JPH03106929A - Sealing resin composition and semiconductor device sealed therewith - Google Patents

Sealing resin composition and semiconductor device sealed therewith

Info

Publication number
JPH03106929A
JPH03106929A JP24312189A JP24312189A JPH03106929A JP H03106929 A JPH03106929 A JP H03106929A JP 24312189 A JP24312189 A JP 24312189A JP 24312189 A JP24312189 A JP 24312189A JP H03106929 A JPH03106929 A JP H03106929A
Authority
JP
Japan
Prior art keywords
resin composition
resin
silicone compound
silica powder
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24312189A
Other languages
Japanese (ja)
Inventor
Shinji Murakami
信二 村上
Masayuki Kochiyama
河内山 誠幸
Kazuhiro Matsumae
松前 一広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Toshiba Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Corp filed Critical Toshiba Chemical Corp
Priority to JP24312189A priority Critical patent/JPH03106929A/en
Publication of JPH03106929A publication Critical patent/JPH03106929A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor sealing resin composition excellent in humidity resistance and adhesion after soldering by compounding an epoxy resin, a novolac phenol resin, a coupling agent of a specified structure, a silicone compound and a silica powder as the essential components. CONSTITUTION:A sealing resin composition is obtained by compounding an epoxy resin having at least two epoxys in the molecule, a novolac phenol resin, a coupling agent of formula I (wherein R is a methyl or an ethyl), e.g. gamma- ureidopropyltrimethoxysilane, 0.01-5.0wt.% silicone compound of formula II (wherein n is 0 or an integer >=1), and 65-90wt.% silica powder as the essential components.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、耐湿性、密着性に優れた半導体集積回路等の
封止用樹脂組成物及びその半導体封止装置に関する. 《従来の技術) 近年、半導体集積回路の分野において、高集積化、高信
頼性化の技術開発が進められている.また、電子部品、
電子機器の組立工程においては、生産性を向上させるた
めに半導体装置をプリント配線基板に実装する工程の自
動化が推進されている. 例えば、半導体装置をプリン
ト配線基板に実装する方法として、従来はリードビン毎
に半田付けを行っていたが、最近は予めリードピンにク
リーム状半田を塗布した後、プリント配線基板全体を約
200〜260℃に加熱して半田付けするりフロ一方式
の半田付け方法が主流となっている.(発明が解決しよ
うとする課題) しかし、従来のエポキシ樹脂、ノボラック型フェノール
樹脂及びシリカ粉末からなる樹脂組成物で封止した半導
体装置は、リフロ一方式等によって半田付けを行うと耐
湿性が劣化するという欠点があった. 特に吸湿した半
導体装置に同様の半田付けを行うと、高温における水蒸
気圧によって封止用樹脂と半導体チップおよびリードフ
レームとの界面に剥離を生じ、電極の腐食による断線や
水分によるリーク電流を生じ、長時間の信頼性を保証す
ることができないという欠点がある. 一方、これらの
欠点を改良するために半導体チップの表面にポリイミド
膜を形威させ、封止樹脂と半導体チップとの密着性劣化
を防止しようとする方法があるが、従来の樹脂組成物で
封止した半導体装置は、半田付けを行うと耐湿性が劣化
するという欠点があった. このため吸湿の影響が少な
く、半導体装置を半田付けしても耐湿性劣化の少ない封
止用樹脂の開発及びその半導体封止装置が強く要望され
ていた. 本発明は、上記の欠点を解消し、要望に応えるためにな
されたもので吸湿による影響が少なく、特に半田付け後
の耐湿性および密着性に優れた封止用樹脂組成物及びそ
の半導体封止装置を提供することを目的としている. [発明の構成] (課題を解決するための手段) 本発明者らは、上記の目的を達成しようと鋭意研究を重
ねた結果、特定のカップリング剤及びシリコーン化合物
を、かつ該シリコーン化合物及びシリカ粉末について特
定量に配合することによって、耐湿性、密着性が改善さ
れることを見いだし、本発明を完成したものである. 
すなわち、本発明は、 (A)エポキシ樹脂、 (B)ノボラック型フェノール樹脂、 (C)構造式(I)で示されるカップリング剤、H2N
−と一NH (CH2 ) ,Si<OR)s ・・・ (I) (但し、式中Rはメチル基、エチル基を表す.)CD)
構造式(II)で示されるシリコーン化合物、本発明に
用いる(A)エポキシ樹脂としては、その分子中にエポ
キシ基を少なくとも2個有する化合物である限り、分子
4lI造、分子量などに特ζこ制限はなく、一般に使用
されているエポキシ樹脂を広く包含することができる.
 例えばビスフェノール型の芳香族系、シクロヘキサン
誘導体等の脂環族系、さらに次の一般式で示されるエポ
キシノボラック系等の樹脂が挙げられる. ・・・ (n) (但し、式中nは0又は1以上の整数を表す.}(E)
シリカ粉末、 を必須成分とし、樹脂組成物に対し、前記(D)のシリ
コーン化合物を0.01〜5.0重量%、また前記(E
)のシリカ粉末を65〜90重量%含有してなることを
特徴とする封止用樹脂組成物及びその組成物の硬化物に
よって半導体装置が封止されていることを特徴とする半
導体封止装置である.(但し、式中R1は水素原子、ハ
ロゲン原子又はアルキル基を、R2は水素原子又はアル
キル基を、nは1以上の整数をそれぞれ表す.)これら
のエポキシ樹脂は単独又は2種以上混合して使用するこ
とができる. 本発明に用いる(B)ノボラツク型フエノーノレ樹脂と
しては、フェノール、アルキルフェノールなどのフェノ
ール類と、ホルムアルデヒド或いはバラホルムアルデヒ
ドと反応して得られるノボラック型フェノール樹脂及び
これらの変性樹脂、例えばエポキシ化もしくはブチル化
ノボラヅクフェノール樹脂、シリコーン変性フェノール
樹脂等が挙げられ、ノボラック型フェノール樹脂である
限り特に制限はなく、広く使用することができる.そし
て、これらのノボラック型フェノール樹脂は、単独又は
2種以上混合して使用することができる. 本発明に用いる(C)カップリング剤は次の構造式(I
)で示されるものが使用できる.H2N−1−NH (
CH2> ,! s; (OR> 3・・・ (I) {但し、Rはメチル基、エチル基を表す.}具体的なも
のとして、例えばA−1160(日本ユニカー社製、商
品名)等が挙げられる.本発明に用いる(D)シリコー
ン化合物としては、次の構造式(II)で示されるもの
を使用する.〈但し、式中nは0又は1以上の整数を表
す.)シリコーン化合物の配合割合は、樹脂岨戒物に対
して0.01〜5.0重量%含有するように配合するこ
