JPS6053637A - Method of controlling air-fuel ratio learning for internal-combustion engine - Google Patents

Method of controlling air-fuel ratio learning for internal-combustion engine

Info

Publication number
JPS6053637A
JPS6053637A JP16291483A JP16291483A JPS6053637A JP S6053637 A JPS6053637 A JP S6053637A JP 16291483 A JP16291483 A JP 16291483A JP 16291483 A JP16291483 A JP 16291483A JP S6053637 A JPS6053637 A JP S6053637A
Authority
JP
Japan
Prior art keywords
value
air
fuel ratio
learning
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16291483A
Other languages
Japanese (ja)
Other versions
JPH0432937B2 (en
Inventor
Itsuki Fujimura
一城 藤村
Kazuyoshi Mizuno
水野 和好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP16291483A priority Critical patent/JPS6053637A/en
Publication of JPS6053637A publication Critical patent/JPS6053637A/en
Publication of JPH0432937B2 publication Critical patent/JPH0432937B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning
    • F02D41/2483Methods of calibrating or learning characterised by the method used for learning restricting learned values

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To stabilize idle running by gradually increasing the value of a learning item when said value of the learning item at the time of idle running is below a certan value, with the output of an O2 sensor indicating a lean condition, while an air-fuel ratio feedback correction factor being above a certain value. CONSTITUTION:On detecting an idling condition through a throttle switch 6, a control circuit 30 which is constructed with microcomputers, judges whether an air-fuel ratio feedback correction factor FAF is above a certain value. And, only when the FAF is above a certain value, it judges whether the output of an O2 sensor 34 indicates a lean condition, i.e., an air-fuel signal is at a low level and, when a lean condition is indicated, it further judges whether the value of a learning item taug at the time of idling is below a certain value, e.g., a negative value. And, only when the value of the taug is below a certain value, this value of the taug is increased by a certain quantity X at each execution of a main routine, to correct the value so as to gradually approach a reference value. Thereby, an erroneously learned value which is learned under an unusual condition can be corrected, stabilizing the idle running.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は内燃機関の空燃比学習制御方法に係り、特に学
習制御によってアイドリンク時の空燃比を制御する空燃
比学習制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an air-fuel ratio learning control method for an internal combustion engine, and more particularly to an air-fuel ratio learning control method for controlling an air-fuel ratio during idling by learning control.

〔従来技術〕[Prior art]

従来より、排ガス中の一酸化炭素、炭化水素および窒素
酸化物を同時に浄化するために三元触媒が用いられてお
り、この三元触媒の浄化阜を良好にするため02センサ
により排ガス中の残留酸素濃度を検出して吸気系の空燃
比を推定し、吸気系の空燃比を理論空燃比近傍に制御す
ることが行なわれている。吸気系の空燃比を理論空燃比
近傍に制御するにあたり又は、吸気管圧力PMと機関回
転数NKとによって定まる基本燃料噴射時間τpに、0
!センサ出力を比較器で処理した空燃比信号を比例積分
して得られる第1図に示す空燃比フィードバック補正係
数FAFを乗算して燃料噴射時間τをめ、この燃料噴射
時間τを用いて燃料噴射弁を開閉制御することにより行
なわれている。
Conventionally, a three-way catalyst has been used to simultaneously purify carbon monoxide, hydrocarbons, and nitrogen oxides in exhaust gas. The air-fuel ratio of the intake system is estimated by detecting the oxygen concentration, and the air-fuel ratio of the intake system is controlled to be close to the stoichiometric air-fuel ratio. In controlling the air-fuel ratio of the intake system to near the stoichiometric air-fuel ratio, the basic fuel injection time τp determined by the intake pipe pressure PM and the engine speed NK is set to 0.
! The fuel injection time τ is determined by multiplying the air-fuel ratio feedback correction coefficient FAF shown in FIG. 1, which is obtained by proportionally integrating the air-fuel ratio signal obtained by processing the sensor output with a comparator. This is done by controlling the opening and closing of valves.

