JPH0432937B2 - - Google Patents

Info

Publication number
JPH0432937B2
JPH0432937B2 JP16291483A JP16291483A JPH0432937B2 JP H0432937 B2 JPH0432937 B2 JP H0432937B2 JP 16291483 A JP16291483 A JP 16291483A JP 16291483 A JP16291483 A JP 16291483A JP H0432937 B2 JPH0432937 B2 JP H0432937B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
value
fuel
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16291483A
Other languages
Japanese (ja)
Other versions
JPS6053637A (en
Inventor
Itsuki Fujimura
Kazuyoshi Mizuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP16291483A priority Critical patent/JPS6053637A/en
Publication of JPS6053637A publication Critical patent/JPS6053637A/en
Publication of JPH0432937B2 publication Critical patent/JPH0432937B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning
    • F02D41/2483Methods of calibrating or learning characterised by the method used for learning restricting learned values

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は内燃機関の空燃比学習制御方法に関す
る。 〔従来の技術〕 従来より、排ガス中の一酸化炭素、炭化水素お
よび窒素酸化物を同時に浄化するために三元触媒
が用いられており、この三元触媒の浄化率を良好
にするためO2センサにより排ガス中の残留酸素
濃度を検出して吸気系の空燃比を推定し、吸気系
の空燃比を理論空燃比近傍に制御することが行な
われている。吸気系の空燃比を理論空燃比近傍に
制御するにあたつては、吸気管圧力PMと機関回
転数NEとによつて定まる基本燃料噴射時間τP
に、O2センサ出力を比較器で処理した空燃比信
号を比例積分して得られる第1図に示す空燃比フ
イードバツク補正係数FAFを乗算して燃料噴射
時間τを求め、この燃料噴射時間τを用いて燃料
噴射弁を開閉制御することにより行なわれてい
る。しかし、環境の変化や機関の経時変化等が生
じて空燃比フイードバツク補正係数FAFが変化
し、理論空燃比近傍に制御できないことが生じ
る。このため、空燃比の学習制御を導入し、O2
センサの出力反転時に、空燃比フイードバツク補
正係数FAFの平均値を演算し、この平均値が所
定値を中心として所定範囲内に収まるように空燃
比学習項を演算し、上述した基本燃料噴射量(時
間)に空燃比フイードバツク補正係数を乗算した
結果を更にこの学習項により補正して燃料噴射量
(時間)を求め、機関の空燃比を理論空燃比近傍
に制御することがなされている(例えば、特開昭
58−27819号公報参照)。 学習制御としては、例えば、次に示す式にて空
燃比を学習制御することが行われている。 τ=(τp+τg)・KG・FAF・F(τ)……(1) ただし、τpは基本噴射時間、τgはスロツトル
弁全閉時(アイドリング時)での学習項、KGは
スロツトル弁が開いているときでの学習項、F
(τ)は吸気温や暖機増量等に関する他の補正係
数である。また、学習項KGは吸気管圧力により
定められており、例えば、吸気管圧力が200〜300
mmHgのときKG1、300〜400mmHgのときKG2
400〜500mmHgのときKG3が採用される。 これらの学習項τg,KGは、空燃比フイードバ
ツク制御中でかつエンジン冷却水温が所定値(例
えば、70℃)を越えるとき次の方法によつて学習
される。空燃比フイードバツク補正係数FAFが
スキツプする毎に補正係数FAFのピーク値の相
加平均値FAFAV、すなわち、 FAFAV=A+B/2、B+C/2、C+D/2、 ……(2) を求め、スキツプ毎に下記の学習値を該当項に加
算する。
[Industrial Application Field] The present invention relates to an air-fuel ratio learning control method for an internal combustion engine. [Prior Art] Conventionally, a three-way catalyst has been used to simultaneously purify carbon monoxide, hydrocarbons, and nitrogen oxides in exhaust gas, and in order to improve the purification rate of this three-way catalyst, O 2 The air-fuel ratio of the intake system is estimated by detecting the residual oxygen concentration in the exhaust gas using a sensor, and the air-fuel ratio of the intake system is controlled to be close to the stoichiometric air-fuel ratio. In controlling the air-fuel ratio of the intake system to near the stoichiometric air-fuel ratio, the basic fuel injection time τP is determined by the intake pipe pressure PM and the engine speed NE.