とが望ましい. その割合が0.01重量%未満では密
着性に効果なく、また、5.0重量%を超えると樹脂組
成物の吸湿量が大きくなり、また成形性が悪化して使用
に適さなくなる. 本発明の封止用樹脂組成物において
(C)カップリング剤及び(D)シリコーン化合物を配
合することによって、封止用樹脂組戒物と半導体チップ
との密着性や、封止用樹脂組戒物とリードフレームとの
密着性が向上し、またリフロ一方式等によって半田付け
しても密着性の劣化が非常に少なく、その結果、耐湿性
がほとんど低下しないという効果がある. 特に、ポリ
イミド膜が被覆された半導体チップにおいて、その耐湿
性改善効果が著しいが、通常のリン硅酸ガラスや窒化膜
をバッシベーションとした半導体チップにおいても同様
の改善効果がある. 本発明に用いる(E)シリカ粉末としては、般に封止用
として市販されているものが使用されるが、それらの中
でも不純物含量が低く、平均粒径が30μm以下のもの
が好ましい. 平均粒径が30μ−を超えると耐湿性お
よび成形性が悪く好ましくない. シリカ粉末の形状は
、通常の破砕状であっても、球状であってもいずれでも
良く、その効果に変りはなく特に制限はない. シリカ
粉末の配合割合は、樹脂組戒物に対して65〜90重量
%含有するように配合することが望ましい. その割合
が65重量%未溝では、吸湿性が多くなり、半田付け後
の耐湿性に劣り好ましくない. また、90重量%を超
えると極端に流動性が悪く成形性に劣り好ましくない.
 したがって上記範囲内に限定される. 本発明の封止用樹脂組成物は(A)エポキシ樹脂、(B
)ノボラック型フェノール樹脂、(C)カップリング剤
、(D)シリコーン化合物、(E)シリカ粉末を必須成
分とするが本発明の目的に反しない限度において必要に
応じ、例えば天然ワックス類、合成ワックス類、直鎖脂
肪酸の金属塩、酸アミド、エステル類、パラフィン等の
離型剤、三酸化アンチモン等の難燃剤、カーボンブラッ
ク等の着色剤、種々の硬化促進剤等を適宜添加・配合す
ることができる. 本発明の封止用樹脂組成物を成形材料として調製する場
合の一般的方法としては、エポキシ樹脂、ノボラック型
フェノール樹脂、カップリング剤、シリコーン化合物、
シリカ粉末、その他を配合し、ミキサー等によって十分
均一に混合した後、更に熱ロールによる溶融混合処理ま
たは二−ダー等による混合処理を行い、次いで冷却固化
させ適当な大きさに粉砕して成形材料とすることができ
る.そして、この成形材料を半導体装置をはじめとする
電子部品の封止用として、また被覆、絶縁等に適用し、
優れた特性と信頼性を付与させることができる. 本発明の半導体封止装置は、上記の封止用樹脂組成物を
用いて、半導体装置を封止することにより容易に製造す
ることができる. 封止の最も一般的な方法としては、
低圧トランスファー成形法があるが、インジエクション
成形、圧縮成形、注型等による封止も可能である. 封
止用樹脂組成物は封止め際に加熱して硬化させ、最終的
にはこの組成物の硬化物によって封止された半導体封止
装置が得,られる. 硬化は150’C以上加熱するこ
とが望ましい. 封止を行う半導体装置とは、例えば集
積回路、大親模集積回路、トランジスタ、サイリスタ、
ダイオード等であって特に限定されるものではない. (実施例) 以下、本発明を実施例によって説明するが、本発明は以
下の実肺例によって限定さ・れるものではない. 実施例 第1表に示した組成によってエポキシ樹脂、ノボラック
型フェノール樹脂、カップリング剤、シリコーン化合物
、シリヵ粉末および硬化促進剤、離型剤等を常温で混合
し、更に90〜95℃で混練し冷却した後、粉砕して成
形材料を製造した.比較例 1〜2 第1表に示したように実施例と異なるカップリング剤及
びシリコーン化合物を用いた組成で実施例と同様な方法
で成形材料を製造した.実施例および比較例1〜2で製
造した戒形材料を用いて、半導体装置を封止し170’
Cで加熱硬化させて半導体封止装置を製造した. この
成形材科及び半導体封止装置について諸試験を行ったの
でその結果を第1表に示したが、本発明は耐湿性、密着
性に優れており、本発明の効果が認められた.次に実施
例および比較例で行った試験方法について説明する. 
ガラス転移温度は、成形材料を用いてトランスファー成
形して直径5oIIIN、厚さ3nmの威形品をつくり
、175℃で8時間後硬化し、適当な大きさのテストビ
ースとし熱機械分析装置を用いて測定した. 密着性は
、成形材料を用いて、ポリイミド被覆面を有する半導体
チップをトランス77一戒形してSOP (Small
 Outline Package )型の半導体封止
装置を製造し、250℃の半田浴に10秒間浸漬した後
、半導体チップを削り出し、プッシュプルゲージを用い
て半導体チップのポリイミド被覆面と封止用樹脂との剪
断剥離強度を測定した. 耐湿性は、威形材料を用いて
2本のアルミニウム配線を有するシリコン製チップ(テ
スト用チップ)を42アロイフレームに接着し、175
℃で2.5分間トランスファー成形してSOP型半導体
封止装置を製造した. その封止装置20個について予
め40℃,90%RH,100時間の吸湿処理をした後
、250℃の半田浴に10秒間浸漬した.その後に12
7℃,2.5気圧の飽和水蒸気中でプレッシャー・クッ
カー・テスト(PCT)を行い、アルミニウムの腐食に
よる断線を生じたものを不良として評価した. [発明の効果] 以上の説明および第1表から明らかなように、本発明の
封止用樹脂IIu戒物およびその半導体封止装置は、半
田浴に浸漬した後においても耐湿性、密着性に優れてお
り、電極の腐食による断線や水分によるリーク電流の発
生がなく、信頼性の高いものである.
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a resin composition for sealing semiconductor integrated circuits, etc., which has excellent moisture resistance and adhesion, and a semiconductor sealing device thereof. <<Prior art>> In recent years, in the field of semiconductor integrated circuits, technological development for higher integration and higher reliability has been progressing. In addition, electronic components,
In the assembly process of electronic devices, automation of the process of mounting semiconductor devices onto printed wiring boards is being promoted to improve productivity. For example, the conventional method for mounting semiconductor devices on a printed wiring board was to solder each lead pin individually, but recently, after applying creamy solder to the lead pins, the entire printed wiring board is heated to approximately 200 to 260°C. The mainstream soldering method is the one-sided soldering method, which involves heating and soldering. (Problem to be solved by the invention) However, semiconductor devices sealed with conventional resin compositions consisting of epoxy resin, novolac type phenol resin, and silica powder deteriorate in moisture resistance when soldered using a reflow method or the like. There was a drawback to this. In particular, when similar soldering is performed on a