JPH0324119A - Sealing resin composition and apparatus for sealing semiconductor - Google Patents

Sealing resin composition and apparatus for sealing semiconductor

Info

Publication number
JPH0324119A
JPH0324119A JP16005689A JP16005689A JPH0324119A JP H0324119 A JPH0324119 A JP H0324119A JP 16005689 A JP16005689 A JP 16005689A JP 16005689 A JP16005689 A JP 16005689A JP H0324119 A JPH0324119 A JP H0324119A
Authority
JP
Japan
Prior art keywords
resin
resin composition
amino
silica powder
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16005689A
Other languages
Japanese (ja)
Inventor
Masanori Kokubo
小久保 正典
Naomi Wada
和田 直美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Toshiba Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Corp filed Critical Toshiba Chemical Corp
Priority to JP16005689A priority Critical patent/JPH0324119A/en
Publication of JPH0324119A publication Critical patent/JPH0324119A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sealing resin composition improved in particularly humid ity resistance after immersion in a soldering bath and soldering-heat resistance by mixing an epoxy resin with a novolac phenolic resin, a porous methyl methacrylate/butadiene/styrene copolymer resin containing a specified amino- functional disiloxane and a silica powder. CONSTITUTION:This composition essentially comprises an epoxy resin (A), a novolac phenolic resin (B), a porous methyl methacrylate/butadiene/styrene (MBS) copolymer resin (C) containing an amino-functional disiloxane of formula I (wherein R<1> is a hydrogen atom or an alkyl; and R<2> is an alkyl) and 65-85wt.%, based on the resin composition, silica powder (D). Component C is prepared by impregnating 100 pts.wt. porous MBS copolymer with about 5-100 pts.wt. amino-functional disiloxane.

Description

【発明の詳細な説明】 [発明の目的] (産業,Eの利用分野〉 本発明は、耐湿性、半田耐熱性に優れた封止用樹脂組成
物及びその硬化物によって封止さ゛れた半導体封正装置
に開する. (従来の技術) 近年、牛導体集積回路の分野において、高集積化、高信
頼性化の抜術開発と同時に、半導体装置の実装丁程の自
動化が推進されている。 例えば、フラットバッゲージ
聖の半導体装置を回liI3基板に実装する場合、従来
はリードビン毎に半田付けを行っていたが、最近は半導
体装置全体を250℃以上に加熱した半田浴に浸漬して
半田t1けを行う方法が採用されている。
Detailed Description of the Invention [Object of the Invention] (Field of Application in Industry and E) The present invention provides a resin composition for sealing with excellent moisture resistance and soldering heat resistance, and a semiconductor sealant sealed with the cured product thereof. (Prior art) In recent years, in the field of conductor integrated circuits, the automation of the mounting process of semiconductor devices has been promoted at the same time as the development of cutting-edge techniques for higher integration and higher reliability. For example, when mounting a flat baggage type semiconductor device on a 2-liI3 board, conventionally soldering was performed for each lead bin, but recently the entire semiconductor device is immersed in a solder bath heated to 250°C or higher and the solder t1 is soldered. A method of injury is adopted.

(発明が解決しようとする課題) 従来のエボキシ樹脂、ノボラック型フェノール樹脂およ
びシリカ粉末からなる樹脂組成物で封止した半導体装置
では、装置全体の半田浴浸漬を行うと耐湿性が低下する
という欠点があった. 特に吸湿した半導体装置を半田
浸漬すると、封止樹脂ε半導体チップ或いは封止樹脂と
リードフレームとの間に剥れが発生し、著しい耐湿性劣
化を生じ、その結果、電極の腐食による断線や水分によ
るリーク電流を生じ、長期間の信頼性を保証することが
できないという欠点があった。
(Problems to be Solved by the Invention) A semiconductor device encapsulated with a conventional resin composition consisting of an epoxy resin, a novolac type phenol resin, and silica powder has a disadvantage that moisture resistance decreases when the entire device is immersed in a solder bath. was there. In particular, when a semiconductor device that has absorbed moisture is immersed in solder, peeling occurs between the encapsulating resin ε semiconductor chip or the encapsulating resin and the lead frame, resulting in a significant deterioration of moisture resistance.As a result, disconnection due to electrode corrosion and moisture This has the disadvantage that long-term reliability cannot be guaranteed due to the leakage current caused by the leakage current.

