JPH03241946A - Tri-state signal generating circuit - Google Patents

Tri-state signal generating circuit

Info

Publication number
JPH03241946A
JPH03241946A JP2038660A JP3866090A JPH03241946A JP H03241946 A JPH03241946 A JP H03241946A JP 2038660 A JP2038660 A JP 2038660A JP 3866090 A JP3866090 A JP 3866090A JP H03241946 A JPH03241946 A JP H03241946A
Authority
JP
Japan
Prior art keywords
voltage
signal
circuit
time constant
tri
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2038660A
Other languages
Japanese (ja)
Other versions
JP3047417B2 (en
Inventor
Toshiaki Shiba
俊明 司馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2038660A priority Critical patent/JP3047417B2/en
Publication of JPH03241946A publication Critical patent/JPH03241946A/en
Application granted granted Critical
Publication of JP3047417B2 publication Critical patent/JP3047417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Dc Digital Transmission (AREA)

Abstract

PURPOSE:To detect a period accurately by providing a means limiting an output voltage of a time constant circuit and generating a tri-state signal phase-locked with a 1st input signal in response to the presence of a 2nd signal. CONSTITUTION:The inverse of PG signal is inputted to a limit circuit section 1 and a limit signal of a voltage M is generated and inputted to a PG/FG synthe sis section 2. Moreover, the inverse of FG is inputted to the PG/FG synthesis section 2 and a tri-state signal PG/FG of voltages H, M, L is sent to a period detection circuit built in an IC 2 in response to the limit signal of the voltage M. Thus, the voltage charged at a prescribed time constant is clamped in the generating of the voltage M. Then even when a capacitor is added due to noise countermeasure to a tri-state signal output line, no change takes place in the time constant in the generation of voltages L, M, H. Thus, an accurate period is detected.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、三値信号作成回路に関するもので、特に立上
りエツジにより周期情報を、レベルにより他の情報を伝
送する三相信号の作成に適するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a three-level signal generation circuit, and is particularly suitable for generating three-phase signals that transmit periodic information using rising edges and other information using levels. be.

従来の技術 従来より、モータの制御回路等にふ・いて、三値のパル
スの立上シエソジの周期によ!11回転速度を示す情報
を伝送し、他のパルスとレベルの異なるパルスにより回
転位相を示す情報を伝送することが行われている。第4
図は、従来の三値信号の作成同格例であり、第5図はそ
のタイミングチャートである。
Conventional technology Conventionally, in motor control circuits, etc., it is based on the start-up cycle of three-value pulses! 11 Information indicating the rotational speed is transmitted, and information indicating the rotational phase is transmitted using a pulse having a different level from other pulses. Fourth
The figure shows an example of conventional appositional generation of three-valued signals, and FIG. 5 is a timing chart thereof.

第4図に釦いて、トランジスタQ1 のエミッタは接地
され、コレクタは抵抗R2を介して3つにわかれている
。1ず1つめは、抵抗R1を介して電源(希望するハイ
電圧で以下H電圧という)に接続され、2つめはトラン
ジスタQ2のコレクタにつなが勺、3つめは出力用に取
り出されている。
As shown in FIG. 4, the emitter of the transistor Q1 is grounded, and the collector is divided into three parts via a resistor R2. The first one is connected to the power supply (desired high voltage, hereinafter referred to as H voltage) via the resistor R1, the second one is connected to the collector of the transistor Q2, and the third one is taken out for output.

トランジスタQ2のエミッタも接地されている。The emitter of transistor Q2 is also grounded.

また前記回路が図中に示すように集積回路IC1に内蔵
されている場合には、前記出力はサージ用の抵抗R3(
約1Kj;l)を介して出力ピン10につながっている
。前記回路においてトランジスタQ1のベースに信号P
G倍信号モータの回転位相を示すPG信号を反転した信
号)が入力され、Q2のペースには信号FG(モータの
回転速度を示す周波数発電機の出力FG倍信号反転した
信号)が入力される形式になっている。ここではミドル
電圧(以下M電圧という)をV。c/2にするためR4
,=R2−Hにしている。
Further, when the circuit is built in the integrated circuit IC1 as shown in the figure, the output is connected to the surge resistor R3 (
approximately 1 Kj; l) to the output pin 10. In the circuit, a signal P is connected to the base of the transistor Q1.
The G multiplication signal (a signal obtained by inverting the PG signal indicating the rotational phase of the motor) is input, and the signal FG (a signal obtained by inverting the frequency generator output FG signal indicating the rotational speed of the motor) is input into the Q2 pace. It has a format. Here, the middle voltage (hereinafter referred to as M voltage) is V. R4 to make c/2
, = R2-H.