is multiplied by the air - fuel ratio feedback correction coefficient FAF shown in FIG. This is done by controlling the opening and closing of fuel injection valves using However, due to changes in the environment, changes in the engine over time, etc., the air-fuel ratio feedback correction coefficient FAF changes, making it impossible to control the air-fuel ratio near the stoichiometric ratio. For this reason, we introduced air-fuel ratio learning control to reduce O 2
When the output of the sensor is reversed, the average value of the air-fuel ratio feedback correction coefficient FAF is calculated, and the air-fuel ratio learning term is calculated so that this average value falls within a predetermined range centered on the predetermined value, and the basic fuel injection amount ( The result of multiplying the air-fuel ratio feedback correction coefficient by the air-fuel ratio feedback correction coefficient is further corrected by this learning term to obtain the fuel injection amount (time), and the air-fuel ratio of the engine is controlled to be close to the stoichiometric air-fuel ratio (for example, Tokukai Akira
58-27819). As the learning control, for example, the air-fuel ratio is learned and controlled using the following formula. τ=(τp+τg)・KG・FAF・F(τ)……(1) However, τp is the basic injection time, τg is the learning term when the throttle valve is fully closed (idling), and KG is the learning term when the throttle valve is fully closed. Learning terms when there is, F
(τ) is another correction coefficient related to intake air temperature, warm-up increase, etc. In addition, the learning term KG is determined by the intake pipe pressure, for example, when the intake pipe pressure is 200 to 300.
KG 1 when mmHg, KG 2 when 300-400mmHg,
KG 3 is adopted when the temperature is 400-500mmHg. These learning terms τg and KG are learned by the following method when the engine cooling water temperature exceeds a predetermined value (for example, 70° C.) during air-fuel ratio feedback control. Every time the air-fuel ratio feedback correction coefficient FAF skips, calculate the arithmetic average value FAFAV of the peak value of the correction coefficient FAF, that is, FAFAV=A+B/2, B+C/2, C+D/2, ...(2), and calculate the value for each skip. Add the following learning value to the corresponding item.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、かかる従来の方法において、外乱によ
り、一定時間空燃比がリツチになり、その後、空
燃比がリーン側に戻る場合、学習項の値が小さく
されたまま保持されてしまう場合が生じる。この
ような場合、空燃比のリーン化を招き、従つてド
ライバビリテイの悪化やエミツシヨンの悪化を招
くという問題が発生する。 つまり、外乱による一時的な空燃比のリツチ化
が学習項の値を小さくするように働き、その後、
空燃比のリツチ化の原因である外乱が取り除かれ
て空燃比がリーン側に戻ると、そのリーン側に戻
つた空燃比に対しては学習項の値が小さな値にな
り過ぎている。従つて、学習項の値は空燃比を理
論空燃比(目標空燃比)よりリーンにするように
機能し、そのためO2センサ出力はリーンを示す
ので、空燃比フイードバツク補正係数FAFは増
加される。 この空燃比フイードバツク補正係数FAFの増
加途中に、フイードバツク補正係数FAFによる
リツチ化が、学習項の値によるリーン化を上回つ
て、空燃比が理論空燃比よりもリツチになれば、
その時点でO2センサ出力もリツチを示し(リー
ン出力からリツチ出力へ反転し)、空燃比フイー
ドバツク補正係数FAFがスキツプするので、学
習するタイミングとなり、学習項の値も増加さ
れ、以降、空燃比フイードバツク補正係数FAF
がスキツプ可能となつて、次第に、学習項の値が
適切な値まで増加して行き、学習項の値が小さく
されてままになることはない。 ところが外乱により学習項の値が小さくなり過
ぎていると、前述の空燃比補正係数FAFの増加
途中に、フイードバツク補正係数FAFによるリ