本発明は、上記の欠点を解消するためになされたもので
、吸湿の影饗が少なく、特に半田浴浸潰後の耐湿性、半
田耐熟性に優れた封止用樹脂組成物及びその半導体封止
装置を提供することを目的としている. [発明の楕成] (課題を解決するための手段) 本発明名らは、上記の目的を達成しようと鋭意研究を重
ねた結果、アミン官能性ジシロキサンを含む多孔質のメ
チルメタクリレート・ブタジエン・スチレン共重合樹脂
を配合するこεによって耐湿性、半田耐熱性に浸れた樹
脂組成物が得られることを見いだし、本発明を完成した
ものである.すなわち、本発明は、 (A>エボキシ樹脂、 (8》ノボラック型フ五ノール樹脂、 (C)次式で示されるアミノ官能性ジシロキサンの樹脂
が挙げられる. (但し、式中、R2′は水素原子又はアルキル基を、R
2はアルキル基を表す)を含む多孔質のメチルメタクリ
レ−■・・ブタジヱン・スチレン共重合樹脂及び (D)シリカ粉末 を必須成分とし、前記(D)のシリカ粉末を樹脂組成物
に対して65〜85重景%含有してなることを特徴とす
る封止用樹脂組成物およびその硬化物によって半導体装
置が封止されていることを特徴とする半導体封止装置で
ある. 本発明に用いる(A>エボキシ樹脂としては、その分子
中にエボキシ基を少なくとも2個有ずる化合物である限
り、分子M造、分子量等に特に制限はなく、一般に使用
されているものを広く包含するさ,とができる. 例え
ば、ビスフェノール型の芳香族、シクロヘキサン誘導体
等の脂環族、さらに次の一般式で示されるヱボキシノボ
ラック等(但し、式中R1は水素原子、ハロゲン原子一
又はアルキル基を、R2は水素原子又はアルキル基を、
nは1以上のN数を表す.)これらのエボキシ樹脂は、
単独又は2種以」一混合して使用することができる. 本発明に用いる(B)ノボラック型フェノール樹脂とし
ては、フェノール、アルキルフェノール等のフェノール
類ε、ホルムアルデヒドあるいはバラホルムアルデヒド
とを反応させて得られるノボラック型フェノール樹脂お
よびこれらの変性樹脂、例えばエボキシ化もしくはブチ
ル化ノボラック型フェノール樹脂等が挙げられ、ノボラ
ヅク型フェノール樹脂である限り特に制限はなく一般に
広く包含することができる. これらのノボラック型フ
ェノール樹脂は、単独或いは2種以上混合して使用する
ことができる. 本発明に用いる(C)アミノ官能性ジシロキサンを含む
多孔質のメチルメタクリレート・ブタジエン・スチレン
共重合樹脂としては、多孔質のメチルメタクリレート・
ブタジエン・スチレンの共重合樹脂(以下MBS共重合
体という)に、次の一般式で示されるアミノ官能性ジシ
ロキサンを含浸させたものを使用する. (但し、式中、R1は水素原子又はアルキル基を、R2
はアルキル基を表す.) アミノ官能性ジシロキサンの具体的な化合物としてビス
(アミノプロビル〉テトラメチルジシロキサン、ビス(
メチlレアミノプロピノレ冫テトラメチルジシロキサン
、ビス(ジメチルアミノプロビル)テトラメチルジシロ
キサン等のシロキサンダイマーが挙げられる. 多孔質
のMI3S共重合体100重量部に対してアミノ官能性
ジシロキサン5〜100重量部を含浸させる. アミノ
官能性ジシロキサン5重量部未満では半田耐熱性が悪く
、また100重量部を超えると戒形性が劣り好ましくな
い. なお好ましくは10〜50重量部がよい. 多孔
質MBS共重合体へのアミノ官能性ジシロキサンの含浸
は常温〜加熱状9(150℃以下)の範囲内であればい
かなる温度で含浸してもよい. アミノ官能性ジシロキ
サンを含む多孔質のMBS共重合体の配合割合は、特に
制限はないが経済性等を考慮し樹脂組成物に対し、0.
1〜5重量%含有することが望ましい. アミノ官能性ジシロキサンを含む多孔質のMBS共重合
体を配合することによって、エボキシ樹脂がノボラック
型フェノール樹脂で硬化中、極性基シランがブリードす
ることなしに保存されるため、封止樹脂と半導体チップ
の密着性や、封止樹脂とリードフレームとの密着性が向
上し、半田浴に浸漬しても耐湿性の劣化が少なくなるも
のと思われる. また半導体チップにコートされている
ポリイミド等のバッシベーション膜との密着性も優れた
ものとなる. さらに低応力性も単純な添加型より向上
する. 本発明に用いる(D)シリカ粉末としては、般に市販さ
れているものでもよいが、不純物濃度が低く、平均粒径
30μ一以下のものが好ましい.平均粒径が30μmを
超えると、耐湿性および成形性に劣り好ましくない. 
シリカ粉末の配合割合は、vA脂組成物に対して65〜
85重量%の割合で含有することが望ましい. その割
合が65ffi量%末満では樹脂組成物の吸湿性が大き
く、半田浴浸漬後の耐湿性に劣り、また85重量%を超
えると極端に流動性が悪く成形性に劣り好ましくない.
本発明の封止用樹脂組成物は、エボキシ樹脂、ノボラッ
ク型フェノール樹脂、アミノ官能性ジシロキサンを含む
多孔質のMBS共重合体、およびシリカ粉末を必須或分
とするが、本発明の目的に反しない限り、必要に応じて
、例えば天然ワックス類、合成ワックス類、直鎖脂肪酸
の金属塩、酸アミド類、エステル類、パラフィン類等の
離型剤、三酸化アンチモン等の難燃剤、カーボンブラッ
ク等の着色剤、シランカップリング剤、種々の硬化促進
剤等を適宜添加・配合することができる.本発明の封止
用樹脂組成物の成形材料として製造する場合の一般的方
法は、ミキサーで多孔質のMBS共重合体にアミノ官能
性ジシロキサンを含浸し放置する. 次いで、これにエ
ボキシ樹脂、ノボラック型フェノール樹脂、シリカ粉末
、その他の成分を配合し、ミキサー等によって十分均一
に混合した後、更に熱ロールによる溶融混合処理又は二
−ダによる混合処理を行い、次いで冷却固化させ、適当
な大きさに粉砕して戒形材料とする.ここで多孔質のM
BS共重合体にアミノ官能性ジシロキサンを含浸放置し
、次いで他の成分を加える方法を説明したが、予しめ別
に多孔質のMBSJt;ffi合体を含浸させておき、
各成分をミキサー中一賭に混合してもよい. こうして
得られた戒形材料を半導体装置をはじめとする電子部品
或いは電気部品の封止用として、また、被覆、絶縁等に
適用し、優れた特性ヒ俗頼性を付ターさせil ,:.
 1がTきる。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and provides an encapsulating resin composition that is less susceptible to moisture absorption and has particularly excellent moisture resistance and solder ripening resistance after being immersed in a solder bath, and a semiconductor thereof. The purpose is to provide a sealing device. [Elements of the Invention] (Means for Solving the Problems) As a result of intensive research aimed at achieving the above object, the present inventors have developed a porous methyl methacrylate-butadiene-containing amine-functional disiloxane. The present invention was completed based on the discovery that a resin composition with excellent moisture resistance and soldering heat resistance can be obtained by incorporating a styrene copolymer resin. That is, the present invention includes (A> epoxy resin, (8) novolac type phenol resin, (C) amino-functional disiloxane resin represented by the following formula. (However, in the formula, R2' is A hydrogen atom or an alkyl group, R
2 represents an alkyl group) containing a porous methyl methacrylate-■...butadiene-styrene copolymer resin and (D) silica powder as essential components, and the silica powder of (D) is added to the resin composition. A semiconductor encapsulation device characterized in that a semiconductor device is encapsulated with a encapsulation resin composition characterized by containing 65 to 85% by weight and a cured product thereof. As long as the epoxy resin used in the present invention (A) is a compound having at least two epoxy groups in its molecule, there are no particular restrictions on the molecule M structure, molecular weight, etc., and a wide range of commonly used resins are included. For example, bisphenol-type aromatics, alicyclics such as cyclohexane derivatives, and eboxinovolacs represented by the following general formula (wherein R1 is a hydrogen atom, a halogen atom, or an alkyl group, R2 is a hydrogen atom or an alkyl group,
n represents the number N greater than or equal to 1. ) These epoxy resins are
They can be used alone or in combination of two or more. The novolak phenolic resin (B) used in the present invention includes novolak phenolic resins obtained by reacting phenols such as phenol and alkylphenols with formaldehyde or paraformaldehyde, and modified resins thereof, such as eboxidized or butylated resins. Examples include novolak type phenolic resins, and there are no particular limitations as long as the resins are novolak type phenolic resins, and a wide range of examples can be included. These novolac type phenolic resins can be used alone or in combination of two or more. The porous methyl methacrylate-butadiene-styrene copolymer resin containing amino-functional disiloxane (C) used in the present invention includes porous methyl methacrylate-butadiene-styrene copolymer resin.
A butadiene-styrene copolymer resin (hereinafter referred to as MBS copolymer) impregnated with an amino-functional disiloxane represented by the following general formula is used. (However, in the formula, R1 is a hydrogen atom or an alkyl group, R2
represents an alkyl group. ) Specific compounds of amino-functional disiloxane include bis(aminoprobyl〉tetramethyldisiloxane, bis(
Examples include siloxane dimers such as methyl-reaminopropylenetetramethyldisiloxane and bis(dimethylaminopropyl)tetramethyldisiloxane. 100 parts by weight of porous MI3S copolymer is impregnated with 5 to 100 parts by weight of amino-functional disiloxane. If the amino-functional disiloxane is less than 5 parts by weight, the soldering heat resistance will be poor, and if it exceeds 100 parts by weight, the shapeability will be poor, which is not preferred. The amount is preferably 10 to 50 parts by weight. The porous MBS copolymer may be impregnated with the amino-functional disiloxane at any temperature within the range of room temperature to heated state 9 (below 150°C). The blending ratio of the porous MBS copolymer containing the amino-functional disiloxane is not particularly limited, but in consideration of economic efficiency, etc., the proportion of the porous MBS copolymer containing the amino-functional disiloxane may be 0.
It is desirable to contain 1 to 5% by weight. By blending the porous MBS copolymer containing amino-functional disiloxane, the polar group silane is preserved without bleeding while the epoxy resin is being cured with the novolac type phenolic resin, so it is compatible with the sealing resin and the semiconductor. It is thought that the adhesion of the chip and the adhesion between the sealing resin and the lead frame will be improved, and the deterioration of moisture resistance will be reduced even when immersed in a solder bath. It also has excellent adhesion to the polyimide or other bashivation film coated on the semiconductor chip. Furthermore, the low stress property is also improved compared to the simple additive type. The silica powder (D) used in the present invention may be commercially available, but it is preferably one with a low impurity concentration and an average particle size of 30 μm or less. If the average particle size exceeds 30 μm, moisture resistance and moldability will be poor, which is undesirable.
The blending ratio of silica powder is 65 to 65% to the vA fat composition.
The content is preferably 85% by weight. When the proportion is less than 65% by weight, the resin composition has high hygroscopicity and has poor moisture resistance after immersion in a solder bath, and when it exceeds 85% by weight, fluidity is extremely poor and moldability is unfavorable.
The sealing resin composition of the present invention essentially contains an epoxy resin, a novolac type phenolic resin, a porous MBS copolymer containing an amino-functional disiloxane, and a silica powder. As long as it does not conflict, as necessary, for example, natural waxes, synthetic waxes, metal salts of straight chain fatty acids, acid amides, esters, mold release agents such as paraffins, flame retardants such as antimony trioxide, carbon black. Coloring agents such as, silane coupling agents, various curing accelerators, etc. can be added and blended as appropriate. A general method for producing the sealing resin composition of the present invention as a molding material is to impregnate a porous MBS copolymer with an amino-functional disiloxane in a mixer and leave it to stand. Next, epoxy resin, novolac type phenol resin, silica powder, and other ingredients are blended with this and mixed sufficiently uniformly with a mixer, etc., and then melt-mixed with hot rolls or mixed with a seconder. Let it cool and solidify, then crush it to an appropriate size and use it as a preform material. Here, the porous M
Although we have explained the method of impregnating the BS copolymer with amino-functional disiloxane and then adding other components, it is also possible to impregnate the porous MBSJt;ffi composite in advance.
Each component may be mixed together in a mixer. The molded material thus obtained is used for sealing electronic or electrical parts such as semiconductor devices, and is applied to coatings, insulation, etc., and has excellent properties and reliability.
1 is T.

本発明の早導体封止装置は、玉記の封止用樹脂組成掬を
用いて、半導体装置を封止するこたにより容易に゛製}
rzず″るこ辷ができる6 封止の鱈ら一般的な方法)
=シては,、低圧トランスファー成形法があるが、イン
ジ又クシ』ン威形、圧縮戒形、注聖咎による封止ら可能
である。 封止用VA脂組或物は封止の際に加熱して硬
化させ、最終的には,ーの組成物の硬化物によって封J
1・ざわ4′/:・半導体封止装置が得られる。 硬化
温度は150℃以1.に加熱ずるこヒか望ましい。 封
4141行う半導体装這辷しては、例えば集積同路,.
大規模t&積回路、I・ランジスタ、ザイリスタ,ダイ
オード等であって,、特に限定されるものではない、 《実施例) 次に本発明p実施PAによって説明すゐが、本発明は以
下の実施例によつで限定きれるものではない。
The fast conductor sealing device of the present invention can be easily produced by sealing a semiconductor device using Tamaki's sealing resin composition scoop.
6 General method of sealing)
For this, there is a low-pressure transfer molding method, but it is also possible to seal with an ink or comb, a compression seal, and a seal. The VA resin composition for sealing is heated and cured during sealing, and finally the cured product of the composition is used for sealing.
1. Semiconductor sealing device is obtained. Curing temperature is 150℃ or higher1. It is preferable to heat it up. The semiconductor components to be sealed 4141 are, for example, integrated circuits, .
Examples include large-scale T & product circuits, I transistors, Zyristors, diodes, etc., and are not particularly limited. For example, it cannot be limited to the following.

実論例 第1表(・こ示した組成原料を常温’H混合し、さらに
90−95℃て・混練し,冷RII L &後粉砕し/
ζ成形材料を製造し、・゛X℃。
Practical Example Table 1 (The raw materials shown in this table are mixed at room temperature, further kneaded at 90-95°C, and then crushed in cold RII L and then ground.
Produce ζ molding material, ゛X℃.

比較例 1−2 第1表!8:示した組成原料を実緒例ε同傑6J1,て
成形材料を製逸した。
Comparative example 1-2 Table 1! 8: A molding material was produced using the raw material shown in Example ε Dogetsu 6J1.

実施例および比較例1−・2で製造した成形材料分用い
て、半導体装置を対止し、170℃で加熱硬化さqて半
導体封j』:装夏を製造しゾこ。 この成形材料及び半
導体舛止装訳について諸試験を脊ηたので、その結果を
第宜表(..T:.示した. 本発明は吸水率が小さく
耐湿性は優れでおり、本発明の効果が認められt:。
Using the molding materials produced in Examples and Comparative Examples 1 and 2, a semiconductor device was sealed and cured by heating at 170° C. to encapsulate the semiconductor. Various tests were conducted on this molding material and semiconductor mounting material, and the results are shown in Table 1.The present invention has a low water absorption rate and excellent moisture resistance. The effect was recognized.

実施例および比較例につも1て試顎を行っl:吸水車、
ガラス転移温度、十円満浸漬後の耐湿性は次のようにし
て試験した。
In each of the Examples and Comparative Examples, a test jaw was conducted: water absorption wheel;
Glass transition temperature and moisture resistance after full immersion were tested as follows.