次に第4図の動作を第5図のタイミングチャートを例に
とって説明していく。第5図に示す様なタイミングチャ
ート、PG倍信号入力されるとFG倍信号H電圧の時ば
PG倍信号状態にかかわらず、出力端子10にはロー電
圧(キGND、以下り電圧という)が出力され、FG倍
信号L?[圧でPG倍信号H電圧の時は前記出力端子1
oにはM電圧(キvcc/2)が出力される。またFG
がL電圧でかつPGがL電圧に限り前記出力端子10に
はH電圧(牛vcc)を出力する。
Next, the operation of FIG. 4 will be explained using the timing chart of FIG. 5 as an example. As shown in the timing chart shown in Fig. 5, when the PG double signal is input and the FG double signal is at H voltage, the output terminal 10 receives a low voltage (KGND, hereinafter referred to as low voltage) regardless of the PG double signal state. Output, FG double signal L? [When the voltage is PG double signal H voltage, the output terminal 1
M voltage (ki vcc/2) is output to o. Also FG
As long as is an L voltage and PG is an L voltage, an H voltage (cow vcc) is output to the output terminal 10.

発明が解決しようとする課題 ここで、前記回路が、ICに内蔵された場合に、ノイズ
対策・静電気対策等で前記出力端子10と周期検出回路
を内蔵しているIC2との間に容量Cが対GND間に取
うつけられると、従来の回路構成では、H電圧の立ち上
り区間の出力インピーダンス(=R)と、M電圧の立ち
上シ区間の出力インピーダンス(= R/2 ’)がそ
れぞれ異なるため、容量Cに充電される時の時定数が異
なり、H電圧出力時の周期検出の時間が、M電圧出力時
の周期検出の時間よりもJtだけ遅れてし甘う。すなわ
ち、この区間でデユーティ−・50%−50%のFGが
、Q2のベースに入力されたにもかかわらず、Jt遅れ
た周期を検出することになる。第4図の従来例で、R1
−R2=RとするとMN圧の立上り区間の時定数はCR
/2.H電圧の立上り区間の時定数はCRにな9、周期
検出の時間差としてCR−OR/2=CR/2分の影響
が生じる。
Problems to be Solved by the Invention Here, when the circuit is built into an IC, a capacitance C is created between the output terminal 10 and the IC 2 that has a built-in period detection circuit as a countermeasure against noise and static electricity. When connected between GND and GND, in the conventional circuit configuration, the output impedance (=R) during the rising period of the H voltage and the output impedance (= R/2') during the rising period of the M voltage are different. , the time constants when the capacitor C is charged are different, and the period detection time when the H voltage is output is delayed by Jt from the period detection time when the M voltage is output. That is, even though the FG with a duty of 50%-50% is input to the base of Q2 in this section, a period delayed by Jt is detected. In the conventional example shown in Fig. 4, R1
- If R2=R, the time constant of the rise period of MN pressure is CR
/2. The time constant of the rising period of the H voltage is CR9, which causes an effect of CR-OR/2=CR/2 as a time difference in period detection.

ここで、従来の回路例でも周期検出をする回路側(図中
IC2側)で、周期検出をするタイミングを前記出力信
号の立ち下がりで行うと約束をすれば、Q2の電流吸い
込み能力が大きいため、時間遅れが生じず正確な周期検
出が可能となる。しかし、この場合の様に周期検出をす
る側と三値出力側とでマツチングをとる必要があるので
、三値出力回路ひいては前記出力回路を内蔵したIC1
の汎用性が無くなる。
Here, even in the conventional circuit example, if the circuit side that detects the period (IC2 side in the figure) makes a promise that the period detection will be performed at the falling edge of the output signal, the current sinking ability of Q2 is large. , accurate period detection is possible without time delay. However, as in this case, it is necessary to match the cycle detection side and the three-value output side, so the three-value output circuit and the IC1 containing the output circuit are
The versatility of is lost.

