JPH02242523A - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH02242523A
JPH02242523A JP1062439A JP6243989A JPH02242523A JP H02242523 A JPH02242523 A JP H02242523A JP 1062439 A JP1062439 A JP 1062439A JP 6243989 A JP6243989 A JP 6243989A JP H02242523 A JPH02242523 A JP H02242523A
Authority
JP
Japan
Prior art keywords
dielectric
composition
weight
parts
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1062439A
Other languages
Japanese (ja)
Other versions
JP2684754B2 (en
Inventor
Hidenori Kuramitsu
秀紀 倉光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1062439A priority Critical patent/JP2684754B2/en
Publication of JPH02242523A publication Critical patent/JPH02242523A/en
Application granted granted Critical
Publication of JP2684754B2 publication Critical patent/JP2684754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To make the dielectric porcelain composition one with high dielectric constant, high insulation resistance and high insulation breakdown voltage, being excellent in quality Q, and with a small temperature coefficient of electrostatic capacity by making the composition contain tantalum oxide as auxiliary component against main components that the composition contains in such a manner that when an expression is given as xBaO-y[(TiO2)(1-m)(ZrO2)m]-zRe2O3, (x), (y) and (z) are in a specific mole ratio range. CONSTITUTION:The dielectric porcelain composition is made to contain tantalum oxide as auxiliary component by 0.1 to 10 parts by weight in Ta2O5 (against 100 parts by weight of main components that the composition contains in such a manner that when an expression is given as xBao-y[(TiO2)(1-m)(ZrO2)m]-z Re2-O3(x+y+z=1.00; 0.001<=m<=0.200; Re2O3 is at least one kind of oxide of rare earth material selected from among La2O3, Rr2O11/3, Nd2O3 and Sm2O3), (x), (y) and (z) are in a mole ratio range surrounded by points (a) to (f) in the figure. The composition thereby has its dielectric constant, insulation resistance, insulation breakdown voltage enhanced, its quality Q made excellent and its temperature coefficient of electrostatic capacity reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は誘電率、絶縁抵抗、絶縁破壊電圧が高く、良好
度Qにすぐれ、静電容量温度係数が小さく、かつ積層セ
ラミックコンデンサへの利用においては、内部電極の厚
みを薄くしたときの静電容量と良好度Qの低下を防ぎ、
静電容量と良好度Qのバラツキを小さくできる誘電体磁
器組成物に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention has high dielectric constant, insulation resistance, and dielectric breakdown voltage, excellent quality Q, and small capacitance temperature coefficient, and is suitable for use in multilayer ceramic capacitors. , prevents a decrease in capacitance and quality Q when the thickness of the internal electrode is reduced,
The present invention relates to a dielectric ceramic composition that can reduce variations in capacitance and quality Q.

従来の技術 従来から誘電率、絶縁抵抗が高く、良好度Qにすぐれ、
静電容量温度係数が小さい誘電体磁器組成物として下記
のような系が知られている。
Conventional technology Conventionally, the dielectric constant and insulation resistance are high, and the quality Q is excellent.
The following systems are known as dielectric ceramic compositions with small capacitance temperature coefficients.

・B2O−TiO2−Nd2O’3系 ・B2O−TiO2−8m203系 発明が解決しようとする課題 しかし、これらの組成は、例えば0.11BaOO,6
8T i 02−0.21Nd20aの組成比からなる
誘電体材料を使用し、パラジウムの内部電極厚み4μm
、誘電体厚み12μm、内部電極の重なり寸法1 、2
 mm X 0 、7 mm 、誘電体層数19の積層
構造をもつ積層セラミックコンデンサを作製すると、静
電容量の平均値: 724pF、良好度Qの平均値:8
700、静電容量温度係数の平均値:NN35pp/°
C2絶縁抵抗の平均値: 6.OX 1012Ω、絶縁
破壊強度の平均値: 117 k v/mmであり、絶
縁抵抗と絶縁破壊強度において満足のできる値ではない
。また、結晶粒径が1〜5μmと大きいため、素体中の
気孔率が大きくなると古もに結晶粒子1個当たりにかか
る電界強度が太き(なり、絶縁破壊強度も満足のできる
値ではない。
・B2O-TiO2-Nd2O'3 system ・B2O-TiO2-8m203 system Problems to be solved by the invention However, these compositions, for example, 0.11BaOO,6
A dielectric material with a composition ratio of 8T i 02-0.21Nd20a was used, and the palladium internal electrode thickness was 4 μm.
, dielectric thickness 12 μm, internal electrode overlap dimensions 1, 2
When a multilayer ceramic capacitor with a laminated structure of mm X 0, 7 mm, and 19 dielectric layers is manufactured, the average value of capacitance: 724 pF, and the average value of goodness Q: 8
700, average value of capacitance temperature coefficient: NN35pp/°
Average value of C2 insulation resistance: 6. OX 1012Ω, average value of dielectric breakdown strength: 117 kv/mm, which is not a satisfactory value in terms of insulation resistance and dielectric breakdown strength. In addition, since the crystal grain size is large (1 to 5 μm), when the porosity in the element body increases, the electric field strength applied to each crystal grain becomes large (and the dielectric breakdown strength is also not a satisfactory value). .