吸水率は、成形材料を用いてI−ランスファ・・一成形
しTM.杼50ltllii.厚き3開の或形晶をつく
り、こわ4を127℃、2.5気圧の飽和水蒸気中に2
4時間放置し、増加した璽量によ1て求めた。 ガラス
転移温度(よ、吸水率の試験k同じ成形品をつくり、こ
れを175℃で8時間の後硬化を行い、適当な大静さの
テストビースとし、熱機械特性分析装置を用いて測定し
た. 耐湿性は、威形材料を用いて2本以上のアルミニ
ウム配線を有するシリコン製ヂップ(テスI一用チップ
)を通常の42アロイフレームに接着し、175℃で2
分間トランスファー・成形して5x 10x  1.5
veのフラットバッゲージ聖半導体封止装置を製造}7
、その徨175℃で8時間後硬化を行った. この半導
体封止装置を予め40℃,90%RH,100時間の吸
湿処理を行った稜、250℃の半田浴に10秒間浸漬し
た。 次いで127℃,2.5気圧の飽和水蒸気中でグ
レッシャー・クッカー・テスト (PCT)を行い、アルミニウム配線の腐食による断線
を不良と評価した。
The water absorption rate was determined by molding I-Transfer using a molding material and using TM. Shuttle 50ltllii. A crystal with a thickness of 3 mm was prepared, and the stiffness was placed in saturated steam at 127°C and 2.5 atm.
After leaving it for 4 hours, the increase in the amount of sealing was determined by 1. Glass transition temperature (water absorption test) The same molded product was made and post-cured at 175°C for 8 hours, used as a suitably quiet test bead, and measured using a thermomechanical property analyzer. . Moisture resistance was determined by bonding a silicone chip (chip for Tes I) with two or more aluminum wires to a regular 42 alloy frame using a high-quality material, and heating it at 175℃ for 2 hours.
Transfer and mold for 5x 10x 1.5 minutes
Manufactures ve flat baggage semiconductor sealing equipment}7
After curing was carried out at 175°C for 8 hours. This semiconductor encapsulation device was subjected to moisture absorption treatment for 100 hours at 40° C. and 90% RH before being immersed in a solder bath at 250° C. for 10 seconds. Next, a glacier cooker test (PCT) was conducted in saturated steam at 127° C. and 2.5 atm, and disconnection due to corrosion of the aluminum wiring was evaluated as defective.

第1表 *1 ニビス(アミノブロじノレ)テトラメチノレジシ
0吉−サン第 1 表(つづき) (単位) することができ、その結果、長期間にわたって信頼性を
保証することができる. [発明の効果]
Table 1 *1 Nibis (aminobrodine) tetramethynoresi Table 1 (continued) (Units) As a result, reliability can be guaranteed over a long period of time. [Effect of the invention]

Claims (1)

【特許請求の範囲】 1(A)エポキシ樹脂、 (B)ノボラック型フェノール樹脂、 (C)次式で示されるアミノ官能性ジシロキサン▲数式
、化学式、表等があります▼ (但し、式中、R^1は水素原子又はアルキル基を、R
^2はアルキル基を表す)を含む多孔質のメチルメタク
リレート・ブタジエン・スチレン共重合樹脂及び (D)シリカ粉末 を必須成分とし、前記(D)のシリカ粉末を樹脂組成物
に対して65〜85重量%含有してなることを特徴とす
る封止用樹脂組成物。 2(A)エポキシ樹脂、 (B)ノボラック型フェノール樹脂、 (C)次式で示されるアミノ官能性ジシロキサン▲数式
、化学式、表等があります▼ (但し、式中、R^1は水素原子又はアルキル基を、R
^2はアルキル基を表す)を含む多孔質のメチルメタク
リレート・ブタジエン・スチレン共重合樹脂及び (D)シリカ粉末 を必須成分とし、前記(D)のシリカ粉末を樹脂組成物
に対し65〜85重量%含有する封止用樹脂組成物の硬
化物によって半導体装置が封止されていることを特徴と
する半導体封止装置。
[Scope of Claims] 1 (A) Epoxy resin, (B) Novolac type phenolic resin, (C) Amino-functional disiloxane represented by the following formula ▲ There are numerical formulas, chemical formulas, tables, etc. ▼ (However, in the formula, R^1 is a hydrogen atom or an alkyl group, R
A porous methyl methacrylate-butadiene-styrene copolymer resin containing (^2 represents an alkyl group) and (D) silica powder are essential components, and the silica powder of (D) is 65 to 85% of the resin composition. % by weight of a sealing resin composition. 2 (A) Epoxy resin, (B) Novolac type phenolic resin, (C) Amino-functional disiloxane represented by the following formula ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ (However, in the formula, R^1 is a hydrogen atom or an alkyl group, R
A porous methyl methacrylate-butadiene-styrene copolymer resin containing (^2 represents an alkyl group) and (D) silica powder are essential components, and the silica powder (D) is added in an amount of 65 to 85% by weight based on the resin composition. 1. A semiconductor encapsulation device characterized in that a semiconductor device is encapsulated with a cured product of a encapsulation resin composition containing %.
JP16005689A 1989-06-22 1989-06-22 Sealing resin composition and apparatus for sealing semiconductor Pending JPH0324119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16005689A JPH0324119A (en) 1989-06-22 1989-06-22 Sealing resin composition and apparatus for sealing semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16005689A JPH0324119A (en) 1989-06-22 1989-06-22 Sealing resin composition and apparatus for sealing semiconductor

Publications (1)

Publication Number Publication Date
JPH0324119A true JPH0324119A (en) 1991-02-01

Family

ID=15706955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16005689A Pending JPH0324119A (en) 1989-06-22 1989-06-22 Sealing resin composition and apparatus for sealing semiconductor

Country Status (1)

Country Link
JP (1) JPH0324119A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129475A (en) * 1991-11-05 1993-05-25 Shin Etsu Chem Co Ltd Sealing material for tab type semiconductor device, and tab type semiconductor device
EP0634792A3 (en) * 1991-03-08 1995-07-12 Japan Gore Tex Inc Resin-sealed semiconductor device containing porous fluororesin.
US6620510B1 (en) * 1998-12-25 2003-09-16 Mitsubishi Rayon Co., Ltd. Epoxy resin composition, prepreg, and roll made of resin reinforced with reinforcing fibers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634792A3 (en) * 1991-03-08 1995-07-12 Japan Gore Tex Inc Resin-sealed semiconductor device containing porous fluororesin.
JPH05129475A (en) * 1991-11-05 1993-05-25 Shin Etsu Chem Co Ltd Sealing material for tab type semiconductor device, and tab type semiconductor device
US6620510B1 (en) * 1998-12-25 2003-09-16 Mitsubishi Rayon Co., Ltd. Epoxy resin composition, prepreg, and roll made of resin reinforced with reinforcing fibers

Similar Documents

Publication Publication Date Title
JPH0324119A (en) Sealing resin composition and apparatus for sealing semiconductor
JP3705618B2 (en) Epoxy resin composition and semiconductor sealing device
JP2001106768A (en) Epoxy resin composition and semiconductor sealed device
JP2000136290A (en) Resin composition for sealing and semiconductor-sealed device
JP2892433B2 (en) Sealing resin composition and semiconductor sealing device
JPS62246921A (en) Sealing resin composition
JPS63110212A (en) Sealing resin composition
JPH03221518A (en) Sealing resin composition and sealed semiconductor device
JPS63110213A (en) Sealing resin composition
JPS62192423A (en) Sealing resin composition
JPH11302503A (en) Epoxy resin composition and device for sealing semiconductor
JPH0665357A (en) Epoxy resin composition and semiconductor device
JPH01144438A (en) Sealing resin composition
JPH0819214B2 (en) Sealing resin composition
JPH08245754A (en) Epoxy resin composition and sealed semiconductor device
JPH0637546B2 (en) Sealing resin composition
JPH083277A (en) Epoxy resin composition and sealed semiconductor device
JPH0465420A (en) Sealing resin composition and sealed semiconductor device
JPH03106929A (en) Sealing resin composition and semiconductor device sealed therewith
JPH0472323A (en) Resin composition for sealing and sealed semiconductor device
JPH0216147A (en) Sealing resin composition
JPH10204264A (en) Epoxy resin composition and semiconductor sealing device
JPH0269514A (en) Sealing resin composition
JPH0216117A (en) Sealing resin composition
JPH09188747A (en) Epoxy resin composition and sealed semiconductor device