ツチ化が学習項の値によるリーン化を上回れず、
空燃比が理論空燃比よりもリーンのまま空燃比フ
イードバツク補正係数FAFが上限値(ガード値)
に達してしまうことがある(第2図)。前述のよ
うに、学習項の値はFAFのスキツプがあれば
(O2センサの出力が反転すれば)、そのときのフ
イードバツク補正値の平均値に応じて更新される
が、空燃比フイードバツク補正係数FAFが上限
値に達した後はFAFは上限値一定を取り続ける
ので、空燃比は変化できずに空燃比リーンが継続
し、O2センサ出力はリーンからリツチに反転し
ないので、FAFのスキツプもなく、よつて、学
習項の値が小さくされたままとなつてしまうので
ある。従つて、その後はリーンが継続し前述の問
題が発生するのである。 具体的に例を挙げれば、レーシングが繰り返さ
れたりすると、一定時間、一時的に空燃比の中心
がリツチにずれることがある。このずれは、まず
空燃比フイードバツク補正係数FAFに反映され
るので、FAFのスキツプ毎の相加平均値FAFAV
は空燃比の中心がリツチにずれた分だけ燃料を減
量する値(小さい値)となり、従つて、学習項の
値(学習値)が小さく変更されて行く。このよう
な状況が繰り返された後でレーシングの繰返しが
停止されたときには、暫くすると、レーシングに
よる空燃比のリツチ化が除かれ、空燃比の中心は
リツチではなくなるが、このときすでに学習値は
かなり小さな減量側の値となつている。 従つて、空燃比は学習値によりリーンにずれ、
O2センサ出力に基づく空燃比信号はリーンを示
すので、第2図に示すように、空燃比フイードバ
ツク補正係数FAFは次第に大きくなる。このと
き、学習値が非常に小さくなつていれば、FAF
は上限値まで達することになる。なお、この期間
ではFAFは単調に増加し、スキツプすることが
ないので、学習値は以前の小さい値のままであ
る。 ここで、FAFが上限値に達しても学習値が小
さいため、空燃比が理論空燃比よりリーンである
と(即ち、リツチにできないと)、その後も空燃
比信号はリツチに反転しないので、FAFはスキ
ツプすることがなく、よつて、学習値が更新され
ず、空燃比のリーン状態が続くことになる。 この結果、ドライバビリテイの悪化やエミツシ
ヨンの悪化を招くことになる。 本発明の目的は、異常状態で学習された誤学習
値を修正することができる内燃機関の空燃比学習
制御方法を提供することにある。 〔課題を解決するための手段〕 前記目的を達成するために、本発明では、機関
負荷と機関回転数とに基づいて求められる基本燃
料噴射量と、演算によつて求められる空燃比フイ
ードバツク補正係数及び空燃比学習項に基づいて
燃料噴射量を定めて、機関に供給する混合気の空
燃比が目標空燃比となるように制御する内燃機関
の空燃学習制御方法であつて、 排ガス中の残留酸素濃度を検出する酸素濃度セ
ンサの出力信号から、機関の空燃比が目標空燃比
よりリツチであるかリーンであるかを検出し、 検出された空燃比がリーンのとき空燃比をより
リツチ側に変更すべく、予め定められた上限値を
越えない範囲で空燃比フイードバツク補正係数を
増加させ、 検出された空燃比がリツチのとき空燃比をより
リーン側に変更すべく、空燃比フイードバツク補
正係数を減少させ、 前記検出された空燃比がリツチからリーンへ、
またはリツチからリーンへ変化する空燃比反転時
に前記空燃比フイードバツク補正係数の平均値を
求め、 前記空燃比反転時に前記平均値が第1の基準値
よりも大きいとき、空燃比学習項により空燃比を
リツチ側に補正すべく、空燃比学習項を増加さ
せ、 前記空燃比反転時に前記平均値が前記第1の基
準値よりも小さい第2の基準値より小さいとき、
空燃比学習項により空燃比をリーン側に補正すべ
く、空燃比学習項を減少させ、 もつて、前記平均値が前記第1の基準値および
第2の基準値で定まる所定の範囲内の値になるよ
うにした内燃機関の空燃比学習制御方法におい
て、 前記空燃比フイードバツク補正係数が所定値以
上で、 かつ前記検出空燃比がリーンであり、 かつ前記空燃比学習項が一定値以下のときに
は、前記空燃比学習項を徐々に大きくするよう制
御する。 〔作用〕 混合気の空燃比を制御するに際して、空燃比フ
イードバツク係数、酸素濃度センサの出力信号及
び空燃比学習項に従つて誤学習されたか否かを判
定し、空燃比フイードバツク補正係数が所定値以
上で、酸素濃度センサの出力信号が空燃比リーン
を示し、かつ、空燃比学習項が一定値以下のとき
には誤学習されたとして、空燃比学習項を強制的
に徐々に大きくする修正を行うようにしているの
で、空燃比のリーン化を防止することができる。 〔実施例〕 以下、本発明の一実施例として、アイドリング
時の空燃比学習制御方法を第3図乃至第6図に基
づいて説明する。エアクリーナ(図示せず)の下
流側には吸入空気の温度を検出して吸気温信号を
出力する吸気温センサ2が取付けられている。吸
気温センサ2の下流側にはスロツトル弁4が配置
され、このスロツトル弁4に連動しかつスロツト
ル弁全閉時にオンスロツトル弁が開いたときにオ
フとなるスロツトルスイツチ6が取付けられてい
る。スロツトル弁4の下流側には、サージタンク
8が設けられ、このサージタンク8にスロツトル
弁下流側の吸気管圧力を検出して吸気管圧力信号
を出力する圧力センサ10が取付けられている。
サージタンク8は、インテークマニホールド12
を介してエンジンの燃焼室14に連通されてい
る。このインテークマニホールド12には、燃料
噴射弁16が各気筒毎に取付けられている。エン
ジンの燃焼室14はエキゾーストマニホールドを
介して三元触媒を充填した触媒コンバータ(図示
せず)に連通されている。また、エンジンブロツ
クには、エンジンの冷却水温を検出して水温信号
を出力する水温センサ20が取付けられている。
エンジンの燃焼室14には、点火プラグ22の先
端が突出され、点火プラグ22はデイストリビユ
ータ24に接続されている。デイストリビユータ
24には、デイストリビユータハウジングに固定
されたピツクアツプとデイストリビユータシヤフ
トに固定されたシグナルロータとで各々構成され
た気筒判別センサ26およびエンジン回転数セン
サ28が設けられている。気筒判別センサ26は
例えば720℃A毎に気筒判別信号をマイクロコン
ピユータ等で構成された制御回路30へ出力し、
エンジン回転数センサ28は例えば30℃A毎にエ
ンジン回転数信号を制御回路30へ出力する。そ
して、デイストリビユータ24はイグナイタ32
に接続されている。なお、34は排ガス中の残留
酸度を検出して空燃比信号を出力するO2センサ
である。 制御回路30は第4図に示すように、中央処理
装置(CPU)36、リードオンリメモリ
(ROM)38、ランダムアクセスメモリ
(RAM)40、バツクアツプラム(Bu−RAM)
42、入出力ポート(I/O)44、アナログデ
イジタル変換器(ADC)46およびこれらを接
続するデータバスやコントロールバス等のバスを
含んで構成されている。I/O44には、気筒判
別信号、エンジン回転数信号、空燃比信号、スロ
ツトルスイツチ6から出力されるスロツトル信号
が入力されるとともに、駆動回路を介して燃料噴
射弁16の開閉時間を制御する燃料噴射信号およ
びイグナイタ32のオンオフ時間を制御する点火
信号が出力される。また、ADC46には、吸気
管圧力信号、吸気温信号および水温信号が入力さ
れてデイジタル信号に変換される。 次に上記のようなエンジンに本発明を適用した
場合の実施例の処理ルーチンを第5図に基づいて
説明する。このルーチンは、メインルーチンの中
で実行されるものであり、まずステツプ50でスロ
ツトル信号に基づいてアイドリング状態か否かを
判断する。アイドリング状態のときのみステツプ
52において空燃比フイードバツク補正係数FAF
が所定値以上か否かを判断し、所定値以上のとき
のみステツプ54でO2センサ出力信号がリーンを
示しているか、すなわちO2センサ出力を基準値
と比較する比較器から出力される空燃比信号がロ
ーレベルか否かを判断する。O2センサ出力が空
燃比リーンを示しているときは、ステツプ56でア
イドリング時の学習項τgの値が一定値(例えば、
負の値)以下か否かを判断する。そして、学習項
τgの値が一定値以下のときにのみステツプ58で
学習項τgの値を所定量X大きくする。 以上の結果、アイドリング状態、FAF≧所定
値、空燃比リーン、τg≦一定値のすべての条件
を満足するとき、メインルーチンを一回実行する
毎に学習項τgの値が所定量Xづつ大きくされ、
学習項τgの値が基準値に徐々に近づくように修
正される。 第6図に上記のように制御したときの空燃比フ
イードバツク補正係数FAF、学習項τgの値およ
び空燃比信号の変化を示す。 なお、上記では、吸気管圧力とエンジン回転数
とで基本燃料噴射時間を定めるエンジンについて
説明したが、本発明はこれに限定されるものでは
なく、エンジン1回転当りの吸入空気量とエンジ
ン回転数とで基本燃料噴射時間を定めるエンジン
にも適用することが可能である。この場合にはス
ロツトル弁上流側にエアフローメータを設けら
れ、このエアフローメータにより吸入空気量が検
出される。 〔発明の効果〕 以上説明したように、本発明によれば、空燃比
学習項が誤学習されたか否かを判定し、学習項が
誤学習されたときには学習項を徐々に大きくする
修正を行なうようにしたため、空燃比のリーン化
を防止することができ、ドライバビリテイの向上
およびエミツシヨンの低減に寄与することができ
る。
However, in such conventional methods, when the air-fuel ratio becomes rich for a certain period of time due to a disturbance and then returns to the lean side, the value of the learning term may be kept small. In such a case, a problem arises in that the air-fuel ratio becomes leaner, resulting in deterioration of drivability and deterioration of emission. In other words, the temporary enrichment of the air-fuel ratio due to disturbance acts to reduce the value of the learning term, and then
When the disturbance that caused the air-fuel ratio to become rich is removed and the air-fuel ratio returns to the lean side, the value of the learning term becomes too small for the air-fuel ratio that has returned to the lean side. Therefore, the value of the learning term functions to make the air-fuel ratio leaner than the stoichiometric air-fuel ratio (target air-fuel ratio), and therefore the O 2 sensor output indicates lean, so the air-fuel ratio feedback correction coefficient FAF is increased. During the increase of this air-fuel ratio feedback correction coefficient FAF, if the enrichment by the feedback correction coefficient FAF exceeds the leanness by the value of the learning term and the air-fuel ratio becomes richer than the stoichiometric air-fuel ratio,
At that point, the O 2 sensor output also indicates rich (reverses from lean output to rich output), and the air-fuel ratio feedback correction coefficient FAF skips, so it is the timing for learning, the value of the learning term is also increased, and from then on, the air-fuel ratio Feedback correction factor FAF
becomes skippable, and the value of the learning term gradually increases to an appropriate value, and the value of the learning term does not remain small. However, if the value of the learning term becomes too small due to a disturbance, the enrichment caused by the feedback correction coefficient FAF cannot exceed the leanness caused by the value of the learning term during the increase in the air-fuel ratio correction coefficient FAF mentioned above.
The air-fuel ratio remains leaner than the stoichiometric air-fuel ratio and the air-fuel ratio feedback correction coefficient FAF is the upper limit value (guard value)
(Figure 2). As mentioned above, if there is a skip in FAF (if the output of the O 2 sensor is reversed), the value of the learning term is updated according to the average value of the feedback correction value at that time, but the value of the learning term is updated according to the average value of the feedback correction value at that time. After FAF reaches the upper limit value, FAF continues to maintain the same upper limit value, so the air-fuel ratio cannot change and the air-fuel ratio continues to be lean, and the O 2 sensor output does not change from lean to rich, so there is no skipping of FAF. Therefore, the value of the learning term remains small. Therefore, the lean state continues after that and the above-mentioned problem occurs. To give a specific example, when racing is repeated, the center of the air-fuel ratio may temporarily shift to a rich degree for a certain period of time. This deviation is first reflected in the air-fuel ratio feedback correction coefficient FAF, so the arithmetic average value FAFAV for each skip of FAF is
is a value (a small value) that reduces the amount of fuel by the amount that the center of the air-fuel ratio shifts toward richness, and therefore, the value of the learning term (learning value) is changed to a smaller value. When racing is stopped after such a situation is repeated, after a while the enrichment of the air-fuel ratio due to racing will be removed and the center of the air-fuel ratio will no longer be rich, but by this time the learned value has already become quite large. The value is on the side of small reduction. Therefore, the air-fuel ratio shifts to lean depending on the learned value,
Since the air-fuel ratio signal based on the O 2 sensor output indicates lean, the air-fuel ratio feedback correction coefficient FAF gradually increases as shown in FIG. At this time, if the learning value becomes very small, FAF
will reach its upper limit. Note that during this period, the FAF increases monotonically and there is no skipping, so the learned value remains at the previous small value. Here, even if FAF reaches the upper limit value, the learned value is small, so if the air-fuel ratio is leaner than the stoichiometric air-fuel ratio (that is, it cannot be made richer), the air-fuel ratio signal will not change to rich even after that, so FAF is not skipped, so the learned value is not updated and the air-fuel ratio remains lean. As a result, drivability and emission deteriorate. An object of the present invention is to provide an air-fuel ratio learning control method for an internal combustion engine that can correct an erroneous learning value learned in an abnormal state. [Means for Solving the Problems] In order to achieve the above object, the present invention provides a basic fuel injection amount determined based on the engine load and engine speed, and an air-fuel ratio feedback correction coefficient determined by calculation. An air-fuel learning control method for an internal combustion engine, which determines the fuel injection amount based on the air-fuel ratio learning term and controls the air-fuel ratio of the air-fuel mixture supplied to the engine to be a target air-fuel ratio, the method comprising: The system detects whether the engine's air-fuel ratio is richer or leaner than the target air-fuel ratio from the output signal of the oxygen concentration sensor that detects oxygen concentration, and changes the air-fuel ratio to the richer side when the detected air-fuel ratio is lean. In order to change the air-fuel ratio, the air-fuel ratio feedback correction coefficient is increased within a range that does not exceed a predetermined upper limit value, and when the detected air-fuel ratio is rich, the air-fuel ratio feedback correction coefficient is increased in order to change the air-fuel ratio to a leaner side. decreasing the detected air-fuel ratio from rich to lean;
Alternatively, the average value of the air-fuel ratio feedback correction coefficient is determined when the air-fuel ratio changes from rich to lean, and when the average value is larger than the first reference value at the time of the air-fuel ratio reversal, the air-fuel ratio is adjusted by an air-fuel ratio learning term. In order to correct it to the rich side, the air-fuel ratio learning term is increased, and when the average value is smaller than a second reference value that is smaller than the first reference value at the time of the air-fuel ratio reversal,
In order to correct the air-fuel ratio to the lean side using the air-fuel ratio learning term, the air-fuel ratio learning term is decreased, so that the average value is a value within a predetermined range determined by the first reference value and the second reference value. In the air-fuel ratio learning control method for an internal combustion engine, when the air-fuel ratio feedback correction coefficient is above a predetermined value, the detected air-fuel ratio is lean, and the air-fuel ratio learning term is below a certain value, Control is performed to gradually increase the air-fuel ratio learning term. [Operation] When controlling the air-fuel ratio of the air-fuel mixture, it is determined whether erroneous learning has occurred according to the air-fuel ratio feedback coefficient, the output signal of the oxygen concentration sensor, and the air-fuel ratio learning term, and the air-fuel ratio feedback correction coefficient is set to a predetermined value. In the above, when the output signal of the oxygen concentration sensor indicates a lean air-fuel ratio and the air-fuel ratio learning term is below a certain value, it is assumed that erroneous learning has occurred, and the air-fuel ratio learning term is forcibly corrected to gradually increase. Therefore, it is possible to prevent the air-fuel ratio from becoming lean. [Embodiment] Hereinafter, as an embodiment of the present invention, an air-fuel ratio learning control method during idling will be described with reference to FIGS. 3 to 6. An intake temperature sensor 2 is installed downstream of an air cleaner (not shown) to detect the temperature of intake air and output an intake temperature signal. A throttle valve 4 is disposed downstream of the intake temperature sensor 2, and a throttle switch 6 is attached which is interlocked with the throttle valve 4 and turns off when the on-throttle valve opens when the throttle valve is fully closed. A surge tank 8 is provided downstream of the throttle valve 4, and a pressure sensor 10 is attached to the surge tank 8 for detecting the intake pipe pressure downstream of the throttle valve and outputting an intake pipe pressure signal.
The surge tank 8 is connected to the intake manifold 12
The combustion chamber 14 of the engine is communicated with the engine through the combustion chamber 14 of the engine. A fuel injection valve 16 is attached to the intake manifold 12 for each cylinder. The combustion chamber 14 of the engine is communicated via an exhaust manifold with a catalytic converter (not shown) filled with a three-way catalyst. Further, a water temperature sensor 20 is attached to the engine block to detect the engine cooling water temperature and output a water temperature signal.
The tip of a spark plug 22 projects into the combustion chamber 14 of the engine, and the spark plug 22 is connected to a distributor 24. The distributor 24 is provided with a cylinder discrimination sensor 26 and an engine rotation speed sensor 28, each of which includes a pickup fixed to the distributor housing and a signal rotor fixed to the distributor shaft. The cylinder discrimination sensor 26 outputs a cylinder discrimination signal, for example, every 720°C to a control circuit 30 composed of a microcomputer or the like.
The engine rotation speed sensor 28 outputs an engine rotation speed signal to the control circuit 30, for example, every 30°C. Then, the distributor 24 is connected to the igniter 32.
It is connected to the. Note that 34 is an O 2 sensor that detects residual acidity in exhaust gas and outputs an air-fuel ratio signal. As shown in FIG. 4, the control circuit 30 includes a central processing unit (CPU) 36, a read-only memory (ROM) 38, a random access memory (RAM) 40, and a backup RAM (Bu-RAM).
42, an input/output port (I/O) 44, an analog-to-digital converter (ADC) 46, and buses such as a data bus and a control bus that connect these. A cylinder discrimination signal, an engine speed signal, an air-fuel ratio signal, and a throttle signal output from the throttle switch 6 are input to the I/O 44, and the opening/closing time of the fuel injection valve 16 is controlled via the drive circuit. A fuel injection signal and an ignition signal that controls the on/off time of the igniter 32 are output. Further, an intake pipe pressure signal, an intake air temperature signal, and a water temperature signal are inputted to the ADC 46 and converted into digital signals. Next, a processing routine of an embodiment in which the present invention is applied to the engine as described above will be explained based on FIG. This routine is executed in the main routine, and first, in step 50, it is determined whether or not the engine is in an idling state based on the throttle signal. Step only when idling
Air-fuel ratio feedback correction coefficient FAF at 52
is greater than a predetermined value, and only when it is greater than a predetermined value, in step 54 is the O 2 sensor output signal indicating lean, that is, the O 2 sensor output is compared with the reference value. Determine whether the fuel ratio signal is at a low level. When the O2 sensor output indicates a lean air-fuel ratio, the value of the learning term τg during idling is set to a constant value (for example,
(negative value) or less. Then, only when the value of the learning term τg is less than a certain value, the value of the learning term τg is increased by a predetermined amount X in step 58. As a result of the above, when all the conditions of idling, FAF≧predetermined value, lean air-fuel ratio, and τg≦constant value are satisfied, the value of learning term τg is increased by a predetermined amount X each time the main routine is executed. ,
The value of the learning term τg is corrected so that it gradually approaches the reference value. FIG. 6 shows changes in the air-fuel ratio feedback correction coefficient FAF, the value of the learning term τg, and the air-fuel ratio signal when controlled as described above. In addition, although the engine in which the basic fuel injection time is determined by the intake pipe pressure and the engine rotation speed has been described above, the present invention is not limited to this, and the engine rotation speed is determined by the intake air amount per engine rotation and the engine rotation speed. It can also be applied to an engine in which the basic fuel injection time is determined by In this case, an air flow meter is provided upstream of the throttle valve, and the amount of intake air is detected by this air flow meter. [Effects of the Invention] As explained above, according to the present invention, it is determined whether the air-fuel ratio learning term has been erroneously learned, and when the learning term has been erroneously learned, correction is performed to gradually increase the learning term. This makes it possible to prevent the air-fuel ratio from becoming leaner, thereby contributing to improving drivability and reducing emissions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の空燃比信号および空燃比フイー
ドバツク補正係数の変化を示す線図、第2図は従
来の空燃比信号、空燃比フイードバツク補正係数
および学習項の値の変化を示す線図、第3図は本
発明が適用されるエンジンの一例を示す概略図、
第4図は第3図の制御回路の一例を示すブロツク
図、第5図は本発明の一実施例における処理ルー
チンを示す流れ図、第6図は本実施例における学
習項の値の変化等を示す線図である。 6……スロツトルスイツチ、10……圧力セン
サ、16……燃料噴射弁。
FIG. 1 is a diagram showing changes in the conventional air-fuel ratio signal and air-fuel ratio feedback correction coefficient; FIG. 2 is a diagram showing changes in the conventional air-fuel ratio signal, air-fuel ratio feedback correction coefficient, and learning term values; FIG. 3 is a schematic diagram showing an example of an engine to which the present invention is applied;
FIG. 4 is a block diagram showing an example of the control circuit of FIG. 3, FIG. 5 is a flowchart showing a processing routine in an embodiment of the present invention, and FIG. 6 shows changes in the values of learning terms, etc. in this embodiment. FIG. 6...Throttle switch, 10...Pressure sensor, 16...Fuel injection valve.

Claims (1)

【特許請求の範囲】 1 機関負荷と機関回転数とに基づいて求められ
ている基本燃料噴射量と、演算によつて求められ
ている空燃比フイードバツク補正係数及び空燃比
学習項に基づいて燃料噴射量を定めて、機関に供
給する混合気の空燃比が目標空燃比となるように
制御する内燃機関の空燃比学習制御方法であつ
て、 排ガス中の残留酸素濃度を検出する酸素濃度セ
ンサの出力信号から、機関の空燃比が目標空燃比
よりリツチであるかリーンであるかを検出し、 検出された空燃比がリーンのとき空燃比をより
リツチ側に変更すべく、予め定められた上限値を
越えない範囲で空燃比フイードバツク補正係数を
増加させ、 検出された空燃比がリツチのとき空燃比をより
リーン側に変更すべく、空燃比フイードバツク補
正係数を減少させ、 前記検出された空燃比がリツチからリーンへ、
またはリツチからリーンへ変化する空燃比反転時
に前記空燃比フイードバツク補正係数の平均値を
求め、 前記空燃比反転時に前記平均値が第1の基準値
より大きいとき、空燃比学習項により空燃比をリ
ツチ側に補正すべく、空燃比学習項を増加させ、 前記空燃比反転時に前記平均値が前記第1の基
準値よりも小さい第2の基準値より小さいとき、
空燃比学習項により空燃比をリーン側に補正すべ
く、空燃比学習項を減少させ、 もつて、前記平均値が前記第1の基準値および
第2の基準値で定まる所定の範囲内の値になるよ
うにした内燃機関の空燃比学習制御方法におい
て、 前記空燃比フイードバツク補正係数が所定値以
上で、 かつ前記検出空燃比がリーンであり、 かつ前記空燃比学習項が一定値以下のときに
は、前記空燃比学習項を徐々に大きくすることを
特徴とする内燃機関の空燃比学習制御方法。
[Scope of Claims] 1. Fuel injection based on the basic fuel injection amount determined based on the engine load and engine speed, and the air-fuel ratio feedback correction coefficient and air-fuel ratio learning term determined by calculation. An air-fuel ratio learning control method for an internal combustion engine in which the air-fuel ratio of the air-fuel mixture supplied to the engine is controlled to a target air-fuel ratio by determining the amount of air-fuel From the signal, it is detected whether the air-fuel ratio of the engine is richer or leaner than the target air-fuel ratio, and when the detected air-fuel ratio is lean, the air-fuel ratio is set to a predetermined upper limit value in order to change the air-fuel ratio to the richer side. The air-fuel ratio feedback correction coefficient is increased within a range that does not exceed 100%, and when the detected air-fuel ratio is rich, the air-fuel ratio feedback correction coefficient is decreased in order to change the air-fuel ratio to a leaner side, and when the detected air-fuel ratio is From rich to lean,
Alternatively, when the air-fuel ratio is reversed from rich to lean, the average value of the air-fuel ratio feedback correction coefficient is determined, and when the average value is larger than the first reference value during the air-fuel ratio reversal, the air-fuel ratio is enriched by an air-fuel ratio learning term. In order to correct the air-fuel ratio to the side, the air-fuel ratio learning term is increased, and when the average value is smaller than a second reference value that is smaller than the first reference value at the time of the air-fuel ratio reversal,
In order to correct the air-fuel ratio to the lean side using the air-fuel ratio learning term, the air-fuel ratio learning term is decreased, so that the average value is a value within a predetermined range determined by the first reference value and the second reference value. In the air-fuel ratio learning control method for an internal combustion engine, when the air-fuel ratio feedback correction coefficient is above a predetermined value, the detected air-fuel ratio is lean, and the air-fuel ratio learning term is below a certain value, An air-fuel ratio learning control method for an internal combustion engine, characterized in that the air-fuel ratio learning term is gradually increased.
JP16291483A 1983-09-05 1983-09-05 Method of controlling air-fuel ratio learning for internal-combustion engine Granted JPS6053637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16291483A JPS6053637A (en) 1983-09-05 1983-09-05 Method of controlling air-fuel ratio learning for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16291483A JPS6053637A (en) 1983-09-05 1983-09-05 Method of controlling air-fuel ratio learning for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS6053637A JPS6053637A (en) 1985-03-27
JPH0432937B2 true JPH0432937B2 (en) 1992-06-01

Family

ID=15763624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16291483A Granted JPS6053637A (en) 1983-09-05 1983-09-05 Method of controlling air-fuel ratio learning for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6053637A (en)

Also Published As

Publication number Publication date
JPS6053637A (en) 1985-03-27

Similar Documents

Publication Publication Date Title
JPH0522061B2 (en)
US5127225A (en) Air-fuel ratio feedback control system having a single air-fuel ratio sensor downstream of a three-way catalyst converter
JPS6231179B2 (en)
US6837232B2 (en) Air-fuel ratio control apparatus for internal combustion engine
JPH02245441A (en) Internal combustion engine
JPH0432937B2 (en)
JP2841806B2 (en) Air-fuel ratio control device for engine
US4646699A (en) Method for controlling air/fuel ratio of fuel supply for an internal combustion engine
JPS60142031A (en) Air/fuel ratio learning control of internal-combustion engine
JPS6231180B2 (en)
JPS61232340A (en) Air-fuel ratio controller for engine
JPH02245461A (en) Purge control unit for internal combustion engine
JP3988425B2 (en) Exhaust gas purification control device for internal combustion engine
JP3959832B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6017240A (en) Study control method of air-fuel ratio in electronically controlled engine
JPS62186029A (en) Abnormality judging method for lean sensor
JPS6111433A (en) Air-fuel learning control method in internal-combustion engine
JPS6172848A (en) Control device of fuel increase and ignition timing in internal-combustion engine
JPH0429855B2 (en)
JPH08312410A (en) Controlling method for air-fuel ratio of internal combustion engine
JPS61112760A (en) Method of controlling air-fuel ratio of internal combustion engine through learning
JP4362835B2 (en) Exhaust gas purification control device for internal combustion engine
JPS61129443A (en) Air-fuel ratio learning control for internal-combustion engine
JPH062590A (en) Air-fuel ratio control method for internal combustion engine
JPH05156988A (en) Air fuel ratio control device of internal combustion engine