JPS6073022A - Controller for internal-combustion engine - Google Patents

Controller for internal-combustion engine

Info

Publication number
JPS6073022A
JPS6073022A JP17998183A JP17998183A JPS6073022A JP S6073022 A JPS6073022 A JP S6073022A JP 17998183 A JP17998183 A JP 17998183A JP 17998183 A JP17998183 A JP 17998183A JP S6073022 A JPS6073022 A JP S6073022A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
sensor
output signal
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17998183A
Other languages
Japanese (ja)
Inventor
Minoru Takahashi
稔 高橋
Kiyoshi Yagi
八木 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP17998183A priority Critical patent/JPS6073022A/en
Publication of JPS6073022A publication Critical patent/JPS6073022A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/148Using a plurality of comparators

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve fuel consumption and emission by prohibiting air-fuel ratio feedback control when anomaly is generated in the output signal of an O2 sensor for detecting the concentration of exygen. CONSTITUTION:An O2 sensor 13 for detecting the concentration of oxygen in the exhaust pipe of an internal-combustion engine 1 is provided. Comparators 16 and 17 compare the outputs of low-pass filters 14 and 15 with an activity judging level L1 and a rich/lean judging level L2 respectively, and during the time when each output signal of the low-pass filters 14 and 15 is larger, each output signal (a), (b) is 1. When it is judged that the output signal (a) becomes 1, and active state is formed, and the output signal (b) is zero, it is judged that the output signal of the O2 sensor 13 is anomalous, and air-fuel ratio feedback control is prohibited. Thus, fuel consumption and emission can be kept in desirable state.

Description

【発明の詳細な説明】 発明の技術分野 本発明は酸素濃度を検出する02センサの検出結果に基
づいて空燃比フィードバック制御を行ない、実際の空燃
比を理論空燃比に近づける内燃機関の制御装置に関する
ものでめる。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a control device for an internal combustion engine that performs air-fuel ratio feedback control based on the detection result of an 02 sensor that detects oxygen concentration, and brings the actual air-fuel ratio closer to the stoichiometric air-fuel ratio. I can buy things.

従来技術と問題点 従来より内燃機関の排気ガスに含まれる酸素濃度を検出
する02センサを設け、該02センサの検出結果に基づ
いて空燃比に乍がリッチ状態であるかリーン状態でるる
かを判断し、判断結果に基づいて空燃比フィードバック
制御を行ない、実際の空燃比を理論空燃比に近づけるよ
うにしている。
Prior Art and Problems Conventionally, an 02 sensor is provided to detect the oxygen concentration contained in the exhaust gas of an internal combustion engine, and based on the detection result of the 02 sensor, it is determined whether the air-fuel ratio is in a rich state or a lean state. Based on the judgment result, air-fuel ratio feedback control is performed to bring the actual air-fuel ratio closer to the stoichiometric air-fuel ratio.

第1図は空燃比A/Fの状態と空燃比補正係数FAFの
変化状態との関係を示す図でラシ、空燃比A/Fがリッ
チ状態となると、02センサの応答遅れを考慮して空燃
比補正係数FAFを一定量スキ。
Figure 1 shows the relationship between the state of the air-fuel ratio A/F and the change state of the air-fuel ratio correction coefficient FAF. Skip the fuel ratio correction coefficient FAF by a certain amount.

プさせた後、所定の傾きで減少させ、また空燃比A/F
がリーン状態となると空燃比補正係数FAFを一定量ス
キップさせた後、所定の傾きで増加させるものでるる。
After increasing the air-fuel ratio A/F, decrease it at a predetermined slope, and
When the engine is in a lean state, the air-fuel ratio correction coefficient FAF is skipped by a certain amount and then increased at a predetermined slope.

と′ころで燃料噴射量TAUは基本噴射量TPに空燃比
補正係数FAFとを乗算することによ請求まるものであ
るから、空燃比補正係数FAFを上述したように変化さ
せることにょシ、実際の空燃比を理論空燃比に近づける
ことができる。
By the way, since the fuel injection amount TAU is calculated by multiplying the basic injection amount TP by the air-fuel ratio correction coefficient FAF, it is important to change the air-fuel ratio correction coefficient FAF as described above. The air-fuel ratio can be brought close to the stoichiometric air-fuel ratio.