しかし、環境の変化やO,センサ劣化等が生じて空燃比
フィードバック補正係数FAFが変化し、理論空燃比近
傍に制御できないことが生じるため、次に示す式に基づ
いて空燃比を学習制御することが行なわれている。
However, due to environmental changes, O2, sensor deterioration, etc., the air-fuel ratio feedback correction coefficient FAF changes, making it impossible to control the air-fuel ratio near the stoichiometric air-fuel ratio. Therefore, the air-fuel ratio should be controlled by learning based on the following formula. is being carried out.

r = (r p+ r g )・KG−FAF−F(
r) ”・”−・(tlただし、τgはスロットル弁全
閉時(アイドリンク時)での学習項、KGはスロットル
弁が開いているときでの学習項、F(τ)は吸気温や暖
機増量等に関する他の補正係数である。また1、学習項
KGは吸気管圧力により定められており、例えば、吸気
管圧力が200〜300imHgのときKG、。
r = (r p + r g )・KG-FAF-F(
r) ”・”−・(tl However, τg is the learning term when the throttle valve is fully closed (idling), KG is the learning term when the throttle valve is open, and F(τ) is the intake temperature and This is another correction coefficient related to warm-up increase, etc. 1. The learning term KG is determined by the intake pipe pressure, for example, KG when the intake pipe pressure is 200 to 300 imHg.

300〜400朋HgのときKG2.400〜500m
wHgのときKG、が採用される。
KG2.400-500m when 300-400 Hg
When wHg, KG is adopted.

これらの学習項τg、KGは、空燃比フィードバック制
御中でかつエンジン冷却水温が所定値(例えば、70℃
)を越えるとき次の方法によって学習される。空燃比フ
ィードバック補正係数FAFがスキップする毎に補正係
数FAFのビーク値の相加平均値FAFAV、すなわち
、をめ、スキップ毎に下記の学習値を該当項に加算する
These learning terms τg and KG are determined when the air-fuel ratio feedback control is in progress and the engine cooling water temperature is at a predetermined value (for example, 70°C).
) is learned by the following method. Every time the air-fuel ratio feedback correction coefficient FAF skips, the arithmetic average value FAFAV of the peak value of the correction coefficient FAF, that is, the learned value shown below is added to the corresponding term for each skip.

そして、このように学習された学習項τE、 KOは、
スロットル弁の開閉状態および吸気管圧力の大きさに応
じてtit式に適用され、燃料噴射量が制御されろ。こ
の結果、平均値FAFAVf)−1,02を越えるとき
すなわちO,センサ出力信号かり一ン側にずれていると
きには学習項の値が大きくされて学習項の値によって平
均値FAFAVが1に近づくように補正され、空燃比が
リーン側に向って制御される。また、平均値FATAV
が0.98未満のときすなわちO,センナ出力信号がリ
ッチ側にずれているときには学習項の値が小さくされて
学習項の値によって平均値FAFA、Vが1に近づくよ
う補正され、空燃比がリッチ側に向って制御される。
The learning term τE, KO learned in this way is
The fuel injection amount is controlled according to the opening/closing state of the throttle valve and the magnitude of the intake pipe pressure. As a result, when the average value FAFAVf)-1.02 is exceeded, that is, when the sensor output signal is off to the one side, the value of the learning term is increased so that the average value FAFAV approaches 1 due to the value of the learning term. The air-fuel ratio is controlled toward the lean side. Also, the average value FATAV
is less than 0.98, that is, O. When the senna output signal deviates to the rich side, the value of the learning term is reduced and the average value FAFA,V is corrected to approach 1 by the value of the learning term, and the air-fuel ratio is Controlled towards the rich side.

しかし、かかる従来の方法において、レーシングを繰返
したときに一定時間空燃比がリッチになるため学習によ
ってアイドリンク時の学習項の値が小さくされ、第2図
に示すように空燃比がリーンに変化したとき空燃比フィ
ードバック補正係数FAFが上限値に達つしてスキップ
しなくなることがあるため、学習が行なわれなくなって
学習項τgの値が下限値のままになることがある。この
場合、0.センサ出力信号がリーンを示しているにも拘
らず学習項の値が小さいため燃料噴射時間が短くなり、
燃料噴射量が少なくなって空燃比が更にリーンに制御さ
れる。このため、アイドル回転を保持できなくなってア
イドル回転が不安定になる、という問題がある。
However, in this conventional method, when racing is repeated, the air-fuel ratio becomes rich for a certain period of time, so the value of the learning term during idling is reduced by learning, and the air-fuel ratio changes to lean as shown in Figure 2. When this happens, the air-fuel ratio feedback correction coefficient FAF may reach the upper limit value and no longer skips, so learning may not be performed and the value of the learning term τg may remain at the lower limit value. In this case, 0. Even though the sensor output signal indicates lean, the value of the learning term is small, so the fuel injection time is shortened.
The fuel injection amount is reduced and the air-fuel ratio is controlled to be leaner. Therefore, there is a problem that the idle rotation cannot be maintained and the idle rotation becomes unstable.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点を解消すべく成されたもので、異常
状態で学習された誤学習値を修正してアイドル回転を安
定化させた内燃機関の空燃比学習制御方法を提供するこ
とを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an air-fuel ratio learning control method for an internal combustion engine that stabilizes idle rotation by correcting erroneous learning values learned in an abnormal state. shall be.

〔発明の構成″〕[Structure of the invention'']

上記目的を達成するために本発明は、上記の従来の空燃
比学習制御方法において、空燃比フィードバック補正係
数が所定値以上で、”tセンサ出力信号が空燃比リーン
を示し、かつ、アイドリンク時の学習項の値が一定値以
下のとき、アイドリング時の学習項の値を徐々に大きく
するよう構成したものである。
To achieve the above object, the present invention provides a conventional air-fuel ratio learning control method, in which the air-fuel ratio feedback correction coefficient is equal to or greater than a predetermined value, the t-sensor output signal indicates an air-fuel ratio lean, and the When the value of the learning term is below a certain value, the value of the learning term during idling is gradually increased.

〔発明の効果〕〔Effect of the invention〕

上記本発明の構成によれば、アイドリンク時の学習項の
値が小さな値に誤学習された場合にこの学習項の値が大
きくなるよう修正されろため、アイドル回転を安定化さ
せることができろ、という効果が得られる。
According to the above configuration of the present invention, when the value of the learning term during idling is incorrectly learned to a small value, the value of the learning term is corrected to be large, so that the idling rotation can be stabilized. You can get this effect.

〔発明の実施例〕[Embodiments of the invention]

第3図に基づいて本発明が適用される内燃機関(エンジ
ン)の−例を詳細に説明する。エアクリーナ(図示せず
)の下流側には吸入空気の温度を検出して吸気温信号を
出力する吸気温センサ2が取付けられている。吸気温セ
ンサ2の下流側にはスロットル弁4が配置され、このス
ロットル弁4に連動しかつスロットル弁全閉時にオンス
ロットル弁が開いたときにオフとなるスロットルスイッ
チ6が取付けられている。スロットル弁4の下流側には
、サージタンク8が設けられ、このサージタンク8にス
ロットル弁下流側の吸気管圧力を検出して吸気管圧力信
号を出力する圧力センサlOが取付けられている。サー
ジタンク8は、インテークマニホールド12を介し℃エ
ンジンの燃焼室14に連通されている。このインテーク
マニホールド12には、燃料噴射弁16が各気筒毎に取
付けられている。エンジンの燃焼室14はエキゾースト
マニホールドを介して三元触媒を充填した触媒コンバー
タ(図示せず)に連通されている。また、エンジンブロ
ックには、エンジンの冷却水温を検出して水温信号を出
力する水温センサ20が取付けられている。エンジンの
燃焼室14には、点火プラグ22の先端が突出され、点
火プラグ22はディストリビュータ24に接続されてい
る。ディストリビュータ24には、ディストリビュータ
ハウジングに固定されたピックアップとディストリビュ
ータシャフトに固定されたシグナルロータとで各々構成
された気筒判別センサ26およびエンジン回転数センサ
28が設けられている。気筒判別センサ26は例えば7
20℃A毎に気筒判別信号をマイクロコンピュータ等で
構成された制御回路30へ出力し、エンジン回転数セン
サ28は例えば30℃A毎にエンジン回転数信号を制御
回路30へ出力する。そして、ディストリビュータ24
はイグナイタ32に接続されている。なお、34は排ガ
ス中の残留酸度を検出して空燃比信号を出力するO、セ
ンサである。
An example of an internal combustion engine to which the present invention is applied will be explained in detail based on FIG. An intake temperature sensor 2 is installed downstream of an air cleaner (not shown) to detect the temperature of intake air and output an intake temperature signal. A throttle valve 4 is arranged downstream of the intake air temperature sensor 2, and a throttle switch 6 is attached which is interlocked with the throttle valve 4 and turns off when the throttle valve is on when the throttle valve is fully closed and the throttle valve is opened. A surge tank 8 is provided downstream of the throttle valve 4, and a pressure sensor 10 is attached to the surge tank 8 for detecting the intake pipe pressure downstream of the throttle valve and outputting an intake pipe pressure signal. The surge tank 8 is communicated with a combustion chamber 14 of the °C engine via an intake manifold 12. A fuel injection valve 16 is attached to the intake manifold 12 for each cylinder. The combustion chamber 14 of the engine is communicated via an exhaust manifold with a catalytic converter (not shown) filled with a three-way catalyst. Further, a water temperature sensor 20 is attached to the engine block to detect the engine cooling water temperature and output a water temperature signal. The tip of a spark plug 22 projects into the combustion chamber 14 of the engine, and the spark plug 22 is connected to a distributor 24. The distributor 24 is provided with a cylinder discrimination sensor 26 and an engine rotation speed sensor 28, each of which includes a pickup fixed to the distributor housing and a signal rotor fixed to the distributor shaft. The cylinder discrimination sensor 26 is, for example, 7
A cylinder discrimination signal is outputted to the control circuit 30 made up of a microcomputer or the like every 20°C, and the engine rotation speed sensor 28 outputs an engine rotational speed signal to the control circuit 30, for example, every 30°C. And distributor 24
is connected to the igniter 32. Note that 34 is an O sensor that detects the residual acidity in the exhaust gas and outputs an air-fuel ratio signal.