また、積層セラミックコンデンサのコストダウンを行う
ため、および素体内部の構造欠陥であるデラミネーショ
ンの発生を防ぐため、パラジウムの内部電極厚みを4μ
mから2μmに薄くすると、上記の組成比の誘電体材料
を使用し、−に記の誘電体厚み、内部電極爪なり寸法、
誘電体層数の積層構造をもつ積層セラミックコンデンサ
の静電容量の平均値が610pFと小さ(なるとともに
静電容量のバラツキが256〜713pFと大きくなる
。さらに、良好度Qの平均値も4000と低くなるとと
もに良好度Qのバラツキが600〜8800と大きくな
るという課題があった。
In addition, in order to reduce the cost of multilayer ceramic capacitors and to prevent the occurrence of delamination, which is a structural defect inside the element body, the thickness of the palladium internal electrode was increased to 4 μm.
When thinning from m to 2 μm, a dielectric material with the above composition ratio is used, and the dielectric thickness and internal electrode claw dimensions are as shown in -.
The average value of capacitance of a multilayer ceramic capacitor with a laminated structure with a number of dielectric layers is small at 610 pF (and the variation in capacitance becomes large at 256 to 713 pF.Furthermore, the average value of quality Q is 4000). There was a problem in that as the quality level Q decreased, the variation in the goodness level Q increased from 600 to 8800.

課題を解決するための手段 これらの課題を解決するために本発明は、一般式xBa
O−−y[(T  i  02)B−m)  (Z  
ro 2)m]ZRe203と表した時(ただし、X十
y、斗Z1.00,0.001−≦m≦0.200.R
e2O3は、La2O3,Pr20目/3.Nd2O3
,Sm2O3から選ばれる少なくとも一種属」二の希土
類元素の酸化物。)、x、y、zが以下に表ず各点a。
Means for Solving the Problems In order to solve these problems, the present invention provides a formula xBa
O--y [(T i 02) B-m) (Z
ro 2) m] When expressed as ZRe203 (However,
e2O3 is La2O3, Pr20th/3. Nd2O3
, Sm2O3. ), x, y, z are not shown below and each point a.

b、c、d、e、fて囲まれるモル比の範囲からなる主
成分100重量部に対し、副成分としてタンタル酸化物
をTa205に換算して0.1〜10重量部に含有した
ことを特徴とする誘電体磁器組成物を提案するものであ
る。
Containing tantalum oxide as a subcomponent in an amount of 0.1 to 10 parts by weight in terms of Ta205 to 100 parts by weight of the main component consisting of the molar ratio range surrounded by b, c, d, e, f. This paper proposes a dielectric ceramic composition with characteristics.

作用 第1図は本発明にかかる組成物の主成分の組成範囲を示
す三元図であり、主成分の組成範囲を限定した理由を第
1図を参照しながら説明する。すなわち、A領域では焼
結が著しく困難である。また、B領域では良好度Qが低
下し実用的でなくなる。さらに、C,D領域では静電容
量温度係数がマイナス側に大きくなりすぎて実用的でな
くなる。
FIG. 1 is a ternary diagram showing the composition range of the main components of the composition according to the present invention, and the reason for limiting the composition range of the main components will be explained with reference to FIG. That is, sintering is extremely difficult in region A. Furthermore, in region B, the quality Q decreases, making it impractical. Furthermore, in regions C and D, the capacitance temperature coefficient becomes too large on the negative side, making it impractical.