このような空燃比フィードバック制御を行なうことによ
シ、エミッションや燃費を良好に保つことができるが、
次のような欠点があった。即ち、経年変化等によシ02
センサに異常が発生した場合、或は02センサのアース
の接触不良が発生した場合等は、空燃比、4/Fがリッ
チ状態であるかり一ン状態でらるかの判断結果が誤った
ものとなシ、この誤った判断結果に基づいて空燃比フィ
ードパ、り補正を行なったのでは、リッチ状態の場合に
燃料噴射量TAUを増加させてしまったシ、リーン状態
の場合に燃料噴射量TAU f減少させてしまうことが
あシ、この為エミッションや空燃比に悪影響を与えてし
まう欠点があった。
By performing such air-fuel ratio feedback control, it is possible to maintain good emissions and fuel efficiency, but
It had the following drawbacks. In other words, due to aging etc.
If an abnormality occurs in the sensor, or if there is a poor contact with the ground of the 02 sensor, the judgment result as to whether the air-fuel ratio, 4/F, is in a rich state or in a single state may be incorrect. However, if the air-fuel ratio feed ratio correction was performed based on this incorrect judgment result, the fuel injection amount TAU would increase in the rich state, and the fuel injection amount TAU would increase in the lean state. This has the drawback of causing a decrease in f, which has a negative effect on emissions and the air-fuel ratio.

発明の目的 本発明は前述の如き欠点を改善したものであり、七の目
的は02センサの出力信号に異常が発生した場合、空燃
比フィードバック補正を禁止することにより、エミッシ
ョンや空燃比に悪影響が及ばないようにすることにある
Purpose of the Invention The present invention has been made to improve the above-mentioned drawbacks, and the seventh purpose is to inhibit the air-fuel ratio feedback correction when an abnormality occurs in the output signal of the 02 sensor, thereby preventing an adverse effect on emissions and the air-fuel ratio. The goal is to prevent this from happening.

し、判断手段101はo2センサ100の出力信号に基
づいて02センサ100の出力信号に異常が発生したか
否かを判断する。制御手段102は判断手段101が0
2センサの出力信号に異常が発生したと判断した場合は
、空燃比フィードバック制御を禁止する。
Based on the output signal of the O2 sensor 100, the determining means 101 determines whether or not an abnormality has occurred in the output signal of the O2 sensor 100. The control means 102 determines that the determination means 101 is 0.
If it is determined that an abnormality has occurred in the output signals of the two sensors, air-fuel ratio feedback control is prohibited.

発明の実施例 第3図は本発明の実施例のブロック線図でらり5.1は
内燃機関、2はエアクリーナ、3はエアフローメータ、
4はスロットルチャンバ、5はインテークマニホールド
、6はインジェクタ、7はスロットル弁、8はマイクロ
プロセッサ、9はデータ入力部、10はデータ出力部、
11はメモリ、12は冷却水の温度を検出する水温セン
ナ、13は内燃機関1の排気管内の酸素濃度を検出する
02センサ、14、15は02センサの出力信号のノイ
ズを除去するローパスフィルタでhb、o2センサの出
力信号の周波数は0.3〜3H2程度であるので、遮断
周波数は10H2に設定しておくものでおる。16.1
7はそれぞれローパスフィルタ14.15の出力信号と
活性判定レベルL1.IJッテ/リーン判定レベルL2
とを比較し、ローパスフィルタ14.15の出力信号の
方が大きい間、その出力信号α、bを“1”とする比較
器でなる。尚、活性判定レベルL1とリーン/リッチ判
定レベルL2はLl>L2の関係を有するように設定し
ておくものでらる。
Embodiment of the Invention FIG. 3 is a block diagram of an embodiment of the invention. 5.1 is an internal combustion engine, 2 is an air cleaner, 3 is an air flow meter,
4 is a throttle chamber, 5 is an intake manifold, 6 is an injector, 7 is a throttle valve, 8 is a microprocessor, 9 is a data input section, 10 is a data output section,
11 is a memory, 12 is a water temperature sensor that detects the temperature of cooling water, 13 is an 02 sensor that detects the oxygen concentration in the exhaust pipe of the internal combustion engine 1, and 14 and 15 are low-pass filters that remove noise from the output signal of the 02 sensor. Since the frequency of the output signals of the hb and o2 sensors is approximately 0.3 to 3H2, the cutoff frequency is set to 10H2. 16.1
7 are the output signals of the low-pass filters 14 and 15 and the activation determination level L1. IJette/Lean judgment level L2
The output signals α and b of the low-pass filters 14 and 15 are set to "1" while the output signals of the low-pass filters 14 and 15 are larger. Note that the activity determination level L1 and the lean/rich determination level L2 are set to have a relationship of Ll>L2.

吸入空気はエアクリーナ2よシェアフローメータ6、ス
ロットルチャンバ4f、経てインテークマニホールド5
の各ブランチよシ各シリンダに供給され、燃料はインジ
ェクタ6によシ噴射される。
Intake air flows from the air cleaner 2 to the shear flow meter 6, to the throttle chamber 4f, and then to the intake manifold 5.
The fuel is supplied to each branch and each cylinder, and the fuel is injected by an injector 6.

また、吸入空気の流れはアクセルペタルと連動するスロ
ットル弁7によフ制御される。
Further, the flow of intake air is controlled by a throttle valve 7 that is linked to an accelerator pedal.

また、第4図はマイクロプロセッサ8の処理内容を示す
フローチャートでラシ、以下第4図を参照して第3図の
動作を説明する。
Further, FIG. 4 is a flowchart showing the processing contents of the microprocessor 8, and the operation of FIG. 3 will be explained below with reference to FIG.

マイクロプロセッサ8は先ず比較器16の出力信号αが
“1”となったか否かを判断しくステップS旬、信号a
が“1″となったと判断した場合は、02センサ13が
活性状態になったとしてステップS2の処理を行なう。
In step S, the microprocessor 8 first determines whether the output signal α of the comparator 16 has become "1" or not.
If it is determined that the 02 sensor 13 has become "1", it is assumed that the 02 sensor 13 has become active and the process of step S2 is performed.

ステップS2では信号αが“1″で必るか否かを判断し
、α=“1”であると判断した場合は比較器17の出力
信号すが“1”でおるか否かを判断しくステップE15
)、b=“0″であると判断した場合は02センサ13
の出力信号に異常があると判断し、空燃比補正係数FA
Ffr1」とし、空燃比フィードバック制御を禁止する
ものである。即ち、02センサ13のアース接触不良が
発生すると、02センサ13の出力信号は第5図(A)
に示すようになplまた、ローパスフィルタ14.15
の出力信号c、dハローパスフィルタ14.15の充電
、放電時定数の違いによシ同図(B)に示すように、信
号Cが活性レベルL1よp大となシ、信号dが活性レベ
ルL2よp小となることがある。このような場合、比較
器16.17の出力信号α、6は“1″、“0”となる
ので、マイクロプロセッサ8はステップS2゜S3で信
号α、bがそれぞれ“1# 、 MQHであると判断し
た場合、02センサの出力信号に異常が発生したとして
、ステップS4の処理を行ない、空燃比フィードバック
制御を禁止するものである。
In step S2, it is determined whether the signal α is necessarily “1” or not, and if it is determined that α = “1”, it is determined whether the output signal of the comparator 17 is necessarily “1” or not. Step E15
), if it is determined that b = “0”, the 02 sensor 13
It is determined that there is an abnormality in the output signal of
Ffr1'' and prohibits air-fuel ratio feedback control. That is, when a ground contact failure occurs in the 02 sensor 13, the output signal of the 02 sensor 13 will be as shown in Fig. 5 (A).
Also, low pass filter 14.15 as shown in pl
Due to the difference in the charging and discharging time constants of the output signals c and d of the halo pass filter 14 and 15, as shown in the same figure (B), when the signal C is p greater than the activation level L1, the signal d becomes active. It may be p smaller than level L2. In such a case, the output signals α and 6 of the comparators 16 and 17 are “1” and “0”, so the microprocessor 8 determines in steps S2 and S3 that the signals α and b are “1#” and “MQH”, respectively. If it is determined that an abnormality has occurred in the output signal of the 02 sensor, the process of step S4 is performed and air-fuel ratio feedback control is prohibited.

ステップS2の判断結果がNoの場合、もしくはステッ
プS2の判断結果がYESでステップS3の判断結果が
YESの場合、マイクロプロセッサ8は内部に設けられ
ているカウンタBのカウント値CEが一定値KB以上で
るるか否かを判断する(ステップS5)。カウンタBの
カウント値CBは後の説明から判るように、比較器17
から一定値以上の周波数の信号すが連続して出力された
時間に対応するもので必p1マイクロプロセッサ8はス
テップS5でCB≧KBでるると判断した場合、Q2セ
ンサ13に異常が発生したとしてステップS4の処理を
行ない、空燃比フィードバック制御を禁止するものでめ
る。また、CE<KEであると判断した場合は、マイク
ロプロセッサ8は内燃機関の状態が空燃比フィードバッ
ク制御実行条件(F/B条件)を満足しているか否かを
判断する(ステップS6)。
If the determination result in step S2 is No, or if the determination result in step S2 is YES and the determination result in step S3 is YES, the microprocessor 8 determines that the count value CE of the internal counter B is equal to or greater than a certain value KB. It is determined whether or not it will appear (step S5). As will be seen later, the count value CB of the counter B is calculated by the comparator 17.
If the P1 microprocessor 8 determines in step S5 that CB≧KB, it is assumed that an abnormality has occurred in the Q2 sensor 13. The process of step S4 is performed to prohibit air-fuel ratio feedback control. If it is determined that CE<KE, the microprocessor 8 determines whether the state of the internal combustion engine satisfies air-fuel ratio feedback control execution conditions (F/B conditions) (step S6).

F/B条件を満足しているか否かの判断は、例えば水温
センサ12の検出結果に基づいて冷却水の温度が所定温
度以上でろれはF/E条件を満足していると判断し、所
定温度以下であればF/B条件を満足していないと判断
するものである。
The determination as to whether the F/B condition is satisfied is made by, for example, determining that the F/E condition is satisfied if the cooling water temperature is equal to or higher than a predetermined temperature based on the detection result of the water temperature sensor 12. If it is below the temperature, it is determined that the F/B conditions are not satisfied.

F/B条件を満足していないと判断した場合はカウンタ
Aのカウント値CAヲ「0」としくステップ算(ステッ
プ515)及び噴射制御(ステップ516)を行ない、
この後、ステップS2の処理に戻る。
If it is determined that the F/B conditions are not satisfied, the count value CA of counter A is set to "0" and step calculation (step 515) and injection control (step 516) are performed.
After this, the process returns to step S2.

尚、カウンタAはマイクロプロセッサ8の内部に設けら
れ、内部クロックをカウントするものでおる。また、F
/B条件を満足していると判断した場合は、マイクロプ
ロセッサ8は今回の処理サイクルに於ける信号すの値と
前回の処理サイクルに於ける信号すの値とが一致するか
否か全判断する(ステップS9)。
Note that the counter A is provided inside the microprocessor 8 and counts an internal clock. Also, F
If it is determined that the /B condition is satisfied, the microprocessor 8 makes a full judgment as to whether or not the value of the signal S in the current processing cycle matches the value of the signal S in the previous processing cycle. (Step S9).

一致しないと判断した場合は、マイクロプロセッサ8は
カラ/りAのカウント値CAが一定値KA以上か否かを
判断しくステップ810 ) 、 CA<KAでδると
判断した場合は、比較器17の出力信号すの周波数が所
定値以上であるとしてカウンタBのカウント値CEを+
1しくステップ511)、次いでカウンタAのカウント
値CAを「0」とする(ステップ513)。また、CA
≧KAでらると判断した場合ハカウンタBのカウント値
CBを「0」としくステップ512)、次いでカウンタ
Aのカウント値CAヲ「0」としくステップ512)、
次いで空燃比補正係数FAF 請求める(ステップ51
4)。次いでマイクロプロセッサ8は空燃比補正係数F
AFと基本噴射量TPとに基づいて燃料噴射量TAUを
め(ステップS15 ) 、次いでステップS15でめ
た燃料噴射量TAUに基づいた噴射制御を行ない(ステ
ップ516)、この後、ステップS2の処理に戻るもの
である。
If it is determined that they do not match, the microprocessor 8 determines whether the count value CA of the color/res A is greater than or equal to a certain value KA (step 810 ), and if it is determined that CA<KA and δ, the comparator 17 Assuming that the frequency of the output signal S is higher than a predetermined value, the count value CE of counter B is +
First, step 511), and then set the count value CA of counter A to "0" (step 513). Also, CA
If it is determined that ≧KA, the count value CB of the counter B is set to "0" (step 512), and then the count value CA of the counter A is set to "0" (step 512),
Next, the air-fuel ratio correction coefficient FAF can be requested (step 51).
4). Next, the microprocessor 8 calculates the air-fuel ratio correction coefficient F.
The fuel injection amount TAU is determined based on the AF and the basic injection amount TP (step S15), and then injection control is performed based on the fuel injection amount TAU determined in step S15 (step 516). After this, the process of step S2 is performed. It returns to