制御回路30は第十図に示すように、中央処理装置(C
PU)36、リードオンリメモリ(ROM)38、ラン
ダムアクセスメモリ(RAM)40、バックアップラム
(Bu−RA M) 42、入出力ボート(工10)4
4、アナログディジタル変換器(ADC)46およびこ
れらを接続するデータバスやコントロールバス等のパス
を含んで構成され℃いる。I / 044には、気筒判
別信号、エンジン回転数信号、空燃比信号、スロットル
スイッチ6かも出力されるスロットル信号が入力される
と共に、駆動回路を介して燃料噴射弁16の開閉時間を
制御する燃料噴射信号およびイグナイタ32のオンオフ
時間を制御する点火信号が出力されろ。
As shown in FIG. 10, the control circuit 30 includes a central processing unit (C
PU) 36, read-only memory (ROM) 38, random access memory (RAM) 40, backup RAM (Bu-RAM) 42, input/output board (engineering 10) 4
4, an analog-to-digital converter (ADC) 46 and paths such as a data bus and a control bus that connect these. A cylinder discrimination signal, an engine speed signal, an air-fuel ratio signal, and a throttle signal output from the throttle switch 6 are input to the I/044, and a fuel signal that controls the opening/closing time of the fuel injection valve 16 via the drive circuit is input. An ignition signal that controls the injection signal and the on/off time of the igniter 32 is output.

また、ADC4fiには、吸気管圧力信号、吸気温信号
および水温信号が入力されてディジタル信号に変換され
ろ。
Further, an intake pipe pressure signal, an intake air temperature signal, and a water temperature signal are input to the ADC 4fi and converted into digital signals.

このルーテンは、メイルルーチンの中で実行されるもの
であり、まずステップ50でスロットル信号に基づいて
アイドリンク状態か否かを判断する。
This routine is executed in the mail routine, and first, in step 50, it is determined whether or not the engine is in an idle link state based on the throttle signal.

アイドリンク状態のときのみステップ52におい1空燃
比フイードバツク補正係数PAFが所定値以上か否かを
判断し、所定値以上のときのみステップ54で0.セン
サ出力信号かり一ンを示しているか、すなわちO,セン
サ出力を基準値と比較する比較器から出力される空燃比
信号がローレベルか否かを判断する。0.センサ出力が
空燃比リーンを示しているときは、ステップ56でアイ
ドリンク時の学習項τgの値が一定値(例えば、負の値
)以下か否かを判断する。そし℃、学習項τgノ値カ一
定値以下のときのみステップ58で学習項τgの値を所
定量X大きくする。
Only in the idle link state, it is determined in step 52 whether the 1 air-fuel ratio feedback correction coefficient PAF is greater than or equal to a predetermined value, and only when it is greater than or equal to the predetermined value, it is determined to be 0. It is determined whether the sensor output signal is at a low level, that is, whether the air-fuel ratio signal output from the comparator that compares the sensor output with a reference value is at a low level. 0. When the sensor output indicates a lean air-fuel ratio, it is determined in step 56 whether the value of the learning term τg during idle link is less than or equal to a certain value (for example, a negative value). Then, in step 58, the value of the learning term τg is increased by a predetermined amount X only when the value of the learning term τg is less than a certain value.

以上の結果、アイドリンク状態、FAF≧所定値、空燃
比リーン、τg≦一定値のすべての条件を満足するとき
、メインルーチンを一回実行する毎に学習項τgの値が
所定量Xづつ大きくされ、学習項τgの値が基準値に徐
々に近づくよう1ω正される。
As a result of the above, when all the conditions of idle link state, FAF≧predetermined value, air-fuel ratio lean, and τg≦constant value are satisfied, the value of learning term τg increases by a predetermined amount X each time the main routine is executed. The value of the learning term τg is corrected by 1ω so that it gradually approaches the reference value.

第6図に上記のように制御したときの空燃比フィードバ
ック補正係数FAF、学習項τgの値および空燃比信号
の変化を示す。
FIG. 6 shows changes in the air-fuel ratio feedback correction coefficient FAF, the value of the learning term τg, and the air-fuel ratio signal when controlled as described above.

なお上記では、吸気管圧力とエンジン回転数とで基本燃
料噴射時間を定めるエンジンについて説明したが、本発
明はこれに限定されるものではなく、エンジン1回転当
りの吸入空気量とエンジン回転数とで基本燃料噴射時間
を定めるエンジンにも適用することが可能である。この
場合にはスロットル弁上流側にエアフローメータを設け
られ、このエアフローメータにより吸入空気量が検出さ
れろ。
Although the above description has been given of an engine in which the basic fuel injection time is determined based on the intake pipe pressure and the engine speed, the present invention is not limited to this, and the basic fuel injection time is determined based on the intake pipe pressure and the engine speed. It can also be applied to engines where the basic fuel injection time is determined by . In this case, an air flow meter is provided upstream of the throttle valve, and the amount of intake air is detected by this air flow meter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の空燃比信号および空燃比フィードバック
補正係数の変化を示す線図、肌2図は従来の空燃比信号
、空燃比フィードバック補正係数および学習項の値の変
化を示す線図、第3図は本発明が適用されるエンジンの
一例を示す概略図、第4図は第3図の制御回路の一例を
示すブロック図、第5図は本発明の一実施例における処
理ルーテンを示す流れ図、第6図は本実施例における学
習項の値の変化等を示す線図である。 6−゛スロットルスイッチ、 10・・・圧力センザ、 16・・・燃料噴射弁。 代理人 鵜 沼 辰 之 (ほか1名) 第 5 図 第6図 9−ケ
Figure 1 is a line diagram showing changes in the conventional air-fuel ratio signal and air-fuel ratio feedback correction coefficient, Figure 2 is a line diagram showing changes in the conventional air-fuel ratio signal, air-fuel ratio feedback correction coefficient, and learning term value. 3 is a schematic diagram showing an example of an engine to which the present invention is applied, FIG. 4 is a block diagram showing an example of the control circuit of FIG. 3, and FIG. 5 is a flowchart showing a processing routine in an embodiment of the present invention. , FIG. 6 is a diagram showing changes in the values of learning terms in this embodiment. 6-゛Throttle switch, 10...Pressure sensor, 16...Fuel injection valve. Agent Tatsuyuki Unuma (and 1 other person) Figure 5 Figure 6 Figure 9-ke

Claims (1)

【特許請求の範囲】[Claims] (1) 機関負荷と機関回転数とで定まる基本燃料噴射
時間とアイドリンク時の学習項の値との和に、排ガス中
の残留酸素濃度を検出する0、センサ出力信号より得ら
れる空燃比フィードバック補正係数を乗算した値に基づ
いて燃料噴射時間を定め、前記空燃比フィードバック補
正係数の平均値が所定値を中心とする所定範囲外の値に
なったとき該空燃比フィードバック補正係数の平均値が
前記所定値に近づくよう前記アイドリンク時の学習項の
値を変化させて、混合気の空燃比が目標空燃比になるよ
うに制御する内燃機関の空燃比学習制御方法において、
前記空燃比フィードバック補正係数が所定値以上で、前
記02センサ出力信号が空燃比リーンを示し、かつ、前
記アイドリンク時の学習項の値が一定値以下のとき、前
記アイドリンク時の学習項の値を徐々に大きくすること
を特徴とする内燃機関の空燃比学習制御方法。
(1) The sum of the basic fuel injection time determined by the engine load and engine speed and the value of the learning term during idle link, 0 that detects the residual oxygen concentration in the exhaust gas, and the air-fuel ratio feedback obtained from the sensor output signal. The fuel injection time is determined based on the value multiplied by a correction coefficient, and when the average value of the air-fuel ratio feedback correction coefficient becomes a value outside a predetermined range centered on a predetermined value, the average value of the air-fuel ratio feedback correction coefficient is determined. In an air-fuel ratio learning control method for an internal combustion engine, the method includes controlling the air-fuel ratio of the air-fuel mixture to a target air-fuel ratio by changing the value of the learning term during idle link so as to approach the predetermined value,
When the air-fuel ratio feedback correction coefficient is greater than or equal to a predetermined value, the 02 sensor output signal indicates a lean air-fuel ratio, and the value of the learning term during idle linking is below a certain value, the learning term during idle linking is An air-fuel ratio learning control method for an internal combustion engine characterized by gradually increasing a value.
JP16291483A 1983-09-05 1983-09-05 Method of controlling air-fuel ratio learning for internal-combustion engine Granted JPS6053637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16291483A JPS6053637A (en) 1983-09-05 1983-09-05 Method of controlling air-fuel ratio learning for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16291483A JPS6053637A (en) 1983-09-05 1983-09-05 Method of controlling air-fuel ratio learning for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS6053637A true JPS6053637A (en) 1985-03-27
JPH0432937B2 JPH0432937B2 (en) 1992-06-01

Family

ID=15763624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16291483A Granted JPS6053637A (en) 1983-09-05 1983-09-05 Method of controlling air-fuel ratio learning for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6053637A (en)

Also Published As

Publication number Publication date
JPH0432937B2 (en) 1992-06-01

Similar Documents

Publication Publication Date Title
US5610321A (en) Sensor failure detection system for air-to-fuel ratio control system
GB2252425A (en) Air-fuel ratio control apparatus for IC engine
US5181499A (en) Apparatus for diagnosing abnormality in fuel injection system and fuel injection control system having the apparatus
US5127225A (en) Air-fuel ratio feedback control system having a single air-fuel ratio sensor downstream of a three-way catalyst converter
JPS6231179B2 (en)
JPS6053637A (en) Method of controlling air-fuel ratio learning for internal-combustion engine
US6176080B1 (en) Oxygen concentration sensor abnormality-detecting system for internal combustion engines
JP2841806B2 (en) Air-fuel ratio control device for engine
JPS60142031A (en) Air/fuel ratio learning control of internal-combustion engine
JPS6111433A (en) Air-fuel learning control method in internal-combustion engine
JPS6022034A (en) Engine-speed controlling method for internal-combustion engine
JPS6017240A (en) Study control method of air-fuel ratio in electronically controlled engine
JPS59206636A (en) Method of controlling learning of air-fuel ratio of internal-combustion engine
JPH0868348A (en) Method for correcting fuel injection amount after complete warming up
JP3014541B2 (en) Air-fuel ratio control method for internal combustion engine
JPS6172848A (en) Control device of fuel increase and ignition timing in internal-combustion engine
JP2625984B2 (en) Air-fuel ratio control device for electronically controlled fuel injection type internal combustion engine
JPH0680297B2 (en) Air-fuel ratio learning control method for internal combustion engine
JPS6062641A (en) Air-fuel ratio control method for internal-combustion engine
JPS6060229A (en) Air-fuel ratio learning control method for internal-combustion engine
JPS59201942A (en) Control method of air-fuel ratio for internal-combustion engine
JPH0531647B2 (en)
JPS63162951A (en) Control method for ignition timing and air-fuel ratio of internal combustion engine
JPH0536617B2 (en)
JPS6238847A (en) Trouble detector for air-fuel ratio controller