JPH0323257A - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH0323257A
JPH0323257A JP1156498A JP15649889A JPH0323257A JP H0323257 A JPH0323257 A JP H0323257A JP 1156498 A JP1156498 A JP 1156498A JP 15649889 A JP15649889 A JP 15649889A JP H0323257 A JPH0323257 A JP H0323257A
Authority
JP
Japan
Prior art keywords
dielectric
capacitance
dielectric breakdown
insulation resistance
breakdown strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1156498A
Other languages
Japanese (ja)
Inventor
Hidenori Kuramitsu
秀紀 倉光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1156498A priority Critical patent/JPH0323257A/en
Publication of JPH0323257A publication Critical patent/JPH0323257A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To enhance the insulation resistance, dielectric breakdown strength, etc., the title compsn. by specifying x, y and z when the principal component is represented by a general formula xBaO.Y[ (TiO2)(1-m)(ZrO2)m].zRe2O3 and by adding a specified amt. of two or more among Nb2O5, Ta2O5 and V2O5. CONSTITUTION:This dielectric porcelain compsn. contains 100 pts. wt. principal component represented by the above-mentioned general formula (where x, y and z show a molar ratio within the ranges each defined by points a-f in the table, x+y+z=1.00, 0.001<=m<=0.200 and Re2O3 is one or more kinds of oxides of rare earth elements selected among La2O3, Pr2O3, Nd2O3 and Sm2O3) and 0.001-0.010 pt. mol, in total, of two or more among Nb2O5, Ta3O5 and V2O5 as secondary components. ZrO2 enhances dielectric breakdown strength. Nb2O5, Ta2O5 and V2O5 enhances insulation resistance and dielectric breakdown strength.

Description

【発明の詳細な説明】 産業上の利用分舒 本発明は誘電率,絶縁抵抗,絶縁破壊電圧が高く、良好
度Qにすぐれ、静電容量温度係数が小さく、かつ積層セ
ラミックコンデンサへの利用においては、内部電極の厚
みを薄くしたときの静電容量と良好度Qの低下を防ぎ、
静電容量と良好度Qのバラッキを小さくできる誘電体磁
気組成物に関するものである。
[Detailed Description of the Invention] Industrial Application The present invention has high dielectric constant, insulation resistance, and dielectric breakdown voltage, excellent quality Q, and small temperature coefficient of capacitance, and is suitable for use in multilayer ceramic capacitors. prevents the decrease in capacitance and quality Q when the thickness of the internal electrode is reduced,
The present invention relates to a dielectric magnetic composition that can reduce variations in capacitance and quality Q.

従来の技術 従来から誘電率,絶縁抵抗が高く、良好度Qにすぐれ、
静電容量廣度係数が小さい誘電体磁気組成物として下記
のような系が知られている。
Conventional technology Conventionally, the dielectric constant and insulation resistance are high, and the quality Q is excellent.
The following systems are known as dielectric magnetic compositions with small capacitance wideness coefficients.

・BaO−T i 02−Nd203系・BaO−Ti
02−Sm203系 発明が解決しようとする課題 しかし、これらの組戒は、例えば0.11BaOO.6
8T i 02 −0.21NdtO3の組成比からな
る誘電体材料を使用し、パラジウムの内部電極厚み4μ
m、誘電体厚み12μm、内部電極の重なり寸法1 .
 2 wa X 0 . 7■、誘電体層数19の積層
構造をもつ積層セラミックコンデンサを作製すると、静
電容量の平均値: 742pF、良好度Qの平均値: 
8700、静電容量温度係数の平均値:N35ppm/
℃、絶縁抵抗の平均値:6.OX1012Ω、絶縁破壊
強度の平均値:117kv/rfaであり、絶縁抵抗に
おいて満足のできる値ではない。また、結晶粒径がl〜
5μmと大きいため、素体中の気孔率が大きくなるとと
もに結晶粒子1個当たりにかかる電界強度が大きくなり
、絶縁破壊強度も満足のできる値ではない。
・BaO-Ti 02-Nd203 series ・BaO-Ti
Problems to be solved by the 02-Sm203 series invention However, these group precepts, for example, 0.11BaOO. 6
A dielectric material with a composition ratio of 8T i 02 -0.21NdtO3 was used, and the palladium internal electrode thickness was 4μ.
m, dielectric thickness 12 μm, internal electrode overlap dimension 1.
2 wa X 0. 7. When a multilayer ceramic capacitor with a laminated structure with 19 dielectric layers is manufactured, the average value of capacitance: 742 pF, and the average value of quality Q:
8700, average value of capacitance temperature coefficient: N35ppm/
°C, average value of insulation resistance: 6. OX1012Ω, average value of dielectric breakdown strength: 117 kv/rfa, which is not a satisfactory value in terms of insulation resistance. In addition, the crystal grain size is l~
Since it is as large as 5 μm, the porosity in the element body becomes large, and the electric field strength applied to each crystal grain becomes large, and the dielectric breakdown strength is also not a satisfactory value.

さらに、積層セラミックコンデンサのコストダウンを行
うため、および素体内部の構造欠陥であるデラミネーシ
ョンの発生を防ぐため、パラジウムの内部電極厚みを4
μmから2μmに薄くすると、上記の組戒比の誘電体材
料を使用し、上記の誘電体厚み,内部電極重なり寸法,
誘電体層数の積層構造をもつ積層セラミックコンデンサ
の静電容量の平均値が610pFと小さくなるとともに
静電容量のバラツキが256〜713pFと大きくなる
。さらに、良好度Qの平均値も4000と低くなるとと
もに良好度Qのバラツキが600〜8800と大きくな
るという課題があった。
Furthermore, in order to reduce the cost of multilayer ceramic capacitors and to prevent the occurrence of delamination, which is a structural defect inside the element body, the thickness of the palladium internal electrode was increased by 4.
When thinning from μm to 2 μm, a dielectric material with the above composition ratio is used, the dielectric thickness is the above, the internal electrode overlap dimension is
The average value of capacitance of a multilayer ceramic capacitor having a laminated structure with a number of dielectric layers is as small as 610 pF, and the variation in capacitance is large as 256 to 713 pF. Furthermore, there was a problem in that the average value of the quality level Q was as low as 4,000, and the variation in the quality level Q was large, ranging from 600 to 8,800.

課題を解決するための手段 これらの課題を解決するために本発明は、一般式x B
 a O − y[(T i 02)(+−111( 
Z r 02)IIIzRe203と表した時(ただし
、x+y+z=1.00、0.001≦m≦0.200
.Re203はLa20コ.  P  r2o11/3
T  Nd203,  Sm203から選ばれる一種以
上の希土類元素の酸化物。)、x.y.zが以下に表す
各点a r b + C ,d + e ,fで囲まれ
るモル比の範囲からなる主成分100重量部に対し、副
成分としてN b 2 0 s rTa20s+ V2
0Sから選ばれる二種以上を合計で0.001〜0.0
 1 0モル部含有したことを特徴とする誘電体磁器組
成物を提案するものである。
Means for Solving the Problems In order to solve these problems, the present invention provides the general formula x B
a O − y[(T i 02)(+−111(
Z r 02) When expressed as IIIzRe203 (x+y+z=1.00, 0.001≦m≦0.200
.. Re203 is La20co. P r2o11/3
T An oxide of one or more rare earth elements selected from Nd203 and Sm203. ), x. y. Nb20s rTa20s+V2 as a subcomponent to 100 parts by weight of the main component consisting of the molar ratio range surrounded by each point a r b + C, d + e, f where z is expressed below.
Two or more types selected from 0S, total 0.001 to 0.0
The present invention proposes a dielectric ceramic composition characterized by containing 10 mole parts.

作用 第1図は本発明にかかる組威物の主成分の組成範囲を示
す三元図であり、主成分の組成範囲を限定した理由を第
1図を参照しながら説明する。すなわち、A領域では焼
結が著しく困難である。また、B領域では良好度Qが低
下し実用的でなくなる。さらに、C.D(;J域では静
電容量温度係数がマイナス債に大きくなりすぎて実用的
でなくなる。
FIG. 1 is a ternary diagram showing the composition range of the main components of the composition according to the present invention, and the reason for limiting the composition range of the main components will be explained with reference to FIG. That is, sintering is extremely difficult in region A. Furthermore, in region B, the quality Q decreases, making it impractical. Furthermore, C. D(; In the J region, the capacitance temperature coefficient becomes too large to be negative, making it impractical.

そして、E領域では静電容量温度係数がプラス方向に移
行するが、誘電率が小さく実用的でなくなる・また,R
e203をLa203.P xo+ws.Nd203.
Sm20sから選ぶことにより、La203.P r2
0x/s+ Nd203,Sm203の順で誘電率を大
きく下げることなく、静電容量温度係数をプラス方向に
移行することが可能であり、La203.P r20+
+i3.Nd203.SmzOzの一種あるいは組合せ
により静電容量温度係数の調節が可能である。
In the E region, the capacitance temperature coefficient shifts to the positive direction, but the dielectric constant is too small to be practical.
e203 to La203. P xo+ws. Nd203.
By selecting from Sm20s, La203. P r2
0x/s+ It is possible to shift the capacitance temperature coefficient in the positive direction without significantly lowering the dielectric constant in the order of Nd203, Sm203, and La203. P r20+
+i3. Nd203. The temperature coefficient of capacitance can be adjusted by one type or combination of SmzOz.

また、TiO2をZrO2で置換することにより、誘電
率,良好度Q,静電容量温度係数,・絶縁抵抗の値を大
きく変えることなく、結晶粒径を小さくし、絶縁破壊強
度を大きくする効果を有し、その置換率mが0.001
未満では置換効果はなく、一方0.200を越えると誘
電率,良好度Q,絶縁抵抗が低下する。
In addition, by replacing TiO2 with ZrO2, the effect of reducing the crystal grain size and increasing the dielectric breakdown strength can be achieved without significantly changing the values of dielectric constant, quality Q, temperature coefficient of capacitance, and insulation resistance. and its substitution rate m is 0.001
If it is less than 0.200, there will be no substitution effect, while if it exceeds 0.200, the dielectric constant, quality Q, and insulation resistance will decrease.

第2図(a)〜(e)は本発明にかかる組成物の主成分
に対し、副成分Nb20B,Ta20s,V2OSの含
有効果を積層セラミックコンデンサの特性で示すグラフ
であり、Nb20s,Tagos,V205の含有乾囲
を限定した理由をグラフを参照しながら説明する。第2
図に示すようにNb20a,Ta20s.v2o5を含
有することにより、絶縁抵抗,絶縁破壊強度が向上し、
また静電容量と良好度Qを高め、静電容量と良好度Qの
バラツキを小さくする効果を有する。そして、Nb20
B,Ta20B.V20Sの含有により、絶縁抵抗,絶
縁破壊強度は向上するが、Nb20s.Ta20s+ 
V205の含有量の合計が主成分100重量部に対し、
0.001モル部未満はそれほど絶縁破壊強度が大きく
なく、静電容量と良好度Qが低く、また静電容量と良好
度Qのバラツキが大きいため、この発明の範囲から除外
した。一方、Nb20s,Tazos,V205の含有
量の合計が主成分に対し、0.01モル部を越えると良
好度Q,絶縁抵抗が低下し、静電容量温度係数がマイナ
ス例に大きくなり,実用的でなくなる。
FIGS. 2(a) to (e) are graphs showing the effect of the addition of subcomponents Nb20B, Ta20s, and V2OS on the characteristics of a multilayer ceramic capacitor with respect to the main components of the composition according to the present invention. The reason for limiting the contained dry range will be explained with reference to the graph. Second
As shown in the figure, Nb20a, Ta20s. By containing v2o5, insulation resistance and dielectric breakdown strength are improved,
It also has the effect of increasing the capacitance and quality Q and reducing variations in capacitance and quality Q. And Nb20
B, Ta20B. The inclusion of V20S improves insulation resistance and dielectric breakdown strength, but Nb20S. Ta20s+
The total content of V205 is based on 100 parts by weight of the main component,
If it is less than 0.001 mole part, the dielectric breakdown strength is not so high, the capacitance and the quality Q are low, and the variation in the capacitance and the quality Q is large, so it is excluded from the scope of this invention. On the other hand, if the total content of Nb20s, Tazos, and V205 exceeds 0.01 mole part with respect to the main components, the quality Q and insulation resistance will decrease, and the capacitance temperature coefficient will become negative, making it impractical for practical use. It will no longer be.

また、Nb20s.Ta20s.V205から選ばれる
二種以上を含有することにより、Nb20s,Ta20
s+ V201+から選ばれる一種を含有するものに比
べ、誘電率,絶縁抵抗,絶縁破壊電圧が高く、良好度Q
にすぐれ、静電容量温度係数を小さくすることができる
Also, Nb20s. Ta20s. By containing two or more selected from V205, Nb20s, Ta20
Compared to those containing one selected from s+ V201+, the dielectric constant, insulation resistance, and dielectric breakdown voltage are higher, and the quality level Q is higher.
The capacitance temperature coefficient can be reduced.

実施例 以下に、本発明を具体的実施例により説明する。Example The present invention will be explained below using specific examples.

(実施例1〉 出発原料には化学的に高純度のBaCO3T i O2
,Z r 02,L a203,P r6011.Nd
203.Sm20z.Nb20s,Ta20s.および
v2o5扮末を下記の第1表に示す組威比になるように
秤量し、めのうボールを備えたゴム内張りのボールミル
に純水とともに入れ、湿式混合後、脱水乾燥した。この
乾燥粉末を高アルミナ質のルツボに入れ、空気中で11
00℃にて2時間仮焼した。この仮焼粉末を、めのうボ
ールを備えたゴム内張りのボールミルに純水とともに入
れ、湿式粉砕後、脱水乾燥した。この粉砕粉末に、有機
バインダーを加え、均質とした後、・32メッシュのふ
るいを通して整粒し、金型と油圧プレスを用いて成形圧
力1ton/一で直径15m,厚み0.4mに成形した
。次いで、成形円板をジルコニア粉末を敷いたアルミナ
質のサヤに入れ、空気中にて下記の第1表に示す温度で
2時間焼成し、第1表に示す組威比の誘電体磁器を得た
(Example 1) Chemically high purity BaCO3T i O2 was used as the starting material.
, Z r 02, L a203, P r6011. Nd
203. Sm20z. Nb20s, Ta20s. and v2o5 powder were weighed so as to have the composition ratio shown in Table 1 below, put into a rubber-lined ball mill equipped with agate balls together with pure water, wet mixed, and then dehydrated and dried. This dry powder was placed in a high alumina crucible and exposed to air for 11 hours.
It was calcined at 00°C for 2 hours. This calcined powder was put into a rubber-lined ball mill equipped with agate balls together with pure water, wet-pulverized, and then dehydrated and dried. An organic binder was added to this pulverized powder to make it homogeneous, and then the powder was sized through a 32 mesh sieve and molded into a diameter of 15 m and a thickness of 0.4 m using a mold and a hydraulic press at a molding pressure of 1 ton/unit. Next, the molded disk was placed in an alumina pod covered with zirconia powder and fired in air at the temperature shown in Table 1 below for 2 hours to obtain dielectric porcelain having the composition ratio shown in Table 1. Ta.

(  以  下  余  白  〉 このようにして得られた誘電体磁器円板は、厚みと直径
を測定し、誘電率,良好度Q,静電容量温度係数測定用
試料は、誘電体磁器円板の両面全体に銀電極を焼き付け
、絶縁抵抗,絶縁破壊強度測定用試料は、誘電体磁器円
板の外周より内側に1−の幅で銀電極のない部分を設け
、銀電極を焼き付けた。そして、誘電率,良好度Q,静
電容量温度係数は、YHPtf.製デジタルLCRメー
タのモデル4275Aを使用し、測定温度20℃, 1
1定電圧1.OVrms.11ll定周波数IMHzで
の測定より求めた。なお、静電容量温度係数は、20℃
と85℃の静電容量を測定し、次式により求めた。
(Margin below) The thickness and diameter of the dielectric porcelain disk thus obtained were measured, and the dielectric constant, goodness Q, and capacitance temperature coefficient measurement samples were measured using the dielectric porcelain disk. A silver electrode was baked on the entire surface of both sides, and a sample for measuring insulation resistance and dielectric breakdown strength was prepared by providing a part with no silver electrode on the inside of the outer periphery of a dielectric ceramic disk with a width of 1-, and baking a silver electrode on it. The dielectric constant, goodness Q, and capacitance temperature coefficient were measured using YHPtf. digital LCR meter model 4275A at a measurement temperature of 20°C.
1 constant voltage 1. OVrms. It was determined by measurement at a constant frequency of 11 MHz. In addition, the capacitance temperature coefficient is 20℃
The capacitance at 85° C. was measured and calculated using the following formula.

TC= (C−Co)/CoX1/65X10’TC:
静電容量温度係数(ppm/℃)Co : 20℃での
静電容量(pF)C :85℃での静電容量(pF) また、誘電率は次式より求めた。
TC= (C-Co)/CoX1/65X10'TC:
Temperature coefficient of capacitance (ppm/°C) Co: Capacitance at 20°C (pF) C: Capacitance at 85°C (pF) Further, the dielectric constant was determined from the following formula.

K=143.8XCoXt/D! K :誘電率 Co : 20℃での静電容量(pF)D :誘電体磁
器の直径(llII1〉t :誘電体磁器の厚み(m) さらに、絶縁抵抗は、YHP社製HRメータのモデル4
329Aを使用し、測定電圧50V.D.C.、測定時
間l分間による測定より求めた。
K=143.8XCoXt/D! K: Dielectric constant Co: Capacitance at 20°C (pF) D: Diameter of dielectric porcelain (llII1〉t: Thickness of dielectric porcelain (m) Furthermore, the insulation resistance is measured using YHP HR meter model 4.
329A, measuring voltage 50V. D. C. , was determined from measurements over a measurement time of 1 minute.

そして、絶縁破壊強度は、菊水電子工業■製高電圧電源
PH335K−3形を使用し、試料をシリコンオイル中
に入れ、昇圧速度50V/secにより求めた絶縁破壊
電圧を誘電体厚みで除算し、1lIll当たりの絶縁破
壊強度とした。また、結晶粒径は、倍率400での光学
顕微鏡観察より求めた。
The dielectric breakdown strength was determined by using a high-voltage power supply PH335K-3 type manufactured by Kikusui Electronics Corporation, placing the sample in silicone oil, and dividing the dielectric breakdown voltage determined by a voltage increase rate of 50 V/sec by the dielectric thickness. It was defined as dielectric breakdown strength per 1lIll. Further, the crystal grain size was determined by optical microscope observation at a magnification of 400.

試験結果を下記の第2表に示す。The test results are shown in Table 2 below.

(  以  下  余  白  ) (実施例2〉 出発原料には化学的に高純度のBaCO3TiO2.Z
r02.NdxO3.NbgOs,Ta2esおよびv
205粉末を使用し、主成分0.11BaO一O.68
T i 02−0.2 1Nd20zの100重量部に
対し、[ (Nb20s)o.4(Ta2es)o.s
(V205)0.3]を0,0.0001、0.001
0、0.0100.0.0200モル部含有した仮焼粉
砕粉を実施例1と同様の方法で作製する。ただし、((
Nb20s) o.4(Ta 2O S)0.3(V2
OS)0.3 1含有量が0,0.000 1、0.0
200モル部は、この発明の転囲外であり、0.001
0、0.0100モル部は、この発明の範囲内である。
(Left below) (Example 2) Chemically high purity BaCO3TiO2.Z was used as the starting material.
r02. NdxO3. NbgOs, Ta2es and v
205 powder was used, and the main component was 0.11BaO1O. 68
T i 02-0.2 100 parts by weight of 1Nd20z, [(Nb20s)o. 4(Ta2es) o. s
(V205)0.3] to 0, 0.0001, 0.001
A calcined pulverized powder containing 0.0, 0.0100.0.0200 mol parts is prepared in the same manner as in Example 1. however,((
Nb20s) o. 4(Ta2OS)0.3(V2
OS) 0.3 1 content is 0,0.000 1,0.0
200 molar parts are outside the range of this invention, and 0.001
0.0100 mole part is within the scope of this invention.

この仮焼粉砕粉末に、有機バインダー,可塑剤,分散剤
,有機溶剤を加え、アルミナボールを備えたポットで混
合し、スラリーを作製した。混合後、ろ過したスラリー
は、焼結後の誘電体厚みが12μmとなるようなグリー
ンシ一トに加工した。このようなグリーンシ一ト10枚
を支持台の上に積層し、昭栄化学(掬製内部電極パラジ
ウムペーストML−3724を焼結後の内部電極厚みが
2μmとなるようにスクリーン印刷し、乾燥した。この
上にグリーンシ一ト1枚を積層し、焼結後の内部電極重
なり寸法が1 . 2 m X 0 . 7 mとなる
ように印刷位置をずらして内部電極パラジウムペースト
を印刷し、乾燥後、グリーンシ一ト1枚を積層した。こ
れらの操作を、誘電体層数が19となるまで繰り返した
。この上に、グリーンシ一ト10枚を積層した。この積
層体を焼結後、内部電極重なり寸法が1 . 2 wm
 X 0 . 7 wxa、誘電体層数が19の積層構
造をもつ積層セラミックコンデンサとなるように切断し
た。この切断した試料は、ジルコニア粉末を敷いたアル
ミナ質のサヤに入れ、空気中にて、室温から350℃ま
でを5℃/hrで昇温し、350℃より100℃/hr
で昇塩し、1270℃で2時間焼成後、100℃/hr
で室温まで降温した。次いで、焼成後の試料は、試料面
を研磨し、外部電極と接合する内部電極部分を充分露出
させ、内部電極露出部分に銀の外部電極を焼き付け、内
部電極と導通させ、積層セラミックコンデンサを作製し
た。
An organic binder, plasticizer, dispersant, and organic solvent were added to this calcined and pulverized powder and mixed in a pot equipped with alumina balls to prepare a slurry. After mixing, the filtered slurry was processed into a green sheet having a dielectric thickness of 12 μm after sintering. Ten such green sheets were stacked on a support stand, and internal electrode palladium paste ML-3724 manufactured by Shoei Chemical Co., Ltd. was screen printed so that the internal electrode thickness after sintering would be 2 μm, and dried. A green sheet was laminated on top of this, and internal electrode palladium paste was printed by shifting the printing position so that the internal electrode overlap dimensions after sintering were 1.2 m x 0.7 m, and dried. After that, one green sheet was laminated. These operations were repeated until the number of dielectric layers reached 19. On top of this, ten green sheets were laminated. After sintering this laminated body, , internal electrode overlap dimension is 1.2 wm
X 0. It was cut into a multilayer ceramic capacitor having a multilayer structure with 7 wxa and 19 dielectric layers. The cut sample was placed in an alumina pod covered with zirconia powder, heated in air from room temperature to 350°C at a rate of 5°C/hr, and from 350°C to 100°C/hr.
After baking at 1270℃ for 2 hours, 100℃/hr
The temperature was lowered to room temperature. Next, the sample surface of the fired sample is polished to fully expose the internal electrode part that will be connected to the external electrode, and a silver external electrode is baked on the exposed part of the internal electrode to make it conductive with the internal electrode, producing a multilayer ceramic capacitor. did.

これらの試料の静電容量,良好度Q,静電容量温度係数
,絶縁抵抗,絶縁破壊強度は、実施例1と同様の条件で
の測定により求めた。また、積層構造の確認は、積層セ
ラミックコンデンサの長さ方向および幅方向の約1/2
の研磨断面を、内部電極重なり寸法は倍率100、誘電
体厚みと内部電極厚みは倍率400での光学顕微鏡観察
より求めた。
The capacitance, quality Q, temperature coefficient of capacitance, insulation resistance, and dielectric breakdown strength of these samples were determined by measurements under the same conditions as in Example 1. In addition, confirming the laminated structure is approximately 1/2 of the length and width of the laminated ceramic capacitor.
The polished cross section of the internal electrode overlap dimension was determined by optical microscope observation at a magnification of 100, and the dielectric thickness and internal electrode thickness at a magnification of 400.

この測定結果を第2図(a)〜(e)に示す。The measurement results are shown in FIGS. 2(a) to (e).

なお、実施例における誘電体磁器の作製方法では、B 
a CO3. T i 02. Z r 02. L 
a203P zO++.Nd203.Smz(h .N
b20s.Ta205.およびV205を使用したが、
この方法に限定されるものではなく、所望の組成比にな
るように、BaTi03などの化合物、あるいは炭酸塩
,水酸化物など空気中での加熱により、B a O, 
T i 02. Z r o2. L a203,P 
reo++.Nd203,SmzOa,Nb20s,T
a2es.およびv2o5となる化合物を使用しても実
施例と同程度の特性を得ることができる。
In addition, in the method for manufacturing dielectric ceramic in the example, B
a CO3. T i 02. Z r 02. L
a203P zO++. Nd203. Smz(h.N
b20s. Ta205. and V205 were used, but
The method is not limited to this method, but by heating in air a compound such as BaTi03, carbonate, hydroxide, etc. to obtain a desired composition ratio.
T i 02. Z r o2. L a203,P
reo++. Nd203, SmzOa, Nb20s, T
a2es. Even if compounds of v2o5 and v2o5 are used, properties comparable to those of the examples can be obtained.

また、主成分をあらかじめ仮焼し、副成分を添加しても
実施例と同程度の特性を得ることができる。
Further, even if the main component is calcined in advance and the subcomponents are added, properties comparable to those of the examples can be obtained.

また、上述の主成分と副成分のほかに、Si02.M 
n 02. F eto3, Z n Oなど一般にフ
ラックスと考えられている塩類,酸化物などを、特性を
損なわない範囲で加えることもできる。
In addition to the above-mentioned main components and subcomponents, Si02. M
n 02. Salts, oxides, etc. that are generally considered to be fluxes, such as Feto3 and ZnO, can also be added within a range that does not impair the properties.

発明の効果 以上のように本発明によれば、結晶粒径が小さく、誘電
率,絶縁抵抗,絶縁破壊電圧が高く、良好度Qにすぐれ
、静電容量塩度係数が小さく、かつ積層セラミックコン
デンサへの利用においては、内部電極の厚みを薄くした
ときの静電容量と良好度Qの低下を防ぎ、静電容量と良
好度Qのバラツキを小さくできるため、内部電極の厚み
を薄くして、積層セラミックコンデンサのコストダウン
が行えるとともに内部構造欠陥であるデラミネーション
の発生を防ぐことができる。また、絶縁破壊電圧が高い
ため誘電体層の厚みを薄くし、素体の小型化,大容量化
が可能である。
Effects of the Invention As described above, according to the present invention, the crystal grain size is small, the dielectric constant, insulation resistance, and dielectric breakdown voltage are high, the quality factor Q is excellent, the capacitance salinity coefficient is small, and a multilayer ceramic capacitor is manufactured. In applications, it is possible to prevent a decrease in capacitance and quality Q when the thickness of the internal electrode is made thinner, and to reduce variations in capacitance and quality Q. The cost of multilayer ceramic capacitors can be reduced, and delamination, which is an internal structural defect, can be prevented from occurring. Furthermore, since the dielectric breakdown voltage is high, the thickness of the dielectric layer can be made thinner, and the element body can be made smaller and larger in capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる組成物の主成分の組成範囲を説
明する三元図、第2図(a)〜(e)は本発明にかかる
組威比0.1 1BaO−0.68[ (TiO2)0
.9(Z.rOt )o.+  1−0.21Nd20
zの主成分100重量部に対する副成分[ ( N b
xos) 0.4(T axos) 0.3 (V20
s) 0.3]の含有効果を、誘電体厚み=12μm、
内部電極重なり寸法=1.2wa X 0 . 7 m
、誘電体層数:19の積層構造をもつ積層セラミックコ
ンデンサの電気特性で示すグラフである。
FIG. 1 is a ternary diagram explaining the composition range of the main components of the composition according to the present invention, and FIGS. (TiO2)0
.. 9(Z.rOt)o. + 1-0.21Nd20
Subcomponent [(N b
xos) 0.4 (T axos) 0.3 (V20
s) 0.3], dielectric thickness = 12 μm,
Internal electrode overlap dimension = 1.2wa x 0. 7 m
, is a graph showing the electrical characteristics of a multilayer ceramic capacitor having a multilayer structure with the number of dielectric layers: 19.

Claims (1)

【特許請求の範囲】  一般式 xBaO−y[(TiO_2)_(_1_−_m_)(
ZrO_2)_m]−zRe_2O_3と表した時(た
だし、x+y+z=1.00、0.001≦m≦0.2
00、Re_2O_3はLa_2O_3,Pr_2O_
1_1_/_3,Nd_2O_3,Sm_2O_3から
選ばれる一種以上の希土類元素の酸化物。)、x,y,
zが以下に表す各点a,b,c,d,e,fで囲まれる
モル比の範囲からなる主成分100重量部に対し、副成
分としてNb_2O_5,Ta_2O_5,V_2O_
5,から選ばれる二種以上を合計で0.001〜0.0
10モル部含有したことを特徴とする誘電体磁器組成物
。 ▲数式、化学式、表等があります▼
[Claims] General formula xBaO-y[(TiO_2)_(_1_-_m_)(
ZrO_2)_m]-zRe_2O_3 (where x+y+z=1.00, 0.001≦m≦0.2
00, Re_2O_3 is La_2O_3, Pr_2O_
1_1_/_3, Nd_2O_3, Sm_2O_3 oxide of one or more rare earth elements. ), x, y,
Nb_2O_5, Ta_2O_5, V_2O_ as subcomponents to 100 parts by weight of the main component consisting of a range of molar ratios where z is surrounded by each point a, b, c, d, e, f shown below.
5, two or more types selected from 0.001 to 0.0 in total
A dielectric ceramic composition characterized in that it contains 10 mole parts. ▲Contains mathematical formulas, chemical formulas, tables, etc.▼
JP1156498A 1989-06-19 1989-06-19 Dielectric porcelain composition Pending JPH0323257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1156498A JPH0323257A (en) 1989-06-19 1989-06-19 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1156498A JPH0323257A (en) 1989-06-19 1989-06-19 Dielectric porcelain composition

Publications (1)

Publication Number Publication Date
JPH0323257A true JPH0323257A (en) 1991-01-31

Family

ID=15629072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1156498A Pending JPH0323257A (en) 1989-06-19 1989-06-19 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH0323257A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432016A (en) * 1990-06-21 1995-07-11 Sumitomo Special Metals Co., Ltd. Magnetic head slider material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432016A (en) * 1990-06-21 1995-07-11 Sumitomo Special Metals Co., Ltd. Magnetic head slider material

Similar Documents

Publication Publication Date Title
JPH0323257A (en) Dielectric porcelain composition
JPH10139538A (en) Dielectric porcelain composition
JPH0323261A (en) Dielectric porcelain composition
JPH02267166A (en) Dielectric porcelain composition
JPH0323260A (en) Dielectric porcelain composition
JPH02242516A (en) Dielectric porcelain composition
JPH02242522A (en) Dielectric porcelain composition
JPH0323259A (en) Dielectric porcelain composition
JPH07211140A (en) Dielectric ceramic composition
JP2936661B2 (en) Dielectric porcelain composition
JPH0323258A (en) Dielectric porcelain composition
JPH0794019A (en) Electronic part
JP4782539B2 (en) Dielectric porcelain
JPH056710A (en) Dielectric porcelain composition
JP2508373B2 (en) Dielectric ceramic composition and method for producing dielectric ceramic
JPH02242517A (en) Dielectric porcelain composition
JPH02242523A (en) Dielectric porcelain composition
JP2921048B2 (en) Dielectric porcelain composition
JPH02242518A (en) Dielectric porcelain composition
JPH04357612A (en) Dielectric porcelain composition
JPH06260026A (en) Dielectric ceramic composition
JPH04357616A (en) Dielectric porcelain composition
JPH0554717A (en) Dielectric porcelain composition
JPH02242521A (en) Dielectric porcelain composition
JPH06260027A (en) Dielectric ceramic composition