semiconductor device that has absorbed moisture, the water vapor pressure at high temperatures causes peeling at the interface between the sealing resin and the semiconductor chip and lead frame, causing wire breakage due to electrode corrosion and leakage current due to moisture. The drawback is that long-term reliability cannot be guaranteed. On the other hand, in order to improve these drawbacks, there is a method of forming a polyimide film on the surface of the semiconductor chip to prevent deterioration of the adhesion between the sealing resin and the semiconductor chip, but this method cannot be used for sealing with conventional resin compositions. Semiconductor devices that have been soldered have the disadvantage that their moisture resistance deteriorates when they are soldered. For this reason, there has been a strong demand for the development of a sealing resin that is less affected by moisture absorption and whose moisture resistance deteriorates less even when semiconductor devices are soldered, and for a semiconductor sealing device using the resin. The present invention was made in order to eliminate the above-mentioned drawbacks and meet the demands, and provides a sealing resin composition that is less affected by moisture absorption and has particularly excellent moisture resistance and adhesion after soldering, and a semiconductor sealing composition thereof. The purpose is to provide equipment. [Structure of the Invention] (Means for Solving the Problems) As a result of intensive research aimed at achieving the above object, the present inventors have discovered that a specific coupling agent and a silicone compound, and the silicone compound and silica The present invention was completed by discovering that moisture resistance and adhesion can be improved by blending the powder in a specific amount.
That is, the present invention provides (A) an epoxy resin, (B) a novolac type phenolic resin, (C) a coupling agent represented by the structural formula (I), and H2N
- and -NH (CH2) ,Si<OR)s... (I) (However, in the formula, R represents a methyl group or an ethyl group.)CD)
As long as the silicone compound represented by the structural formula (II) and the epoxy resin (A) used in the present invention have at least two epoxy groups in the molecule, there are no particular restrictions on the molecular structure, molecular weight, etc. It can include a wide range of commonly used epoxy resins.
Examples include aromatic resins such as bisphenol type, alicyclic resins such as cyclohexane derivatives, and epoxy novolak resins represented by the following general formula. ... (n) (However, in the formula, n represents an integer of 0 or 1 or more.} (E)
silica powder, is an essential component, and 0.01 to 5.0% by weight of the silicone compound (D) is added to the resin composition, and (E
) A semiconductor encapsulation device characterized in that a semiconductor device is encapsulated with a encapsulating resin composition containing 65 to 90% by weight of silica powder and a cured product of the composition. It is. (However, in the formula, R1 represents a hydrogen atom, a halogen atom, or an alkyl group, R2 represents a hydrogen atom or an alkyl group, and n represents an integer of 1 or more.) These epoxy resins may be used alone or in combination of two or more. It can be used. The novolac type phenol resin (B) used in the present invention includes novolac type phenol resins obtained by reacting phenols such as phenol and alkylphenols with formaldehyde or paraformaldehyde, and modified resins thereof, such as epoxidized or butylated resins. Examples include volazuk phenol resin, silicone-modified phenol resin, etc., and as long as it is a novolak type phenol resin, there are no particular restrictions and a wide variety of them can be used. These novolac type phenolic resins can be used alone or in combination of two or more. The coupling agent (C) used in the present invention has the following structural formula (I
) can be used. H2N-1-NH (
CH2> ,! s; (OR>3... (I) {However, R represents a methyl group or an ethyl group.} Specific examples include A-1160 (manufactured by Nippon Unicar Co., Ltd., trade name). As the silicone compound (D) used in the present invention, one represented by the following structural formula (II) is used. (In the formula, n represents an integer of 0 or 1 or more.) The blending ratio of the silicone compound is It is desirable that the content be 0.01 to 5.0% by weight based on the resin content. If the proportion is less than 0.01% by weight, it has no effect on adhesion, and if it exceeds 5.0% by weight, the amount of moisture absorbed by the resin composition increases, and the moldability deteriorates, making it unsuitable for use. By blending (C) a coupling agent and (D) a silicone compound in the encapsulating resin composition of the present invention, the adhesion between the encapsulating resin composition and the semiconductor chip can be improved. The adhesion between the object and the lead frame is improved, and there is very little deterioration in adhesion even when soldering is performed using a reflow method, etc., and as a result, there is almost no deterioration in moisture resistance. In particular, the improvement in moisture resistance is remarkable in semiconductor chips coated with polyimide films, but similar improvements can be seen in semiconductor chips coated with ordinary phosphosilicate glass or nitride films. As the silica powder (E) used in the present invention, those commercially available for sealing are generally used, but among them, those with a low impurity content and an average particle size of 30 μm or less are preferred. If the average particle size exceeds 30 μ-, moisture resistance and moldability are poor, which is undesirable. The shape of the silica powder may be either a normal crushed shape or a spherical shape, and the effect remains the same and there are no particular limitations. The blending ratio of silica powder is preferably 65 to 90% by weight based on the resin composition. If the proportion is 65% by weight without grooves, hygroscopicity increases and the moisture resistance after soldering is poor, which is not preferable. Moreover, if it exceeds 90% by weight, the fluidity is extremely poor and the moldability is poor, which is not preferable.
Therefore, it is limited to the above range. The sealing resin composition of the present invention includes (A) an epoxy resin, (B)
) a novolac type phenol resin, (C) a coupling agent, (D) a silicone compound, and (E) a silica powder as essential components, but as necessary within the scope of the purpose of the present invention, for example, natural waxes, synthetic waxes, etc. , metal salts of straight chain fatty acids, acid amides, esters, mold release agents such as paraffin, flame retardants such as antimony trioxide, coloring agents such as carbon black, various curing accelerators, etc. should be added and blended as appropriate. Can be done. A general method for preparing the sealing resin composition of the present invention as a molding material includes an epoxy resin, a novolac type phenol resin, a coupling agent, a silicone compound,
After blending the silica powder and other ingredients and mixing them sufficiently uniformly using a mixer, etc., they are further melted and mixed using heated rolls or mixed using a seconder, etc., and then cooled and solidified and pulverized to an appropriate size to form a molding material. It can be done as follows. This molding material is then applied to seal electronic components such as semiconductor devices, as well as for coating, insulation, etc.
It can provide excellent characteristics and reliability. The semiconductor encapsulation device of the present invention can be easily manufactured by encapsulating a semiconductor device using the above-mentioned encapsulation resin composition. The most common method of sealing is
There is a low-pressure transfer molding method, but sealing can also be done by injection molding, compression molding, casting, etc. The encapsulating resin composition is heated and cured during encapsulation, and a semiconductor encapsulation device encapsulated by the cured product of this composition is finally obtained. It is desirable to heat the material to 150'C or higher for curing. Semiconductor devices to be sealed include, for example, integrated circuits, large-scale integrated circuits, transistors, thyristors,
It may be a diode, etc., and is not particularly limited. (Example) The present invention will be explained below with reference to Examples, but the present invention is not limited to the following actual lung examples. Example According to the composition shown in Table 1, epoxy resin, novolak type phenolic resin, coupling agent, silicone compound, silica powder, hardening accelerator, mold release agent, etc. were mixed at room temperature, and then kneaded at 90 to 95°C. After cooling, it was crushed to produce a molding material. Comparative Examples 1 to 2 As shown in Table 1, molding materials were produced in the same manner as in the examples, but with different coupling agents and silicone compounds than in the examples. A semiconductor device was sealed using the molding materials produced in Examples and Comparative Examples 1 and 2.
A semiconductor sealing device was manufactured by heating and curing with C. Various tests were conducted on this molding material and semiconductor encapsulation device, and the results are shown in Table 1. The present invention was found to have excellent moisture resistance and adhesion, and the effects of the present invention were recognized. Next, we will explain the test methods used in Examples and Comparative Examples.
The glass transition temperature was measured by transfer molding using a molding material to create a shape with a diameter of 5°C and a thickness of 3 nm, which was then cured at 175°C for 8 hours, and then made into a test bead of an appropriate size using a thermomechanical analyzer. It was measured using Adhesion was determined by molding a semiconductor chip with a polyimide-coated surface into a transformer 77 using a molding material.
Outline Package ) type semiconductor encapsulation equipment is manufactured, and after immersing it in a 250°C solder bath for 10 seconds, the semiconductor chip is cut out, and a push-pull gauge is used to connect the polyimide-covered surface of the semiconductor chip and the encapsulation resin. The shear peel strength was measured. Moisture resistance was determined by bonding a silicon chip (test chip) with two aluminum wires to a 42 alloy frame using a 175
An SOP type semiconductor encapsulation device was manufactured by transfer molding at ℃ for 2.5 minutes. Twenty of the sealing devices were previously subjected to moisture absorption treatment at 40°C, 90% RH for 100 hours, and then immersed in a 250°C solder bath for 10 seconds. then 12
A pressure cooker test (PCT) was conducted in saturated steam at 7°C and 2.5 atm, and those that showed disconnection due to aluminum corrosion were evaluated as defective. [Effects of the Invention] As is clear from the above explanation and Table 1, the encapsulating resin IIu of the present invention and the semiconductor encapsulating device thereof maintain moisture resistance and adhesion even after being immersed in a solder bath. It is highly reliable, with no breakage due to electrode corrosion or leakage current due to moisture.

Claims (1)

【特許請求の範囲】 1、(A)エポキシ樹脂、 (B)ノボラック型フェノール樹脂、 (C)構造式( I )で示されるカップリン グ剤、 ▲数式、化学式、表等があります▼・・・( I ) (但し、式中Rはメチル基、エチル基を表 す) (D)構造式(II)で示されるシリコーン 化合物、 ▲数式、化学式、表等があります▼ ・・・(II) (但し、式中nは0又は1以上の整数を表 す) (E)シリカ粉末、 を必須成分とし、樹脂組成物に対し、前記 (D)のシリコーン化合物を0.01〜5.0重量%、
また前記(E)のシリカ粉末を65〜90重量%含有し
てなることを特徴とする封止用樹脂組成物。 (A)エポキシ樹脂、 (B)ノボラック型フェノール樹脂、 (C)構造式( I )で示されるカップリン グ剤、 ▲数式、化学式、表等があります▼・・・( I ) (但し、式中Rはメチル基、エチル基を表 す) (D)構造式(II)で示されるシリコーン 化合物、 ▲数式、化学式、表等があります▼・・・(II) (但し、式中nは0又は1以上の整数を表 す) (E)シリカ粉末、 を必須成分とし、樹脂組成物に対し、前記 (D)のシリコーン化合物を0.01〜5.0重量%、
また前記(E)のシリカ粉末を65〜90重量%含有し
てなる封止用樹脂組成物の硬化物によって半導体装置が
封止されていることを特徴とする半導体封止装置。
[Claims] 1. (A) Epoxy resin, (B) Novolak phenol resin, (C) Coupling agent represented by structural formula (I), ▲There are mathematical formulas, chemical formulas, tables, etc.▼... (I) (However, R in the formula represents a methyl group or an ethyl group) (D) A silicone compound represented by the structural formula (II), ▲There are mathematical formulas, chemical formulas, tables, etc.▼ ... (II) (However, , in which n represents an integer of 0 or 1 or more) (E) silica powder, with 0.01 to 5.0% by weight of the silicone compound of (D) based on the resin composition,
Further, a sealing resin composition comprising 65 to 90% by weight of the silica powder (E). (A) Epoxy resin, (B) Novolak phenolic resin, (C) Coupling agent represented by structural formula (I), ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(I) (However, in the formula (R represents a methyl group or an ethyl group) (D) Silicone compound represented by the structural formula (II), ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(II) (However, in the formula, n is 0 or 1 (representing an integer greater than or equal to)) (E) silica powder, with the following as an essential component, and 0.01 to 5.0% by weight of the silicone compound of (D) based on the resin composition;
Further, a semiconductor encapsulation device characterized in that the semiconductor device is encapsulated with a cured product of the encapsulation resin composition containing 65 to 90% by weight of the silica powder (E).
JP24312189A 1989-09-19 1989-09-19 Sealing resin composition and semiconductor device sealed therewith Pending JPH03106929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24312189A JPH03106929A (en) 1989-09-19 1989-09-19 Sealing resin composition and semiconductor device sealed therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24312189A JPH03106929A (en) 1989-09-19 1989-09-19 Sealing resin composition and semiconductor device sealed therewith

Publications (1)

Publication Number Publication Date
JPH03106929A true JPH03106929A (en) 1991-05-07

Family

ID=17099113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24312189A Pending JPH03106929A (en) 1989-09-19 1989-09-19 Sealing resin composition and semiconductor device sealed therewith

Country Status (1)

Country Link
JP (1) JPH03106929A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156543A (en) * 2013-02-15 2014-08-28 Arakawa Chem Ind Co Ltd Curable composition for sealing electronic parts and cured product thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156543A (en) * 2013-02-15 2014-08-28 Arakawa Chem Ind Co Ltd Curable composition for sealing electronic parts and cured product thereof

Similar Documents

Publication Publication Date Title
JPH03106929A (en) Sealing resin composition and semiconductor device sealed therewith
JP2803057B2 (en) Sealing resin composition and semiconductor sealing device
JP2002060466A (en) Epoxy resin composition and sealed semiconductor device
JP2892433B2 (en) Sealing resin composition and semiconductor sealing device
JPS63110212A (en) Sealing resin composition
JPH04236215A (en) Sealing resin composition and sealed semiconductor device
JPH07242733A (en) Epoxy resin composition and sealed semiconductor device
JPH03106928A (en) Sealing resin composition and semiconductor device sealed therewith
JPH051210A (en) Sealing resin composition and semiconductor-sealing device
JPH083277A (en) Epoxy resin composition and sealed semiconductor device
JPH0496930A (en) Resin composition for sealing and semiconductor sealing device
JPS63280725A (en) Resin composition for sealing
JPS63118322A (en) Sealing resin composition
JPS63110213A (en) Sealing resin composition
JPH0753669A (en) Epoxy resin composition and sealed semiconductor device
JPH04248828A (en) Sealing resin composition and sealed semiconductor device
JPH059265A (en) Sealing resin composition and semiconductor-sealing apparatus
JPH06145308A (en) Epoxy resin composition and semiconductor device sealed therewith
JPH04248829A (en) Sealing resin composition and sealed semiconductor device
JPH0269514A (en) Sealing resin composition
JPH03179020A (en) Sealing resin composition and semiconductor device
JPH03296520A (en) Resin composition for sealing and semiconductor device sealed therewith
JPH0216147A (en) Sealing resin composition
JPH07304850A (en) Epoxy resin composition and semiconductor-sealing device
JPH10204264A (en) Epoxy resin composition and semiconductor sealing device