発明の詳細 な説明したように、本発明は02センサの出力信号に異
常が発生した場合、空燃比フィードバック制御を禁止す
るものであるから、02センサの出力信号に異常が発生
した場合に於いても従来装置と比較すると燃費やエミッ
ションを良好に保つことができる利点がある。
As described in detail, the present invention prohibits air-fuel ratio feedback control when an abnormality occurs in the output signal of the 02 sensor. It also has the advantage of maintaining good fuel efficiency and emissions compared to conventional equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は空燃比の状態と空燃比補正係数との関係を示す
図、第2図は本発明の構成図、第6図は本発明の実施例
のブロック線図、第4図はマイクロプロセッサ8の処理
内容をしめずフローチャート、第5図は装置各部信号の
波形図でるる。 1は内燃機関、2はエアクリーナ、3はエアフローノー
1’、4Uスロツトルチヤンノ<、5Uインテークマニ
ホールド、6はインジェクタ、7はスロットル弁、8は
マイクロプロセッサ、9はデータ入力部、10はデータ
出力部、11はメモIJ、12は水温センサ、16は0
2センサ、14.15はローノ(スフィルタ、16.1
7は比較器、101は判断手段、102は制御手段であ
る。 特許出願人 富士通テン株式会社 代理人弁理士玉蟲久五部(外1名) 第1図 第2図 第5図 第3図
Fig. 1 is a diagram showing the relationship between the air-fuel ratio state and the air-fuel ratio correction coefficient, Fig. 2 is a block diagram of the present invention, Fig. 6 is a block diagram of an embodiment of the present invention, and Fig. 4 is a microprocessor. 8 is a flowchart showing the processing contents, and FIG. 5 is a waveform diagram of signals of each part of the device. 1 is an internal combustion engine, 2 is an air cleaner, 3 is an air flow no. 1', 4U throttle valve, 5U intake manifold, 6 is an injector, 7 is a throttle valve, 8 is a microprocessor, 9 is a data input unit, 10 is data Output part, 11 is memo IJ, 12 is water temperature sensor, 16 is 0
2 sensors, 14.15 is Ronos filter, 16.1
7 is a comparator, 101 is a judgment means, and 102 is a control means. Patent Applicant Fujitsu Ten Ltd. Representative Patent Attorney Gobe Tamamushi (1 other person) Figure 1 Figure 2 Figure 5 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 酸素濃度に対応した信号を出力する02センサを備え、
該02センサの検出結果に基づいて実際の空燃比を理論
空燃比に近づける空燃比フィートノくツク制御を行なう
内燃機関の制御装置に於いて、前記02センサの出力信
号を所定のレベルで比較する第1の比較手段と、前記0
2センサの出力信号を所定のレベルで比較する第2の比
較手段と、該第1゜第2の比較手段の論理によシ異常と
判断する第1の判断手段と、前記第1の比較手段あるい
は前記第2の比較手段の出力が所定の周波数よシ高いこ
とによシ異常と判断する第2の判断手段と、該第1の判
断手段あるいは第2の判断手段が前記02センサの出力
信号に異常がらると判断した場合、空燃比フィードバッ
ク制御を禁止する制御手段とを備えたこと′を特徴とす
る内燃機関の制御装置。
Equipped with an 02 sensor that outputs a signal corresponding to oxygen concentration,
In an internal combustion engine control device that performs air-fuel ratio foot check control to bring an actual air-fuel ratio closer to the stoichiometric air-fuel ratio based on the detection result of the 02 sensor, there is a control device that compares the output signal of the 02 sensor at a predetermined level. 1 comparison means and the 0
a second comparing means for comparing the output signals of the two sensors at predetermined levels; a first determining means for determining that there is an abnormality based on the logic of the first and second comparing means; and the first comparing means. Alternatively, a second determining means determines that there is an abnormality when the output of the second comparing means is higher than a predetermined frequency, and the first determining means or the second determining means detects the output of the 02 sensor. 1. A control device for an internal combustion engine, comprising: control means for prohibiting air-fuel ratio feedback control when it is determined that there is an abnormality in the internal combustion engine.
JP17998183A 1983-09-28 1983-09-28 Controller for internal-combustion engine Pending JPS6073022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17998183A JPS6073022A (en) 1983-09-28 1983-09-28 Controller for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17998183A JPS6073022A (en) 1983-09-28 1983-09-28 Controller for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6073022A true JPS6073022A (en) 1985-04-25

Family

ID=16075364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17998183A Pending JPS6073022A (en) 1983-09-28 1983-09-28 Controller for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6073022A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157254A (en) * 1985-12-28 1987-07-13 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine
US7900615B2 (en) * 2008-10-01 2011-03-08 Gm Global Technology Operations, Inc. Air-fuel imbalance detection based on zero-phase filtering
US9874167B2 (en) 2016-06-08 2018-01-23 GM Global Technology Operations LLC Control systems and methods for air fuel imbalance and cylinder deactivation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56118534A (en) * 1980-02-20 1981-09-17 Aisan Ind Co Ltd Air fuel ratio controller
JPS589264A (en) * 1981-07-06 1983-01-19 Matsushita Electric Ind Co Ltd Manufacture of magnetic tape cassette

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56118534A (en) * 1980-02-20 1981-09-17 Aisan Ind Co Ltd Air fuel ratio controller
JPS589264A (en) * 1981-07-06 1983-01-19 Matsushita Electric Ind Co Ltd Manufacture of magnetic tape cassette

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157254A (en) * 1985-12-28 1987-07-13 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine
US7900615B2 (en) * 2008-10-01 2011-03-08 Gm Global Technology Operations, Inc. Air-fuel imbalance detection based on zero-phase filtering
US9874167B2 (en) 2016-06-08 2018-01-23 GM Global Technology Operations LLC Control systems and methods for air fuel imbalance and cylinder deactivation

Similar Documents

Publication Publication Date Title
US7933710B2 (en) Abnormality diagnosis device of internal combustion engine
JP3498817B2 (en) Exhaust system failure diagnosis device for internal combustion engine
JPH07259613A (en) Failure detecting device of air-fuel ratio sensor
US6470674B1 (en) Deterioration detecting apparatus and method for engine exhaust gas purifying device
JP3759567B2 (en) Catalyst degradation state detection device
JPH09126015A (en) Air fuel ratio control device of internal combustion engine
JP2000073885A (en) Air-fuel ratio control device for internal combustion engine
US11067026B2 (en) Engine controller, engine control method, and memory medium
JPS58148238A (en) Electron control fuel injection method for internal- combustion engine
JP2836270B2 (en) Abnormal diagnostic device for fuel injection system
JP2002047973A (en) Fuel injection controller of direct injection engine
US9109524B2 (en) Controller for internal combustion engine
JPH03246342A (en) Abnormality detecting device for fuel injection system
JPS6073022A (en) Controller for internal-combustion engine
JP5461373B2 (en) Cylinder air-fuel ratio variation abnormality detection device
JP3823384B2 (en) Engine catalyst deterioration judgment device
US10072593B2 (en) Control device of internal combustion engine
JP2013241867A (en) Controller for internal combustion engine
JP3959832B2 (en) Air-fuel ratio control device for internal combustion engine
US6901920B2 (en) Engine control apparatus having cylinder-by-cylinder feedback control
JP3187534B2 (en) Air-fuel ratio correction method for internal combustion engine
JPH08291739A (en) Air-fuel ratio control device
JP2600772B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0746750Y2 (en) Air-fuel ratio controller for engine
JP2822716B2 (en) Exhaust gas recirculation control device for internal combustion engine