本発明は、上記課題を解決するため三値信号を出力して
いる信号線に前記理由で容量Cが取り付けられても、正
確KM電圧の周期が検出でき、さらに周期検出を前記信
号の立ち上がυで行っても、立ち下がりで行っても正確
にM電圧の周期検出が可能な三値信号作成回路を提供せ
んとするものである。
In order to solve the above problems, the present invention makes it possible to accurately detect the cycle of the KM voltage even if a capacitor C is attached to the signal line that outputs the three-value signal for the above reason, and furthermore, the cycle can be detected at the rising edge of the signal. It is an object of the present invention to provide a three-value signal generation circuit that can accurately detect the period of the M voltage whether it is performed at υ or at the falling edge.

課題を解決するための手段 本発明の三値信号作成回路は、出力端子に接続される出
力線の容量も含んだ一定の時定数を有し、第1図の入力
信号に同期して充電を開始する時定数回路と、第2の入
力信号に同期して前記時定数回路の出力電圧を定められ
た上限値に制限する手段とを有し、前記第2の入力信号
の有無に応じて前記第1の入力信号に位相同期した三値
の信号を作成せんことを特徴とするものである。
Means for Solving the Problems The three-level signal generating circuit of the present invention has a constant time constant that includes the capacity of the output line connected to the output terminal, and charges in synchronization with the input signal shown in FIG. a time constant circuit for starting, and means for limiting the output voltage of the time constant circuit to a predetermined upper limit value in synchronization with a second input signal; This method is characterized in that it does not create a ternary signal that is phase-synchronized with the first input signal.

作  用 上記した構成によれば、一定の時定数で充電される充電
電圧をM電圧作成時には、クランプする方式であるため
三値信号出力ラインにノイズ対策等で容量が付加されて
も、L電圧2M電圧およびH電圧の作成時に釦いても時
定数の変化はなく、正確に周期検出が可能となり、例え
ば、VTRのシリンダー七−タ部から出力されるPG倍
信号FG倍信号を波形整形した後、三値出力形式にして
、周期検出回路に伝達しても、正確にFG倍信号周期が
検出できるので、速度制御が乱れて、画面のジッター特
性に悪影響を及ぼすことがなくなる。また、最近のIC
化に釦ける信号線のノイズの影響を正確に周期検出を行
いながら、容量Cを取シ付けることにより低限すること
ができる。
Effects According to the above configuration, the charging voltage that is charged at a constant time constant is clamped when creating the M voltage, so even if a capacitor is added to the three-value signal output line for noise countermeasures, the L voltage Even if the button is pressed when creating the 2M voltage and H voltage, there is no change in the time constant, making it possible to accurately detect the period. Even if the FG signal period is transmitted to the period detection circuit in a three-value output format, the FG multiplied signal period can be detected accurately, so that the speed control will not be disturbed and the jitter characteristics of the screen will not be adversely affected. Also, recent IC
The influence of noise on the signal line can be reduced by attaching the capacitor C while accurately detecting the cycle.

実施例 以下図面を参照して、本発明の一実施例を詳細に説明す
る。第1図は、その基本的なブロック図、第2図は、そ
の−回路例、第3図は、そのタイミングチャートである
Embodiment Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is its basic block diagram, FIG. 2 is its circuit example, and FIG. 3 is its timing chart.

1ず第1図のブロック図によシ本発明の基本構成を述べ
る。図中のリミット回路部1には、 PG倍信号入力さ
れ、M電圧のリミット信号を作成しP G/F G合成
部2に入力される。筐たPG/FG合酸部2には、FG
が入力され、前記M電圧のリミット信号に応じて、H電
圧2M電圧、L電圧の三朧値信号PG/FGがIC2に
内蔵されている周期検出回路に伝達される。
1. First, the basic configuration of the present invention will be described with reference to the block diagram shown in FIG. A PG multiplied signal is input to the limit circuit section 1 in the figure, and a limit signal of M voltage is generated and input to the PG/FG synthesis section 2. In the cased PG/FG synthesis part 2, FG
is input, and three hazy value signals PG/FG of the H voltage, the 2M voltage, and the L voltage are transmitted to the period detection circuit built in the IC 2 in accordance with the limit signal of the M voltage.

さらに第2図の一回路例を使用し、詳細に説明する。リ
ミット回路部1の構成として以下の回路かう成り立つ。
Further, a detailed explanation will be given using an example of the circuit shown in FIG. The limit circuit section 1 has the following circuit configuration.

トランジスタQ3のエミッタは接地され、コレクタは抵
抗R6を介して2つにわかれる。一方は、トランジスタ
Q4のベースにつながり、残りは、トランジスタQ4と
マツチングをとったトランジスタで構成されたダイオー
ドQ5゜Q6がシリーズに2個つながり、R6を介して
vCCにつながる。Q4のコレクタは接地され、Q4の
エミッタは、3つに分かれる。その一つは、トランジス
タQ6のコレクタにつながす、モラーつは、R4を介し
て、vcoにつながる。最後の一つは、サージ抵抗R3
を介して、IC3の出力ピン1oにつながっている。Q
3のベースには、PG倍信号Q5のベースには、FG信
号が入力される。
The emitter of transistor Q3 is grounded, and the collector is divided into two through resistor R6. One is connected to the base of transistor Q4, and the remaining two diodes Q5 and Q6, which are made up of transistors matched with transistor Q4, are connected in series and connected to vCC via R6. The collector of Q4 is grounded and the emitter of Q4 is divided into three parts. One connects to the collector of transistor Q6, the other connects to vco via R4. The last one is surge resistor R3
It is connected to the output pin 1o of IC3 via. Q
The FG signal is input to the base of the PG multiplied signal Q5.

従来例と同じ部分に関しては、同番号の符号をつけて関
連づけている。
The same parts as in the conventional example are associated with the same reference numerals.

ここで、第3図のタイミングチャートを参照しながら、
本発明の動作説明を行う。FGがH電圧の出力は、L電
圧になる。また、PGが、H電位の時は、R5=Reな
ので、Q4のコレクタ電位は、M電圧である5/1vc
C以上にはなれない。ここで、R6とR6の抵抗値を変
えることによシ、任意のM電圧を設定することができる
ことが判る。また、FGがL電圧、PGがL電圧の時は
、前記のM電圧にリミットされることはないので、H電
圧(=Vcc )’tで一定の時定数で、立ち上がるこ
とになる。図3の「拡大波形」で説明されているように
、M電圧の立ち上がシ区間とH電圧の立ち上がシ区間の
出力インピーダンスが等しくR4のため、容量Cが取シ
付けられても、前記容量Cと合或部2とで形成される時
定数回路の時定数は一定となり、信号の立ち上がり傾斜
の様子は同じである。すなわちM電圧の周期を検出した
い場合、H電圧がM電圧の1パルスを兼ねていても正確
な周期検出が可能となる。また、周期検出の精度を上げ
たい場合、本発明の回路では、1つの周期検出回路で立
ち下がり傾斜の周期検出を行えば良いことがわかる。
Here, while referring to the timing chart in Figure 3,
The operation of the present invention will be explained. The output of FG with H voltage becomes L voltage. Also, when PG is at H potential, R5=Re, so the collector potential of Q4 is 5/1vc which is M voltage.
I can't get higher than C. Here, it can be seen that an arbitrary M voltage can be set by changing the resistance values of R6 and R6. Furthermore, when FG is at the L voltage and PG is at the L voltage, the voltage is not limited to the above-mentioned M voltage, so that it rises at the H voltage (=Vcc)'t with a constant time constant. As explained in the "enlarged waveform" in Figure 3, the output impedance of the rising edge section of the M voltage and the rising edge section of the H voltage is equal to R4, so even if the capacitor C is installed, , the time constant of the time constant circuit formed by the capacitor C and the combining section 2 is constant, and the rising slope of the signal is the same. That is, when it is desired to detect the period of the M voltage, accurate period detection is possible even if the H voltage also serves as one pulse of the M voltage. Furthermore, it can be seen that if it is desired to improve the accuracy of period detection, it is sufficient to detect the falling slope period using one period detection circuit in the circuit of the present invention.

発明の詳細 な説明してきたように、本発明の三値信号作成回路は、
ノイズ対策、静電気対策等で出力ラインに容量が取シ付
けられても、信号の立上り、信号の立下がりに関係なく
、正確な周期検出が出来る。!た、本発明の応用例とし
て、VTRのシリンダーモーターから、出力されている
、PG倍信号FG信号をそれぞれ波形整形した後、本発
明の三値信号作成回路で三値信号に変換し、周期検出回
路を含んでいるサーボマイコンに伝達することができる
As described in detail, the ternary signal generation circuit of the present invention has the following features:
Even if a capacitor is attached to the output line as a noise countermeasure or static electricity countermeasure, accurate period detection can be performed regardless of the rising edge or falling edge of the signal. ! In addition, as an application example of the present invention, the PG double signal FG signal output from the cylinder motor of a VTR is waveform-shaped, and then converted into a three-value signal by the three-value signal generation circuit of the present invention, and the cycle is detected. It can be transmitted to the servo microcontroller containing the circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の三値信号作成回路の一実施例に釦ける
基本構成を示すブロック図、第2図は同実施例の三値信
号作成回路の回路図、第3図はそのタイミングチャート
、第4図は従来の三値信号作成回路の回路図、第5図は
そのタイミングチャートである。
FIG. 1 is a block diagram showing the basic configuration of an embodiment of the three-value signal generation circuit of the present invention, FIG. 2 is a circuit diagram of the three-value signal generation circuit of the same embodiment, and FIG. 3 is its timing chart. , FIG. 4 is a circuit diagram of a conventional ternary signal generating circuit, and FIG. 5 is its timing chart.

Claims (1)

【特許請求の範囲】[Claims]  出力端子に接続される出力線の容量も含んだ一定の時
定数を有し、第1の入力信号に同期して充電を開始する
時定数回路と、第2の入力信号に同期して前記時定数回
路の出力電圧を定められた上限値に制限する手段とを有
し、前記第2の信号の有無に応じて前記第1の入力信号
に位相同期した3値の信号を作成する三値信号作成回路
A time constant circuit that has a constant time constant including the capacity of the output line connected to the output terminal and starts charging in synchronization with a first input signal, and a time constant circuit that starts charging in synchronization with a second input signal. and means for limiting the output voltage of the constant circuit to a predetermined upper limit value, and creates a three-value signal phase-synchronized with the first input signal depending on the presence or absence of the second signal. Create circuit.
JP2038660A 1990-02-20 1990-02-20 Tri-level signal generation circuit Expired - Fee Related JP3047417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2038660A JP3047417B2 (en) 1990-02-20 1990-02-20 Tri-level signal generation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2038660A JP3047417B2 (en) 1990-02-20 1990-02-20 Tri-level signal generation circuit

Publications (2)

Publication Number Publication Date
JPH03241946A true JPH03241946A (en) 1991-10-29
JP3047417B2 JP3047417B2 (en) 2000-05-29

Family

ID=12531421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2038660A Expired - Fee Related JP3047417B2 (en) 1990-02-20 1990-02-20 Tri-level signal generation circuit

Country Status (1)

Country Link
JP (1) JP3047417B2 (en)

Also Published As

Publication number Publication date
JP3047417B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
JPH07332917A (en) Electrostatic capacity type sensor
US4783604A (en) Buffer circuit for outputting signals of different polarities
EP0952669A1 (en) Phase comparison circuit
JPH0832425A (en) Data read timing variable circuit
US5850129A (en) Drive circuit for a three-phase brushless motor
JPH03241946A (en) Tri-state signal generating circuit
JP3494504B2 (en) Electromagnetic coupling type pulse signal regeneration circuit
CN111049504A (en) Pulse generating circuit
US3946253A (en) Pulse train generator
US4849830A (en) Picture stabilizing circuit for generating a forced synchronizing signal
JPH0854474A (en) Electrostatic capacitance type proximity sensor
JP2699610B2 (en) Synchronous signal separation circuit
JPH03102911A (en) Clock signal generating circuit
JP2682107B2 (en) Trapezoidal wave output circuit
KR900002361Y1 (en) Clock pulse error detection circuit
JPS6324665Y2 (en)
JPH0568154B2 (en)
JPH0964698A (en) Oscillator
KR940006821Y1 (en) Horizontal synchronization signal detection circuit
JP2647930B2 (en) Semiconductor delay circuit
JPS5825571A (en) Electronic adjusting igniter
JPH0193206A (en) Pulse count type detector
JP3064311B2 (en) Burst flag circuit
JPH0363249B2 (en)
KR930004035Y1 (en) Noise preventing circuit of drum motor switching signal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees