was lean in the previous processing cycle, that is, the condition changed from lean to rich between the previous processing cycle and the current processing cycle. It is determined whether or not. If there is a change from lean to rich between the previous processing cycle and the current processing cycle, the process proceeds to step 45, where the skip value R is subtracted from the feedback correction coefficient FAF. On the other hand, if it was also rich in the previous processing cycle, the process proceeds to step 43 and the integral value k is subtracted from the feedback correction coefficient FAF. Therefore, the feedback correction coefficient FAF is the sixth
This will change as shown in the figure.

定数にも含めた基本燃料噴射時間に−TPをフィードバ
ック補正係数FAFにより補正することによって空燃比
は理論空燃比に維持される。ところで前述したように各
燃料噴射弁10.11からK・TP時間だけ燃料を噴射
すれば空燃比はほぼ理論空燃比となるのでフィードバッ
ク補正係数FAFは第6図に示されるように1.0を中
心として上下動することになる。
The air-fuel ratio is maintained at the stoichiometric air-fuel ratio by correcting -TP using the feedback correction coefficient FAF in the basic fuel injection time, which is also included in the constant. By the way, as mentioned above, if fuel is injected from each fuel injection valve 10.11 for the time K·TP, the air-fuel ratio becomes almost the stoichiometric air-fuel ratio, so the feedback correction coefficient FAF is set to 1.0 as shown in FIG. It will move up and down around the center.

ところが経時変化によって各燃料噴射弁10□11から
に・TP時間だけ燃料を噴射しても空燃比が理論空燃比
とはならず、リッチ側或いはリーン側になってしまう。
However, due to changes over time, even if fuel is injected from each fuel injection valve 10□11 for a time TP, the air-fuel ratio does not reach the stoichiometric air-fuel ratio, but instead becomes rich or lean.

この場合、リッチ側になると空燃比を理論空燃比とすべ
く FAFの平均値は1.0より小さくなり、リーン側
になるとFAFの平均値は1.0よりも大きくなる。し
かしながらオープンループ制御する場合にはFAFを1
.0とすることが多く、この場合に混合気がリッチ側或
いはり−ン側になってしまう。そこで前述した学習係数
Gが導入されている。この学習係数GはFAFO平均値
を1.0に維持するのに必要な値であり、従ってこの学
習係数GはFAFの平均値が1.0よりも大きくなれば
FAFの平均値を1.0とすべく大きくなり、FAFの
平均値が1.0よりも小さくなれば小さくなる。従って
学習係数GはFAFの平均値に等しくなる。FAFの平
均値は学習係数Gを第6図のtにおいて求めようとした
ときには例えば最新の4つのFAFのピーク値FAFP
、、 FAFP2゜FAFP、、 FAFP4の平均値
ΣFAFP/4から求められる。
In this case, on the rich side, the average value of FAF becomes smaller than 1.0 in order to make the air-fuel ratio the stoichiometric air-fuel ratio, and on the lean side, the average value of FAF becomes larger than 1.0. However, when performing open loop control, FAF is set to 1.
.. It is often set to 0, and in this case, the air-fuel mixture becomes rich or lean. Therefore, the learning coefficient G mentioned above is introduced. This learning coefficient G is a value necessary to maintain the FAFO average value at 1.0. Therefore, this learning coefficient G is a value necessary to maintain the FAFO average value at 1.0. If the average value of FAF becomes smaller than 1.0, it becomes smaller. Therefore, the learning coefficient G is equal to the average value of FAF. For example, when trying to find the learning coefficient G at t in Figure 6, the average value of FAF is the peak value FAFP of the latest four FAFs.
,, FAFP2°FAFP,, It is determined from the average value ΣFAFP/4 of FAFP4.

従って学習係数Gは次式に基いて算出される。Therefore, the learning coefficient G is calculated based on the following equation.

G−ΣFAFP/4 従ってこのような学習係数Gを導入した場合には各燃料
噴射弁10.11からに−TP時間だけ燃料が噴射され
たときに混合気がリッチ側になっても或いはリーン側に
なってもFAFの平均値は1.0に維持され、このとき
リッチ側となれば学習係数Gが小さくなり、リーン側と
なれば学習係数Gが大きくなる。従ってこの学習係数G
は経時変化による空燃比のずれを示している。
G-ΣFAFP/4 Therefore, if such a learning coefficient G is introduced, even if the air-fuel mixture becomes rich or lean when fuel is injected from each fuel injector 10.11 for -TP time. The average value of FAF is maintained at 1.0 even if the fuel is on the rich side, and the learning coefficient G becomes smaller when the fuel is on the rich side, and becomes larger when the fuel is on the lean side. Therefore, this learning coefficient G
indicates the deviation in air-fuel ratio due to changes over time.

このような経時変化による空燃比のずれは不可避的に生
じるが経時変化による空燃比のずれは通常酸る範囲内に
あり、例えば経時変化による空燃比のずれの場合には学
習係数Gは0.8よりも小さくならず、1.2よりも大
きくならない。従って学習係数Gが0.8fG≦1.2
の範囲にあるときには経時変化による空燃比のずれが生
じているものの燃料噴射系は正常に作動しているものと
判断することができる。
Such deviations in the air-fuel ratio due to changes over time occur unavoidably, but deviations in the air-fuel ratio due to changes over time are usually within an acceptable range.For example, in the case of deviations in the air-fuel ratio due to changes over time, the learning coefficient G is set to 0. Not less than 8 and not greater than 1.2. Therefore, the learning coefficient G is 0.8fG≦1.2
When it is within the range of , it can be determined that the fuel injection system is operating normally although there is a deviation in the air-fuel ratio due to changes over time.

これに対して燃料噴射弁10.11が作動しなかったり
、燃料噴射弁10.11が目詰りをおこした場合には混
合気が極度にリーンとなるので学習係数Gはかなり大き
くなり、一方燃料噴射弁10.11が噴射し放しになっ
たときには混合気が極度にリッチとなるので学習係数G
はかなり小さくなる。この場合、学習係数Gが0.7よ
りも小さくなるか、或いは1.3よりも大きくなれば燃
料噴射弁10.11の噴射系に異常があるものと判断す
ることができる。
On the other hand, if the fuel injection valve 10.11 does not operate or if the fuel injection valve 10.11 becomes clogged, the mixture becomes extremely lean and the learning coefficient G becomes considerably large. When the injection valve 10.11 stops injecting, the mixture becomes extremely rich, so the learning coefficient G
becomes considerably smaller. In this case, if the learning coefficient G becomes smaller than 0.7 or larger than 1.3, it can be determined that there is an abnormality in the injection system of the fuel injection valve 10.11.

従って学習係数Gによって、即ちQ、8iG、1.2で
あるかG<0.7又はG>1゜3であるかによって燃料
噴射系が正常であるか異常であるかを判断することがで
きる。学習係数Gについては低負荷用燃料噴射弁10に
対してG1が、高負荷用燃料噴射弁11に対してG2が
与えられている。従って学習係数61が0.8xc+<
1.2であり、学習係数G2がG2<Q、7又はG2>
1.3であれば低負荷用燃料噴射弁10は正常であるが
高負荷用燃料噴射弁11の噴射系に異常があると判別で
き、学習係数G2が0.8fG2≦1.2であり、学習
係数GIがGl<0.7又はGl>1.3であれば高負
荷用燃料噴射弁11は正常であるが低負荷用燃料噴射弁
10の噴射系に異常があると判断できる。
Therefore, it is possible to judge whether the fuel injection system is normal or abnormal based on the learning coefficient G, that is, whether Q, 8iG, 1.2, G<0.7, or G>1°3. . Regarding the learning coefficient G, G1 is given to the low-load fuel injection valve 10, and G2 is given to the high-load fuel injection valve 11. Therefore, the learning coefficient 61 is 0.8xc+<
1.2, and the learning coefficient G2 is G2<Q, 7 or G2>
If it is 1.3, it can be determined that the low-load fuel injection valve 10 is normal but there is an abnormality in the injection system of the high-load fuel injection valve 11, and the learning coefficient G2 is 0.8fG2≦1.2, If the learning coefficient GI is Gl<0.7 or Gl>1.3, it can be determined that the high-load fuel injection valve 11 is normal, but there is an abnormality in the injection system of the low-load fuel injection valve 10.

第7図に燃料噴射制御方法を示す。第7図において時刻
t1まではG、、 G2は共に0.8と1.2の間にあ
るのでいずれの噴射系も正常に作動しているものと判断
しうる。このとき基本燃料噴射時間TPが予め定められ
た設定時間TPOよりも短かければ低負荷用燃料噴射弁
10から燃料が噴射され、TPがTPOよりも長くなれ
ば高負荷用燃料噴射弁11から燃料が噴射される。時刻
1.において例えば高負荷用燃料噴射弁11が目詰りを
おこしたとすると第7図に示すように学習係数62は次
第に大きくなる。次いでG2が1.3に達するとTP>
TPOであっても高負荷用燃料噴射弁11からの燃料噴
射は停止され、これに代えて低負荷用燃料噴射弁10か
ら燃料噴射が行われる。
FIG. 7 shows a fuel injection control method. In FIG. 7, G, G2 are both between 0.8 and 1.2 until time t1, so it can be determined that both injection systems are operating normally. At this time, if the basic fuel injection time TP is shorter than the predetermined setting time TPO, fuel is injected from the low-load fuel injection valve 10, and if TP is longer than TPO, the fuel is injected from the high-load fuel injection valve 11. is injected. Time 1. For example, if the high-load fuel injection valve 11 becomes clogged, the learning coefficient 62 gradually increases as shown in FIG. Then, when G2 reaches 1.3, TP>
Even in TPO, fuel injection from the high-load fuel injection valve 11 is stopped, and fuel injection is performed from the low-load fuel injection valve 10 instead.

第9図および第10図は燃料噴射系の異常判断および燃
料噴射を制御するためのメインルーチンを示している。
9 and 10 show a main routine for determining abnormality in the fuel injection system and controlling fuel injection.

第9図を参照するとまず初給にステップ50において学
習係数62が0.8iG2f1.2であるか否か、即ち
高負荷用燃料噴射弁11の噴射系が正常であるか否かが
判別される。G2 <0.8又はG2>1.2のときは
ステップ54に進む。一方、高負荷用燃料噴射弁11の
噴射系が正常であるときにはステップ51に進んで学習
係数GIが0.7<G、<1,3であるか否か、即ち低
負荷用燃料噴射弁10の噴射系が異常でないか否かが判
別される。低負荷用燃料噴射弁10の噴射系が異常でな
いときはステップ52に進んで低負荷用燃料噴射弁10
の噴射系が異常であることを示す異常フラグF1がリセ
ットされる。次いでステップ54に進む。これに対して
低負荷用燃料噴射弁IOの噴射系が異常のときはステッ
プ53に進んで異常フラグF1がセットされる。次いで
ステップ54に進む。従って異常フラグF1がセットさ
れるのは高負荷用燃料噴射弁11の噴射系が正常であっ
て低負荷用燃料噴射弁10の噴射系に異常があるときで
ある。異常フラグF1がセットされたときに対応するラ
ンプを点灯すれば低負荷用燃料噴射弁10の噴射系に異
常が生じていることがわかる。
Referring to FIG. 9, first, in step 50 during initial feeding, it is determined whether the learning coefficient 62 is 0.8iG2f1.2, that is, whether the injection system of the high-load fuel injection valve 11 is normal. . If G2<0.8 or G2>1.2, proceed to step 54. On the other hand, when the injection system of the high-load fuel injection valve 11 is normal, the process proceeds to step 51 to check whether the learning coefficient GI is 0.7<G, <1, 3, that is, the low-load fuel injection valve 10 It is determined whether or not the injection system is normal. If the injection system of the low-load fuel injection valve 10 is not abnormal, the process advances to step 52 and the low-load fuel injection valve 10
An abnormality flag F1 indicating that the injection system is abnormal is reset. The process then proceeds to step 54. On the other hand, if the injection system of the low-load fuel injection valve IO is abnormal, the routine proceeds to step 53, where the abnormality flag F1 is set. The process then proceeds to step 54. Therefore, the abnormality flag F1 is set when the injection system of the high-load fuel injection valve 11 is normal and the injection system of the low-load fuel injection valve 10 is abnormal. If the corresponding lamp is lit when the abnormality flag F1 is set, it can be seen that an abnormality has occurred in the injection system of the low-load fuel injection valve 10.

ステップ54では学習係数01が0.8!HGIK1.
2であるか否か、即ち低負荷用燃料噴射弁10の噴射系
が正常であるか否かが判別される。Gl<0.8又はG
l>1.2のときは第10図のステップ58に進む。
In step 54, the learning coefficient 01 is 0.8! HGIK1.
2, that is, whether or not the injection system of the low-load fuel injection valve 10 is normal. Gl<0.8 or G
When l>1.2, the process proceeds to step 58 in FIG.

一方、低負荷用燃料噴射弁10の噴射系が正常であると
きにはステップ55に進んで学習係数62が0.7<6
2<1.3であるか否か、即ち高負荷用燃料噴射弁11
の噴射系が異常でないか否かが判別される。高負荷用燃
料噴射弁11の噴射系が異常でないときはステップ56
に進んで高負荷用燃料噴射弁11の噴射系が異常である
ことを示す異常フラグF2がリセットされる。次いでス
テップ58に進む。これに対して高負荷用燃料噴射弁1
1の噴射系が異常のときはステップ57に進んで異常フ
ラグF2がセットされる。次いでステップ58に進む。
On the other hand, if the injection system of the low-load fuel injection valve 10 is normal, the process proceeds to step 55 and the learning coefficient 62 is 0.7<6.
2<1.3, that is, whether the high load fuel injection valve 11
It is determined whether or not the injection system is normal. If the injection system of the high-load fuel injection valve 11 is not abnormal, step 56
Then, the abnormality flag F2 indicating that the injection system of the high-load fuel injection valve 11 is abnormal is reset. The process then proceeds to step 58. On the other hand, high load fuel injection valve 1
If the injection system No. 1 is abnormal, the process advances to step 57 and an abnormality flag F2 is set. The process then proceeds to step 58.

従って異常フラグF2がセットされるのは低負荷用燃料
噴射弁10の噴射系が正常であって高負荷用燃料噴射弁
11の噴射系に異常があるときである。異常フラグF2
がセットされたときに対応するランプを点灯すれば高負
荷用燃料噴射弁11の噴射系に異常が生じていることが
わかる。
Therefore, the abnormality flag F2 is set when the injection system of the low-load fuel injection valve 10 is normal and the injection system of the high-load fuel injection valve 11 is abnormal. Abnormal flag F2
If the corresponding lamp is turned on when is set, it can be seen that an abnormality has occurred in the injection system of the high-load fuel injection valve 11.

ステップ58では第8図に示す関係に基いて基本燃料噴
射時間TPが計算され、次いでステップ59では基本燃
料噴射時間TPが設定時間TPOよりも短かいか否かが
判別される。TP<TPOのときにはステップ60に進
んでiが低負荷用燃料噴射弁10を示す1とされる。次
いでステップ63に進む。−方、TF’≧TPOのとき
にはステップ61に進んで異常フラグF2がセットされ
ているか否かが判別される。異常フラグF2がリセット
されているときにはステップ62に進んで1が高負荷用
燃料噴射弁11を示す2とされる。次いでステップ63
に進む。
In step 58, the basic fuel injection time TP is calculated based on the relationship shown in FIG. 8, and then in step 59, it is determined whether the basic fuel injection time TP is shorter than the set time TPO. When TP<TPO, the process proceeds to step 60 where i is set to 1 indicating the low-load fuel injection valve 10. The process then proceeds to step 63. - On the other hand, when TF'≧TPO, the process proceeds to step 61, where it is determined whether or not the abnormality flag F2 is set. When the abnormality flag F2 has been reset, the process proceeds to step 62, where 1 is set to 2 indicating the high-load fuel injection valve 11. Then step 63
Proceed to.

ステップ63では次式に基いて燃料噴射時間TAUが計
算される。
In step 63, the fuel injection time TAU is calculated based on the following equation.

TALI=Ki・TP−FAF −C−Gl次いでステ
ップ64では次式に基いて学習係数Giが計算される。
TALI=Ki*TP-FAF-C-Gl Next, in step 64, a learning coefficient Gi is calculated based on the following equation.

Gi=ΣFAFP/ 4 この学習係数GiはバックアップRAM 25に記憶さ
れる。
Gi=ΣFAFP/4 This learning coefficient Gi is stored in the backup RAM 25.

次いでステップ65ではiが1であるか否かが判別され
る。i=1のときはステップ66に進んで低負荷用燃料
噴射弁10から燃料を噴射させ、j=2のときはステッ
プ67に進んで高負荷用燃料噴射弁11から燃料を噴射
させる。
Next, in step 65, it is determined whether i is 1 or not. When i=1, the process proceeds to step 66, where fuel is injected from the low-load fuel injection valve 10, and when j=2, the process proceeds to step 67, where fuel is injected from the high-load fuel injection valve 11.

一方、異常フラグF2がセットされているときにはステ
ップ61からステップ68に進んで1が1とされる。次
いでステップ69において機関回転数Nが300Or、
p、 mよりも低いか否かが判別される。
On the other hand, if the abnormality flag F2 is set, the process proceeds from step 61 to step 68, where 1 is set to 1. Next, in step 69, the engine speed N is 300Or;
It is determined whether or not p and m are lower.

N <300Or、 p、 mのときにはステップ63
に進む。従って高負荷用燃料噴射弁11の噴射系に異常
があるときにはN <300Or、 pomであればT
P2TPOであっても低負荷用燃料噴射弁10から燃料
が噴射される。
When N < 300Or, p, m, step 63
Proceed to. Therefore, if there is an abnormality in the injection system of the high-load fuel injection valve 11, N < 300 Or, and if pom, T
Even in P2TPO, fuel is injected from the low-load fuel injection valve 10.

一方、N k 3000r、 p、 mのときには燃料
の噴射が停止される。
On the other hand, when Nk is 3000r, p, and m, fuel injection is stopped.

〔発明の効果〕〔Effect of the invention〕

複数の燃料噴射弁を用いた場合であってもいずれの燃料
噴射弁の噴射系が異常であるかを判断することができる
Even when a plurality of fuel injection valves are used, it is possible to determine which fuel injection valve's injection system is abnormal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は発明の構成図、第2図は2サイクル内燃機関を
図解的に示した全体図、第3図はシリンダヘッドの底面
図、第4図は第2図に示す内燃機関の側面断面図、第5
図はフィードバック補正係数FAFを計算するためのフ
ローチャート、第6図はフィードバック補正係数FAF
の変化を示す線図、第7図はタイムチャート、第8図は
基本燃料噴射時間を示す図、第9図および第10図はメ
インルーチンヲ示スフローチャートである。 4・・・燃焼室、     10・・・第1燃料噴射弁
、11・・・第2燃料噴射弁、 19・・・酸素濃度検出器。
Fig. 1 is a block diagram of the invention, Fig. 2 is an overall diagram schematically showing a two-stroke internal combustion engine, Fig. 3 is a bottom view of the cylinder head, and Fig. 4 is a side cross-section of the internal combustion engine shown in Fig. 2. Figure, 5th
The figure is a flowchart for calculating the feedback correction coefficient FAF, and Fig. 6 shows the feedback correction coefficient FAF.
7 is a time chart, FIG. 8 is a diagram showing basic fuel injection time, and FIGS. 9 and 10 are flow charts showing the main routine. 4... Combustion chamber, 10... First fuel injection valve, 11... Second fuel injection valve, 19... Oxygen concentration detector.

Claims (1)

【特許請求の範囲】[Claims] 第1の燃料噴射弁および第2の燃料噴射弁からなる一対
の燃料噴射弁と、第1の燃料噴射弁或いは第2の燃料噴
射弁から選択的に燃料を噴射させる噴射制御手段と、機
関の運転状態に応じた基本燃料噴射時間を算出する噴射
時間算出手段と、機関排気通路内に設けた酸素濃度検出
器の出力信号に基いて空燃比が目標空燃比となるように
上記基本燃料噴射時間を補正する補正手段と、第1燃料
噴射弁からの燃料噴射時および第2燃料噴射弁からの燃
料噴射時に上記補正手段による補正値から目標空燃比に
対する空燃比のずれを算出する空燃比のずれ算出手段と
、第1燃料噴射弁からの燃料噴射時に空燃比のずれが予
め定められた範囲内にありかつ第2燃料噴射弁からの燃
料噴射時に空燃比のずれが予め定められた範囲を越えた
ときは第2燃料噴射弁の噴射系に異常があると判断し、
第2燃料噴射弁からの燃料噴射時に空燃比のずれが予め
定められた範囲内にありかつ第1燃料噴射弁からの噴射
時に空燃比のずれが予め定められた範囲を越えたときは
第1燃料噴射弁の噴射系に異常があると判断する判断手
段とを具備した燃料噴射系の異常検出装置。
a pair of fuel injection valves consisting of a first fuel injection valve and a second fuel injection valve; an injection control means for selectively injecting fuel from the first fuel injection valve or the second fuel injection valve; An injection time calculation means that calculates a basic fuel injection time according to the operating condition, and an injection time calculation means that calculates the basic fuel injection time so that the air-fuel ratio becomes the target air-fuel ratio based on the output signal of an oxygen concentration detector installed in the engine exhaust passage. and an air-fuel ratio deviation that calculates the deviation of the air-fuel ratio from the target air-fuel ratio from the correction value by the correction means when fuel is injected from the first fuel injection valve and when fuel is injected from the second fuel injection valve. a calculation means; the air-fuel ratio deviation is within a predetermined range when fuel is injected from the first fuel injection valve, and the air-fuel ratio deviation exceeds the predetermined range when fuel is injected from the second fuel injection valve; If this occurs, it is determined that there is an abnormality in the injection system of the second fuel injector,
If the air-fuel ratio deviation is within a predetermined range when fuel is injected from the second fuel injection valve, and the air-fuel ratio deviation exceeds the predetermined range when fuel is injected from the first fuel injection valve, the first fuel injection valve An abnormality detection device for a fuel injection system, comprising a determining means for determining that there is an abnormality in the injection system of a fuel injection valve.
JP4130890A 1990-02-23 1990-02-23 Abnormality detecting device for fuel injection system Pending JPH03246342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4130890A JPH03246342A (en) 1990-02-23 1990-02-23 Abnormality detecting device for fuel injection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4130890A JPH03246342A (en) 1990-02-23 1990-02-23 Abnormality detecting device for fuel injection system

Publications (1)

Publication Number Publication Date
JPH03246342A true JPH03246342A (en) 1991-11-01

Family

ID=12604869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4130890A Pending JPH03246342A (en) 1990-02-23 1990-02-23 Abnormality detecting device for fuel injection system

Country Status (1)

Country Link
JP (1) JPH03246342A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6694962B2 (en) * 2001-10-26 2004-02-24 Mitsubishi Denki Kabushiki Kaisha Abnormality diagnosis apparatus of internal combustion engine
JP2006258024A (en) * 2005-03-18 2006-09-28 Toyota Motor Corp Control device of internal combustion engine
JP2006258031A (en) * 2005-03-18 2006-09-28 Toyota Motor Corp Abnormality determination device of internal combustion engine
WO2007129599A1 (en) * 2006-05-01 2007-11-15 Yamaha Hatsudoki Kabushiki Kaisha Gas fuel internal combustion engine
JP2009180171A (en) * 2008-01-31 2009-08-13 Denso Corp Abnormality diagnostic device for internal combustion engine
JP2009185740A (en) * 2008-02-07 2009-08-20 Denso Corp Abnormality diagnosing device of internal combustion engine
JP2009293436A (en) * 2008-06-03 2009-12-17 Nissan Motor Co Ltd Abnormality diagnosis device of fuel injection valve
JP2010168905A (en) * 2009-01-20 2010-08-05 Denso Corp Air-fuel ratio learning control device for internal combustion engine
JP2014031723A (en) * 2012-08-01 2014-02-20 Toyota Motor Corp Diagnosis device for internal combustion engine
JP2015135060A (en) * 2014-01-16 2015-07-27 本田技研工業株式会社 Fuel supply system fault determination apparatus
DE102009000269B4 (en) * 2008-01-31 2018-02-08 Denso Corporation Abnormality diagnostic devices of an internal combustion engine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6694962B2 (en) * 2001-10-26 2004-02-24 Mitsubishi Denki Kabushiki Kaisha Abnormality diagnosis apparatus of internal combustion engine
JP4706292B2 (en) * 2005-03-18 2011-06-22 トヨタ自動車株式会社 Control device for internal combustion engine
JP2006258024A (en) * 2005-03-18 2006-09-28 Toyota Motor Corp Control device of internal combustion engine
JP2006258031A (en) * 2005-03-18 2006-09-28 Toyota Motor Corp Abnormality determination device of internal combustion engine
WO2007129599A1 (en) * 2006-05-01 2007-11-15 Yamaha Hatsudoki Kabushiki Kaisha Gas fuel internal combustion engine
JPWO2007129599A1 (en) * 2006-05-01 2009-09-17 ヤマハ発動機株式会社 Gas fuel internal combustion engine
JP2009180171A (en) * 2008-01-31 2009-08-13 Denso Corp Abnormality diagnostic device for internal combustion engine
DE102009000269B4 (en) * 2008-01-31 2018-02-08 Denso Corporation Abnormality diagnostic devices of an internal combustion engine
JP2009185740A (en) * 2008-02-07 2009-08-20 Denso Corp Abnormality diagnosing device of internal combustion engine
JP2009293436A (en) * 2008-06-03 2009-12-17 Nissan Motor Co Ltd Abnormality diagnosis device of fuel injection valve
JP2010168905A (en) * 2009-01-20 2010-08-05 Denso Corp Air-fuel ratio learning control device for internal combustion engine
JP2014031723A (en) * 2012-08-01 2014-02-20 Toyota Motor Corp Diagnosis device for internal combustion engine
JP2015135060A (en) * 2014-01-16 2015-07-27 本田技研工業株式会社 Fuel supply system fault determination apparatus

Similar Documents

Publication Publication Date Title
US4930479A (en) Irregular combustion determining device for an internal combustion engine
US5209214A (en) Air fuel ratio control apparatus for engine
JP5278466B2 (en) Cylinder air-fuel ratio variation abnormality detection device
JPS58152147A (en) Air-fuel ratio control method for internal combustion engine
US6397830B1 (en) Air-fuel ratio control system and method using control model of engine
JPH03246342A (en) Abnormality detecting device for fuel injection system
JP2836270B2 (en) Abnormal diagnostic device for fuel injection system
JPS58217746A (en) Feedback control method of air-fuel ratio for internal-combustion engine
JPS5934441A (en) Control method of air-fuel ratio of internal-combustion engine
JP3959832B2 (en) Air-fuel ratio control device for internal combustion engine
JP2684885B2 (en) Fuel injection amount control device for internal combustion engine
JP3170046B2 (en) Air-fuel ratio learning method for internal combustion engine
JPH02256853A (en) Intake pressure detection self-diagnosis device for internal combustion engine
JP2778375B2 (en) Engine air-fuel ratio control device
JPS6073022A (en) Controller for internal-combustion engine
JP2689779B2 (en) Fuel injection amount control device for internal combustion engine
JPH0255618B2 (en)
JP2855381B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0528366Y2 (en)
JPH05156988A (en) Air fuel ratio control device of internal combustion engine
JPH0432937B2 (en)
JPH08312410A (en) Controlling method for air-fuel ratio of internal combustion engine
JPS6062641A (en) Air-fuel ratio control method for internal-combustion engine
JPH03258945A (en) Air-fuel ratio feedback control device for internal combustion engine
JPS6060231A (en) Air-fuel ratio learning control method for internal-combustion engine