そして、E領域では静電容量温度係数がプラス方向に移
行するが、誘電率が小さく実用的でなくなる。また、R
e2O3をLa2O3,P r20+w3゜Nd2O3
,SmpO3から選ぶことによりLa2O3,P r2
0+1/3.Nd2O3,Sm2O3の順で誘電率を大
きく下げることな(、静電容量温度係数をプラス方向に
移行することが可能であり、La2O3,P r20+
+、z3.Nd2O3,Sm2O3の一種あるいは組合
せにより静電容量温度係数の調節が可能である。
In region E, the temperature coefficient of capacitance shifts to a positive direction, but the dielectric constant is too small to be practical. Also, R
e2O3 as La2O3,P r20+w3゜Nd2O3
, SmpO3, La2O3,P r2
0+1/3. It is possible to shift the capacitance temperature coefficient in the positive direction without significantly lowering the dielectric constant in the order of Nd2O3 and Sm2O3, and La2O3, P r20+
+, z3. The capacitance temperature coefficient can be adjusted by using one type or a combination of Nd2O3 and Sm2O3.

また、TiO2をZrO2で置換することにより、誘電
率、良好度Q、静電容量温度係数、絶縁抵抗の値を大き
く変えることなく、結晶粒径を小さくし、絶縁破壊強度
を大きくする効果を有し、その置換率mが0.001未
満では置換効果はな(、一方0.200を超えると誘電
率、良好度Q、絶縁抵抗か低下する。
In addition, by replacing TiO2 with ZrO2, it is possible to reduce the crystal grain size and increase the dielectric breakdown strength without significantly changing the dielectric constant, quality Q, temperature coefficient of capacitance, and insulation resistance. However, if the substitution rate m is less than 0.001, there is no substitution effect (on the other hand, if it exceeds 0.200, the dielectric constant, goodness Q, and insulation resistance decrease.

第2図は本発明にかかる組成物の主成分に対し、副成分
子a205の含有効果を積層セラミックコンデンサの特
性で示すグラフであり、’Ta205の含有範囲を限定
した理由をグラフを参照しながら説明する。第2図に示
すようにゴa205を含有することにより、絶縁抵抗、
絶縁破壊強度が向上し、また静電容量と良好度Qを高め
、静電容量と良好度Qのバラツキを小さ(する効果を有
する。
Figure 2 is a graph showing the effect of the inclusion of the sub-component element A205 on the main component of the composition according to the present invention in terms of the characteristics of a multilayer ceramic capacitor. explain. As shown in Figure 2, by containing Goa205, insulation resistance,
It has the effect of improving dielectric breakdown strength, increasing capacitance and quality Q, and reducing variations in capacitance and quality Q.

そして、Ta、205の含有により、絶縁抵抗、絶縁破
壊強度は向上するが、Ta205の含有量が主成分10
0重量部に対し、0.1重量部未満は静電容量と良好度
Qが低く、また静電容量と良好度Qのバラツキが大きい
ため、この発明の範囲から除外した。−・方、T a 
205の含有量が主成分に対し、10.0重量部を超え
ると良好度Q、絶縁抵抗が低下し、静電容量温度係数が
マイ−ノース側に大きくなり、実用的でなくなる。
Insulation resistance and dielectric breakdown strength are improved by the inclusion of Ta205, but the content of Ta205 is the main component 10
If the amount is less than 0.1 part by weight, the capacitance and quality Q are low, and the capacitance and quality Q vary widely, so it was excluded from the scope of the present invention. -, way, T a
If the content of 205 exceeds 10.0 parts by weight based on the main component, the quality Q and insulation resistance will decrease, and the temperature coefficient of capacitance will increase toward the minus side, making it impractical.

本発明はさらに、上記組成物に、マンカン、亜鉛、鉄お
よびケイ素の酸化物から選ばれる少なくとも一種属」二
を、それぞれMnO2,ZnO。
The present invention further provides the above composition with at least one oxide selected from manguin, zinc, iron and silicon oxides, MnO2 and ZnO, respectively.

Fe2O3およびSiO2に換算して主成分と副成分を
合わせた100重量部に対し、0.05〜1.00重量
部添加せしめた構成とすることができる。これらの添加
物は磁器の焼結性を向上させる効果を有し、その添加量
が0.05重量部未満ては添加効果はな(,1,00重
量部を越えると誘電率が低下し実用的でなくなる。
A configuration can be adopted in which 0.05 to 1.00 parts by weight of the metal is added to 100 parts by weight of the main component and the subcomponents combined in terms of Fe2O3 and SiO2. These additives have the effect of improving the sinterability of porcelain, but if the amount added is less than 0.05 parts by weight, there is no effect. It becomes irrelevant.

実施例 以下に、本発明を具体的実施例により説明する。Example The present invention will be explained below using specific examples.

(実施例1) 出発原料には化学的に高純度のBaCO3TlO2,Z
rO2,La2O3,P r6ON d 203. S
 m 203およびTa205粉末を下記の第1表に示
す組成比になるように秤量し、めのうボールを備えたゴ
ム内張りのボールミルに純水とともに入れ、湿式混合後
、脱水乾燥した。この乾燥粉末を高アルミナ質のルツボ
に入れ、空気中で1100℃にて2時間仮焼した。この
仮焼粉末を、めのうボールを備えたゴム内張りのボール
ミルに純水とともに入れ、湿式粉砕後、脱水乾燥した。
(Example 1) Chemically high-purity BaCO3TlO2, Z is used as a starting material.
rO2, La2O3, P r6ON d 203. S
The m203 and Ta205 powders were weighed to have the composition ratios shown in Table 1 below, put into a rubber-lined ball mill equipped with agate balls together with pure water, wet mixed, and then dehydrated and dried. This dry powder was placed in a high alumina crucible and calcined in air at 1100°C for 2 hours. This calcined powder was put into a rubber-lined ball mill equipped with agate balls together with pure water, wet-pulverized, and then dehydrated and dried.

この乾燥粉末に、有機バインダーを加え、均質とした後
、32メツシユのふるいを通して整粒し、金型と油圧プ
レスを用いて成形圧力1ton/cut’で直径15m
m、厚み0 、4 mmに成形した。次に、成形円板を
ジルコニア粉末を敷いたアルミナ質のザヤに入れ、空気
中にて下記の第1表に示す組成比の誘電体磁器を得た。
After adding an organic binder to this dry powder and making it homogeneous, it was sized through a 32-mesh sieve, and was molded to a diameter of 15 m using a mold and a hydraulic press at a molding pressure of 1 ton/cut'.
m, thickness 0.4 mm. Next, the molded disk was placed in an alumina sheath covered with zirconia powder, and dielectric porcelain having the composition ratio shown in Table 1 below was obtained in air.

このようにして得られた誘電体磁器円板は、厚みと直径
を測定し、誘電率、良好度Q、静電容量温度測定用試料
は、誘電体磁器円板の両面全体に銀電極を焼き付け、絶
縁抵抗、絶縁破壊強度測定用試料は、誘電体磁器円板の
外周より内側に1. mmの幅で銀電極のない部分を設
け、銀電極を焼き付けた。そして、誘電率、良好度Q、
静電容量温度係数は、YHP社製デジタル1. CRメ
ータのモデル4275Δを使用し、測定温度20°C2
測定電圧1 、 OV r m s 、測定周波数1.
 M Hzでの測定より求めた。なお、静電容量温度係
数は、20℃。
The thickness and diameter of the dielectric porcelain disk thus obtained were measured, and the sample for measuring the dielectric constant, goodness of quality Q, and capacitance temperature was prepared by baking silver electrodes on both sides of the dielectric porcelain disk. , the sample for measuring insulation resistance and dielectric breakdown strength was placed inside the outer circumference of the dielectric ceramic disk. A part without a silver electrode was provided with a width of mm, and a silver electrode was baked onto it. Then, the dielectric constant, goodness Q,
The capacitance temperature coefficient is measured using YHP Digital 1. Using CR meter model 4275Δ, measuring temperature 20°C2
Measurement voltage 1, OV rms, measurement frequency 1.
It was determined by measurement at MHz. Note that the capacitance temperature coefficient is 20°C.

85℃の静電容量を測定し、次式により求めた。The capacitance at 85° C. was measured and calculated using the following formula.

TC= (C−Co)/CoX 1/65X 106T
C・静電容量温度係数(ppm/℃)CO20℃での静
電容量(pF) C,85℃での静電容量(+) F )また、誘電率は
次式より求めた。
TC= (C-Co)/CoX 1/65X 106T
C・Capacitance temperature coefficient (ppm/°C) CO Capacitance at 20°C (pF) C, Capacitance at 85°C (+) F) Further, the dielectric constant was determined from the following formula.

K=143.8XCoxt/D2 K  誘電率 Co : 20℃での静電容量(pF)D :誘電体磁
器の直径(mm) t :誘電体磁器の厚み(mm) さらに、絶縁抵抗は、Y HP社製HRメータのモデル
4329Aを使用し、測定電圧50V。
K=143.8 Measurement voltage was 50V using HR meter model 4329A.

D、C,測定時間1分間による測定より求めた。D, C: Determined from measurements with a measurement time of 1 minute.

そして、絶縁破壊強度は、菊水電子工業■製高電圧電源
PH335に一3形を使用し、試料をシリコンオイル中
に入れ、昇圧速度5QV/secにより求めた絶縁破壊
電圧を誘電体厚みて除算し、1 mm当たりの絶縁破壊
強度とした。
The dielectric breakdown strength was determined by using a PH335 type 13 high voltage power supply made by Kikusui Electronics Co., Ltd., placing the sample in silicone oil, and dividing the dielectric breakdown voltage determined by the voltage increase rate of 5 QV/sec by the dielectric thickness. , the dielectric breakdown strength per 1 mm.

] 0 また、結晶粒径は、倍率400ての光学顕微鏡観察より
求めた。
] 0 Further, the crystal grain size was determined by optical microscope observation at a magnification of 400.

試験条件を第1表に併せて示し、試験結果を下記の第2
表に示す。
The test conditions are also shown in Table 1, and the test results are shown in Table 2 below.
Shown in the table.

(以 下 余 白〉 (実施例2) 出発原料には化学的に高純度のBaCO3TiO2,Z
rO2,La2O3,PreO+Nd2O3,Sm2O
3,Ta205.Mn 02. Z n O。
(Left below) (Example 2) Starting materials include chemically highly purified BaCO3TiO2, Z
rO2, La2O3, PreO+Nd2O3, Sm2O
3, Ta205. Mn 02. Z n O.

Fe2O3およびSi○2粉末を下記の第3表に示す組
成比になるように秤量し、それ以後は、実施例1の場合
と同様に処理して第3表に示す組成比の誘電体磁器を得
た。
Fe2O3 and Si○2 powders were weighed to have the composition ratio shown in Table 3 below, and then treated in the same manner as in Example 1 to produce dielectric porcelain having the composition ratio shown in Table 3. Obtained.

これらの試料の試験方法は、実施例1と同様であり、試
験条件を第3表に併せて示し、試験結果を下記の第4表
に示す。
The testing methods for these samples were the same as in Example 1, the test conditions are also shown in Table 3, and the test results are shown in Table 4 below.

(以  下  余  白) (実施例3) 出発原料には化学的に高純度のBaC03T i 02
. Z r○2.La2O3,P r60+I。
(Left below) (Example 3) Chemically highly purified BaC03T i02 was used as the starting material.
.. Z r○2. La2O3,Pr60+I.

Nd2O3,Sm2O3およびTa2’s粉末を使用し
、主成分0.1 ]]BaO−0.68(Ti02)o
9(Z ro2)o、+] −0,21Nd203に対
し、Ta205を0.0.05,0.10,0.50゜
1.00.5.00,10.00,12.00wt%含
有した仮焼粉砕粉を実施例1と同様の方法で作製する。
Using Nd2O3, Sm2O3 and Ta2's powder, the main component is 0.1]]BaO-0.68(Ti02)o
9(Z ro2)o, +] -0,21 Contained 0.0.05, 0.10, 0.50°1.00.5.00, 10.00, 12.00 wt% of Ta205 with respect to Nd203 A calcined pulverized powder is produced in the same manner as in Example 1.

ただし、Ta205含有量0,0.05゜12.00w
t%は、この発明の範囲外であり、0.100,0.5
00,1.00,5.00゜10.00wt%は、この
発明の範囲内である。
However, Ta205 content 0.0.05゜12.00w
t% is outside the scope of this invention and is 0.100, 0.5
00, 1.00, 5.00°10.00wt% are within the scope of this invention.

この仮焼粉砕粉末に、有機バインダー、可塑剤1分散剤
、有機溶剤を加え、アルミナボールを備えたポリエチレ
ン製ポットで混合し、スラリーを作製した。混合後、3
00メツシユのナイロン布を使用し、ろ過した。ろ過後
のスラリーは、ドクターブレードにより、焼結後の誘電
体厚みが12μmとなるように、離型処理をしたポリエ
ステルフィルム上にシートを成形した。次に、ポリエス
テルフィルムから剥したシート10枚を支持台の上に積
層した。この上に、昭栄化学■裏向部電極パラジウムペ
ーストML−3724を焼結後の内部電極厚みが2μm
となるようにスクリーン印刷し、乾燥した。この上にポ
リエステルフィルムから剥したシート1枚を積層した。
An organic binder, a plasticizer 1 dispersant, and an organic solvent were added to this calcined and pulverized powder, and mixed in a polyethylene pot equipped with alumina balls to prepare a slurry. After mixing, 3
It was filtered using a 00 mesh nylon cloth. The slurry after filtration was formed into a sheet using a doctor blade on a polyester film that had been subjected to mold release treatment so that the dielectric thickness after sintering was 12 μm. Next, 10 sheets peeled from the polyester film were laminated on a support base. On top of this, the internal electrode thickness after sintering Shoei Chemical's back electrode palladium paste ML-3724 is 2 μm.
Screen printed and dried. A sheet peeled from a polyester film was laminated on top of this.

この上に、焼結後の内部電極重なり寸法が1 、2 m
m X 0 、7 mmとなるように印刷位置をずらし
て内部電極パラジウムペーストを印刷し、乾燥後、ポリ
エステルフィルムから剥したシート1枚を積層した。こ
れらの操作を、誘電体層数が19となるまで繰り返した
。この上に、ポリエステルフィルムから剥したシート1
0枚を積層した。この積層体を焼結後、内部電極重なり
寸法が1 、2 mm X O57nvn 、誘電体厚
みが12μm、誘電体層数が19の積層構造をもつ積層
セラミックコンデンザとなるように切断した。この切断
した試料は、ジルコニア粉末を敷いたアルミナ質のサヤ
に入れ、空気中にて室温から350℃まてを5°C/h
rて昇温し、350’C] 7 より100℃/1]rて昇温し、1270℃て2時間焼
成後、]、 OO0C/ h rで室温まて降温した。
On top of this, the internal electrode overlap dimension after sintering is 1,2 m.
The internal electrode palladium paste was printed by shifting the printing position so that m X 0 was 7 mm, and after drying, one sheet peeled from the polyester film was laminated. These operations were repeated until the number of dielectric layers reached 19. On top of this, sheet 1 peeled from the polyester film
0 sheets were laminated. After sintering this laminate, it was cut into a laminate ceramic capacitor having a laminate structure in which the internal electrode overlap dimensions were 1.2 mm x O57nvn, the dielectric thickness was 12 μm, and the number of dielectric layers was 19. The cut sample was placed in an alumina pod covered with zirconia powder and heated at 5°C/h from room temperature to 350°C in air.
The temperature was raised to 100°C/1]r from 350'C]7, and after firing at 1270°C for 2 hours, the temperature was lowered to room temperature at 000C/hr.

次いで、焼成後の試料は、耐水サントペーパーを内側に
貼ったポリエチレンポットに純水とともに入れ、ポリエ
チレンポットを回転させ焼成後の試料面を研磨し、外部
電極と接合する内部電極部分を充分露出させた。この試
料はポリエチレンポットより取り出し乾燥後、内部電極
露出部分に銀の外部電極を焼き付け、内部電極と導通さ
せ、積層セラミックコンデンサを作製した。
Next, the fired sample was placed in a polyethylene pot with water-resistant sandpaper pasted on the inside, along with pure water, and the polyethylene pot was rotated to polish the surface of the fired sample to fully expose the internal electrode portion that will be connected to the external electrode. Ta. This sample was taken out of the polyethylene pot, dried, and then a silver external electrode was baked onto the exposed portion of the internal electrode to make it electrically conductive with the internal electrode, producing a multilayer ceramic capacitor.

これらの試料の静電容量、良好度Q、静電容量温度係数
、絶縁抵抗、絶縁破壊強度は、実施例1と同様の条件で
の測定により求めた。また、積層構造の確認は、積層セ
ラミックコンデンザの長さ方向および幅方向の約172
の研磨断面を、内部電極重なり寸法は倍率100.誘電
体厚みと内部電極厚みは倍率400での光学顕微鏡観察
より求めた。
The capacitance, quality Q, temperature coefficient of capacitance, insulation resistance, and dielectric breakdown strength of these samples were determined by measurements under the same conditions as in Example 1. In addition, the laminated structure was confirmed by approximately 172 mm in the length and width directions of the laminated ceramic capacitor.
The internal electrode overlap dimension is a polished cross section with a magnification of 100. The dielectric thickness and the internal electrode thickness were determined by optical microscope observation at a magnification of 400.

この測定結果を第2図に示す。The measurement results are shown in FIG.

なお、実施例における誘電体磁器の作製方法ては、Ba
C0:+、ZrO2,TiO2,La20:+Pr60
++、Nd2O3,Sm2O3,Ta2’5゜MnO2
,Zn○、Fe2O3およびSighをイ吏用したが、
この方法に限定されるものではなく、所望の組成比にな
るように、BaTiO3などの化合物、あるいは炭酸塩
、水酸化物なと空気中での加熱により、BaO,Z r
O2,T i 02゜La2O3,P r60++、N
d2O3,Sm2O3゜T a 205.MnO2,Z
nO,Fe2O3および5i(hとなる化合物を使用し
ても実施例と同程度の特性を得ることができる。
Note that the method for manufacturing dielectric ceramics in the examples is based on Ba
C0:+, ZrO2, TiO2, La20:+Pr60
++, Nd2O3, Sm2O3, Ta2'5゜MnO2
, Zn○, Fe2O3 and Sigh were used, but
The method is not limited to this method, but BaO, Z r
O2, T i 02゜La2O3, P r60++, N
d2O3, Sm2O3゜Ta 205. MnO2,Z
Characteristics comparable to those of the examples can be obtained even when using compounds such as nO, Fe2O3 and 5i(h).

また、主成分をあらかしめ仮焼し、副成分を添加しても
実施例と同程度の特性を得ることができる。
Further, even if the main component is roughened and calcined and subcomponents are added, properties comparable to those of the examples can be obtained.

発明の効果 以上のように本発明によれば、誘電率、絶縁抵抗、絶縁
破壊電圧が高く、良好度Qにすくれ、静電容量温度係数
が小さく、かつ積層セラミックコンデンサへの利用にお
いては、内部電極の厚みを薄くしたときの静電容量と良
好度Qの低下を防ぎ、静電容量と良好度Qのバラツキを
小さ(できるため、内部電極の厚みを薄(して、積層セ
ラミックコンデンサのコストダウンが行えるとともに内
部構造欠陥であるデラミネーションの発生を防ぐことが
できる。また、絶縁破壊電圧が高いため、誘電体層の厚
みを薄くし、素体の小型化、大容量化が可能である。
Effects of the Invention As described above, according to the present invention, the dielectric constant, insulation resistance, and dielectric breakdown voltage are high, the quality level Q is low, the capacitance temperature coefficient is small, and when used in a multilayer ceramic capacitor, This prevents a decrease in capacitance and quality Q when the thickness of the internal electrode is made thinner, and reduces the variation in capacitance and quality Q. It is possible to reduce costs and prevent the occurrence of delamination, which is an internal structural defect.Also, because the dielectric breakdown voltage is high, the thickness of the dielectric layer can be reduced, making it possible to make the element smaller and increase the capacity. be.

さらに、マンガン、亜鉛、鉄およびケイ素の酸化物の添
加により、焼成温度を低下させることができる。
Furthermore, the addition of manganese, zinc, iron and silicon oxides allows the firing temperature to be lowered.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる組成物の主成分の組成範囲を説
明する三元図、第2図は本発明にかかる主成分0.11
8aO−0,68[(TiO2)o、5(ZrO2)0
.1]  0.21Nd203に対する副成分子a20
5の含有効果を、誘電体厚み212μm。 内部電極重なり寸法: 1 、2 mm X 0 、7
 mm 、誘電体層数・19の積層構造をもつ積層セラ
ミックコンデンサの電気特性で示すグラフである。
FIG. 1 is a ternary diagram explaining the composition range of the main components of the composition according to the present invention, and FIG. 2 is a ternary diagram explaining the composition range of the main components according to the present invention.
8aO-0,68[(TiO2)o,5(ZrO2)0
.. 1] Subcomponent element a20 for 0.21Nd203
5, the dielectric thickness was 212 μm. Internal electrode overlap dimensions: 1, 2 mm x 0, 7
2 is a graph showing the electrical characteristics of a multilayer ceramic capacitor having a laminated structure with 19 dielectric layers.

Claims (2)

【特許請求の範囲】[Claims] (1)一般式 xBaO−y[(TiO_2)_(_1_−_m_)(
ZrO_2)_m]−zRe_2O_3と表した時(た
だし、x+y+z=1.00,0.001≦m≦0.2
00,Re_2O_3は、La_2O_3,Pr_2O
_1_1_/_3,Nd_2O_3,Sm_2O_3か
ら選ばれる少なくとも一種以上の希土類元素の酸化物。 )、x,y,zが以下に表す各点a,b,c,d,e,
fで囲まれるモル比の範囲からなる主成分100重量部
に対し、副成分としてタンタル酸化物をTa_2O_5
に換算して0.1〜10重量部含有したことを特徴とす
る誘電体磁器組成物。 ▲数式、化学式、表等があります▼
(1) General formula xBaO-y[(TiO_2)_(_1_-_m_)(
ZrO_2)_m]-zRe_2O_3 (where x+y+z=1.00, 0.001≦m≦0.2
00, Re_2O_3 is La_2O_3, Pr_2O
An oxide of at least one rare earth element selected from _1_1_/_3, Nd_2O_3, and Sm_2O_3. ), x, y, z are the points a, b, c, d, e,
Ta_2O_5 tantalum oxide as a subcomponent to 100 parts by weight of the main component having a molar ratio range surrounded by f.
A dielectric ceramic composition characterized in that it contains 0.1 to 10 parts by weight calculated as . ▲Contains mathematical formulas, chemical formulas, tables, etc.▼
(2)主成分と副成分を合わせた100重量部に対して
、マンガン,亜鉛,鉄およびケイ素の酸化物から選ばれ
る少なくとも一種以上を、それぞれMnO_2,ZnO
,Fe_2O_3およびSiO_2に換算して0.05
〜1.00重量部添加したことを特徴とする特許請求の
範囲第1項記載の誘電体磁器組成物。
(2) At least one or more selected from manganese, zinc, iron, and silicon oxides are added to 100 parts by weight of the main component and subcomponent, respectively, to MnO_2 and ZnO.
, 0.05 in terms of Fe_2O_3 and SiO_2
The dielectric ceramic composition according to claim 1, wherein the dielectric ceramic composition is added in an amount of 1.00 parts by weight.
JP1062439A 1989-03-15 1989-03-15 Dielectric porcelain composition Expired - Fee Related JP2684754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1062439A JP2684754B2 (en) 1989-03-15 1989-03-15 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1062439A JP2684754B2 (en) 1989-03-15 1989-03-15 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH02242523A true JPH02242523A (en) 1990-09-26
JP2684754B2 JP2684754B2 (en) 1997-12-03

Family

ID=13200233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1062439A Expired - Fee Related JP2684754B2 (en) 1989-03-15 1989-03-15 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP2684754B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6429164B1 (en) * 1999-10-28 2002-08-06 Murata Manufacturing Co., Ltd. High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6429164B1 (en) * 1999-10-28 2002-08-06 Murata Manufacturing Co., Ltd. High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication system
EP1095918A3 (en) * 1999-10-28 2003-04-23 Murata Manufacturing Co., Ltd. High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication system

Also Published As

Publication number Publication date
JP2684754B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
JPH02242523A (en) Dielectric porcelain composition
JPH02242522A (en) Dielectric porcelain composition
JPH04188506A (en) Dielectric porcelain composition
JPH02242516A (en) Dielectric porcelain composition
JP2568567B2 (en) Dielectric porcelain composition
JPH07211140A (en) Dielectric ceramic composition
JPH02242517A (en) Dielectric porcelain composition
JP2568565B2 (en) Dielectric porcelain composition
JP2936661B2 (en) Dielectric porcelain composition
JPH02242524A (en) Dielectric porcelain composition
JP2928258B2 (en) Multilayer ceramic capacitors
JP2568566B2 (en) Dielectric porcelain composition
JP2928259B2 (en) Multilayer ceramic capacitors
JP2508373B2 (en) Dielectric ceramic composition and method for producing dielectric ceramic
JP2907437B2 (en) Multilayer ceramic capacitors
JP2928260B2 (en) Multilayer ceramic capacitors
JPH0323261A (en) Dielectric porcelain composition
JP2933635B2 (en) Multilayer ceramic capacitors
JPH02267166A (en) Dielectric porcelain composition
JP2615636B2 (en) Dielectric porcelain composition
JP2847765B2 (en) Multilayer ceramic capacitors
JP2847766B2 (en) Multilayer ceramic capacitors
JPH06260026A (en) Dielectric ceramic composition
JPH0323257A (en) Dielectric porcelain composition
JPH06302219A (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees