JP2907437B2 - Multilayer ceramic capacitors - Google Patents

Multilayer ceramic capacitors

Info

Publication number
JP2907437B2
JP2907437B2 JP1062411A JP6241189A JP2907437B2 JP 2907437 B2 JP2907437 B2 JP 2907437B2 JP 1062411 A JP1062411 A JP 1062411A JP 6241189 A JP6241189 A JP 6241189A JP 2907437 B2 JP2907437 B2 JP 2907437B2
Authority
JP
Japan
Prior art keywords
dielectric
multilayer ceramic
internal electrode
dielectric layer
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1062411A
Other languages
Japanese (ja)
Other versions
JPH02242518A (en
Inventor
秀紀 倉光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1062411A priority Critical patent/JP2907437B2/en
Publication of JPH02242518A publication Critical patent/JPH02242518A/en
Application granted granted Critical
Publication of JP2907437B2 publication Critical patent/JP2907437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はパラジウムを含む内部電極を有する積層セラ
ミックコンデンサに関するものである。
Description: TECHNICAL FIELD The present invention relates to a multilayer ceramic capacitor having an internal electrode containing palladium.

従来の技術 例えば0.11BaO−0.88TiO2−0.21Nd2O3等のBaO−TiO2
−Nd2O3系の誘電体材料を使用して誘電体層を形成し、
パラジウムを内部電極とした積層セラミックコンデンサ
であった。
Description of the Related Art For example 0.11BaO-0.88TiO 2 -0.21Nd 2 BaO- TiO 2 of O 3,
Forming a dielectric layer using -Nd 2 O 3 based dielectric material,
It was a multilayer ceramic capacitor using palladium as an internal electrode.

発明が解決しようとする課題 上記構造の積層セラミックコンデンサにおいては、内
部電極のデラミネーションの発生を防止するために、内
部電極を薄くする。しかしながら、Ba/Ti比の小さいも
のなど一般的にTiO2を多く含む誘電体層は焼成する際、
誘電体層中に含まれる有機バインダーなどにより、TiO2
が還元される。そして還元により生じたTiが内部電極の
Pdと化合物を作るためか、内部電極が体積膨張し、その
結果内部電極は一見玉状のようになり、内部電極切れを
起こし、誘電体層とPdを含む内部電極との界面の密着性
が低下する。その結果、静電容量とQ値が低下し、その
バラツキが大きくなるという問題点を有していた。
Problems to be Solved by the Invention In the multilayer ceramic capacitor having the above structure, the internal electrodes are made thin in order to prevent the occurrence of delamination of the internal electrodes. However, when the dielectric layer containing a large amount of TiO 2 such as a material having a small Ba / Ti ratio is generally fired,
The organic binder contained in the dielectric layer allows TiO 2
Is reduced. And the Ti generated by the reduction is
Perhaps because of the formation of a compound with Pd, the internal electrode expands in volume, and as a result, the internal electrode looks like a bead, causing the internal electrode to break, and the adhesion at the interface between the dielectric layer and the internal electrode containing Pd is reduced. descend. As a result, there has been a problem that the capacitance and the Q value decrease and the variation increases.

そこで本発明の積層セラミックコンデンサは、内部電
極切れを抑制することにより、静電容量とQ値が大き
く、そのバラツキが小さい積層セラミックコンデンサを
提供することを目的とするものである。
Therefore, an object of the multilayer ceramic capacitor of the present invention is to provide a multilayer ceramic capacitor having a large capacitance and a large Q value and a small variation by suppressing disconnection of internal electrodes.

課題を解決するための手段 この目的を達成するために、本発明の積層セラミック
コンデンサは、誘電体層と内部電極とを交互に積層した
積層体と、この積層体の前記内部電極の露出した端面に
設けた外部電極とを備え、前記誘電体層は、一般式xBaO
−yTiO2−zRe2O3(ただし、x+y+z=1.00,Re2O
3は、La2O3,Pr2O11/3,Nd2O3,Sm2O3から選ばれる少なく
とも一種以上の希土類元素の酸化物。)と表した時、x,
y,zが以下の表に示す各点a,b,c,d,e,fで囲まれるモル比
の範囲からなる主成分100重量部に対し、副成分としてN
b2O5、Ta2O5、V2O5から選ばれる二種類以上を合計で0.0
01〜0.010モル部含有したものであり、前記内部電極は
パラジウムを含有することを特徴とするものである。
Means for Solving the Problems In order to achieve this object, a multilayer ceramic capacitor according to the present invention includes a laminated body in which dielectric layers and internal electrodes are alternately laminated, and an exposed end face of the internal electrode of the laminated body. And an external electrode provided in the dielectric layer, wherein the dielectric layer has a general formula xBaO
−yTiO 2 −zRe 2 O 3 (where x + y + z = 1.00, Re 2 O
3 is an oxide of at least one rare earth element selected from La 2 O 3 , Pr 2 O 11/3 , Nd 2 O 3 , and Sm 2 O 3 . ), X,
y, z is 100 parts by weight of the main component consisting of a range of molar ratios surrounded by points a, b, c, d, e, f shown in the following table,
b 2 O 5 , Ta 2 O 5 , V 2 O 5
The internal electrode contains palladium in an amount of from 0.01 to 0.010 mol part.

作用 この構成によると、誘電体層中の4価のTiの一部を5
価のNb,Ta,Vから選ばれる二種類以上で置換することに
よりTiO2が還元されるのを抑制し、TiとPdとの化合物の
生成を防止する。その結果、誘電体層と内部電極の界面
の密着性が向上するため、静電容量とQ値が大きく、そ
のバラツキが小さい積層セラミックコンデンサとなる。
Action According to this configuration, a part of the tetravalent Ti in the dielectric layer is reduced to 5%.
Substitution with two or more types selected from monovalent Nb, Ta and V suppresses the reduction of TiO 2 and prevents the formation of a compound of Ti and Pd. As a result, the adhesion at the interface between the dielectric layer and the internal electrode is improved, so that a multilayer ceramic capacitor having a large capacitance and a large Q value and a small variation is obtained.

また従来の誘電体層は焼成により還元されたTiO2が冷
却過程である程度再酸化されるが、誘電体層の内部、及
び各結晶粒子の内側は再酸化されにくく酸素欠乏状態の
まま残る。従って酸素原子の持つ有効電荷+2eをチタン
原子上の3d電子で中和することにより、各酸素空孔につ
いて2個のTi3+が形成され、Ti3+を介した電子ホッピン
グによって、誘電体層の絶縁抵抗、絶縁破壊強度を劣化
させる。そこで本発明は誘電体層中の4価のTiの一部を
5価のNb,Ta,Vから選ばれる二種類以上で置換すること
により生じた陽イオン空孔で、焼成時の酸素欠陥による
e-を補償する。その結果絶縁抵抗、絶縁破壊強度が従来
よりも向上した積層セラミックコンデンサを得ることが
できる。
In the conventional dielectric layer, TiO 2 reduced by firing is reoxidized to some extent during the cooling process, but the inside of the dielectric layer and the inside of each crystal grain are hardly reoxidized and remain in an oxygen-deficient state. Therefore, by neutralizing the effective charge + 2e of the oxygen atom with 3d electrons on the titanium atom, two Ti 3+ are formed for each oxygen vacancy, and electron hopping via the Ti 3+ causes the dielectric layer Degrades insulation resistance and dielectric breakdown strength. Therefore, the present invention provides a cation vacancy formed by substituting a part of tetravalent Ti in a dielectric layer with two or more kinds selected from pentavalent Nb, Ta, and V.
e - to compensate for. As a result, it is possible to obtain a multilayer ceramic capacitor having improved insulation resistance and dielectric breakdown strength as compared with conventional ones.

実施例 以下に、本発明を具体的実施例により説明する。EXAMPLES Hereinafter, the present invention will be described with reference to specific examples.

(実施例1) 出発原料には化学的に高純度のBaCO3,TiO2,ZrO2,La2O
3,Pr6O11,Nd2O5,Sm2O3,Nb2O5,Ta2O5およびV2O5粉末を下
記の第1表に示す組成比になるように秤量し、めのうボ
ールを備えたゴム内張りのボールミルに純水とともに入
れ、湿式混合後、脱水乾燥した。この乾燥粉末を高アル
ミナ質のルツボに入れ、空気中で1100℃にて2時間仮焼
した。この仮焼粉末をめのうボールを備えたゴム内張り
のボールミルに純水とともに入れ、湿式粉砕後、脱水乾
燥した。この粉砕粉末に、有機バインダーを加え、均質
とした後、32メッシュのふるいを通して整粒し、金型と
油圧プレスを用いて成形圧力1ton/cm2で、直径15mm、厚
み0.4mmに成型した。次いで成形円板をジルコニア粉末
を敷いたアルミナ質のサヤに入れ、空気中にて下記の第
1表に示す組成比の誘電体磁器を得た。このようにして
得られ誘電体磁器円板は、厚みと直径を測定し、誘電
率、良好度Q、静電容量温度係数測定用試料は、誘電体
磁器円板の両面全体に銀電極を焼き付け、絶縁抵抗、絶
縁破壊強度測定用試料は、誘電体磁器円板の外周より内
側に1mmの幅で銀電極のない部分を設け、銀電極を焼き
付けた。そして誘電率、良好度Q、静電容量温度係数は
YHP社製デジタルLCRメータのモデル4275Aを使用し、測
定温度20℃、測定電圧1.0Vrms、測定周波数1MHzでの測
定より求めた。なお、静電容量温度係数は、20℃と85℃
の静電容量を用いて、次式により求めた。
(Example 1) As starting materials, chemically pure BaCO 3 , TiO 2 , ZrO 2 , La 2 O
3 , Pr 6 O 11 , Nd 2 O 5 , Sm 2 O 3 , Nb 2 O 5 , Ta 2 O 5 and V 2 O 5 powders are weighed so as to have the composition ratios shown in Table 1 below, and agate. Pure water was put into a rubber-lined ball mill equipped with balls, wet-mixed, and dehydrated and dried. The dried powder was placed in a high alumina crucible and calcined in air at 1100 ° C. for 2 hours. The calcined powder was put together with pure water into a rubber-lined ball mill equipped with an agate ball, wet pulverized, and then dehydrated and dried. An organic binder was added to the pulverized powder, and the mixture was homogenized, sized through a 32-mesh sieve, and molded into a diameter of 15 mm and a thickness of 0.4 mm using a mold and a hydraulic press at a molding pressure of 1 ton / cm 2 . Next, the molded disk was placed in an alumina sheath covered with zirconia powder, and a dielectric ceramic having a composition ratio shown in Table 1 below was obtained in air. The dielectric ceramic disk thus obtained was measured for thickness and diameter, and the dielectric constant, goodness Q, and capacitance temperature coefficient measurement sample were baked with silver electrodes on both surfaces of the dielectric ceramic disk. The sample for measuring the insulation resistance and the dielectric breakdown strength was provided with a portion having no silver electrode with a width of 1 mm inside the outer periphery of the dielectric porcelain disk, and the silver electrode was baked. And the dielectric constant, goodness Q and capacitance temperature coefficient are
Using a digital LCR meter model 4275A manufactured by YHP, measurement was performed at a measurement temperature of 20 ° C., a measurement voltage of 1.0 Vrms, and a measurement frequency of 1 MHz. The capacitance temperature coefficient is 20 ℃ and 85 ℃
Was obtained by the following equation using the capacitance of

TC=(C−C0)C0×1/65×106 TC:静電容量温度係数(ppm/℃) C0:20℃での静電容量(pF) C :85℃での静電容量(pF) また、誘電率は次式より求めた。TC = (C−C 0 ) C 0 × 1/65 × 10 6 TC: Capacitance temperature coefficient (ppm / ° C) C 0 : Capacitance at 20 ° C (pF) C: Electrostatic at 85 ° C Capacitance (pF) The dielectric constant was determined by the following equation.

K =143.8×C0×t/D2 K :誘電率 C0:20℃での静電容量(pF) D :誘電体磁器の直径(mm) t :誘電体磁器の厚み(mm) さらに、絶縁抵抗は、YHP社製HRメータのモデル4329A
を使用し、測定電圧50V.D.C.、測定時間1分間による測
定により求めた。
K = 143.8 × C 0 × t / D 2 K: Dielectric constant C 0 : Capacitance at 20 ° C (pF) D: Diameter of dielectric ceramic (mm) t: Thickness of dielectric ceramic (mm) Insulation resistance is YHP HR meter model 4329A
And a measurement voltage of 50 V DC for a measurement time of 1 minute.

そして、絶縁破壊強度は、菊水電子工業(株)製高電
圧電源PHS35K−3形を使用し、試料をシリコンオイル中
に入れ、昇圧速度50V/secにより求めた絶縁破壊電圧を
誘電体厚みで除算し、1mm当たりの絶縁破壊強度とし
た。また、結晶粒径は、倍率400での光学顕微鏡観察に
より求めた。
The dielectric breakdown strength was measured by using a high voltage power supply PHS35K-3 manufactured by Kikusui Electronics Co., Ltd., placing the sample in silicon oil, and dividing the dielectric breakdown voltage obtained at a step-up speed of 50 V / sec by the dielectric thickness. And the dielectric breakdown strength per 1 mm. Further, the crystal grain size was determined by observation with an optical microscope at a magnification of 400.

試験条件を第1表に併せて示し、試験結果を下記の第
2表に示す。
The test conditions are shown in Table 1, and the test results are shown in Table 2 below.

ここで第1図は誘電体層の主成分の組成範囲を示す三
元図であり、主成分の組成範囲を限定した理由を第1図
を参照しながら説明する。すなわち、A領域では焼結が
著しく困難である。また、B領域では良好度Qが低下
し、実用的でなくなる。さらに、C,D領域では静電容量
温度係数がマイナス側に大きくなりすぎて実用的でなく
なる。そして、E領域では静電容量温度係数がプラス方
向に移行するが、誘電率が小さく実用的でなくなる。ま
た、Re2O3をLa2O3,Pr2O11/3,Nd2O3,Sm2O3から選ぶこと
により、La2O3,Pr2O11/3,Nd2O3,Sm2O3の順で誘電率を大
きく下げることなく、静電容量温度係数をプラス方向に
移行することが可能であり、La2O3,Pr2O11/3,Nd2O3,Sm2
O3の1種あるいは組み合わせにより静電容量温度係数の
調整が可能である。
Here, FIG. 1 is a ternary diagram showing the composition range of the main component of the dielectric layer, and the reason for limiting the composition range of the main component will be described with reference to FIG. That is, sintering is extremely difficult in the region A. Further, in the region B, the degree of goodness Q is reduced, and is not practical. Furthermore, in the C and D regions, the temperature coefficient of capacitance becomes too large on the minus side, which is not practical. Then, in the E region, the capacitance temperature coefficient shifts in the positive direction, but the dielectric constant is too small to be practical. Also, by selecting Re 2 O 3 from La 2 O 3 , Pr 2 O 11/3 , Nd 2 O 3 , Sm 2 O 3 , La 2 O 3 , Pr 2 O 11/3 , Nd 2 O 3 , Without significantly lowering the dielectric constant in the order of Sm 2 O 3 , it is possible to shift the temperature coefficient of capacitance in the positive direction, La 2 O 3 , Pr 2 O 11/3 , Nd 2 O 3 , Sm Two
The capacitance temperature coefficient can be adjusted by one or a combination of O 3 .

(実施例2) 出発原料には化学的に高純度のBaCO3,TiO2,Nd2O5,Nb2
O5,Ta2O5およびV2O5粉末を使用し、主成分0.11BaO−0.6
8TiO2−0.21Nd2O3の100重量部に対し、(Nb2O50.4(T
a2O50.3(V2O50.3を0,0.0001,0.0010,0.0100,0.020
0モル部含有した仮焼粉を実施例1と同様の方法で作製
する。ただし、(Nb2O50.4(Ta2O50.3(V2O50.3
の含有量が0,0.0001,0.0200モル部は本発明の範囲外で
あり、0.0010,0.0100モル部は本発明の範囲内である。
(Example 2) As starting materials, chemically pure BaCO 3 , TiO 2 , Nd 2 O 5 , Nb 2
Using O 5 , Ta 2 O 5 and V 2 O 5 powder, the main component is 0.11 BaO−0.6
100 parts by weight of 8TiO 2 −0.21Nd 2 O 3 , (Nb 2 O 5 ) 0.4 (T
a 2 O 5 ) 0.3 (V 2 O 5 ) 0.3 is 0,0.0001,0.0010,0.0100,0.020
A calcined powder containing 0 mole part is produced in the same manner as in Example 1. However, (Nb 2 O 5 ) 0.4 (Ta 2 O 5 ) 0.3 (V 2 O 5 ) 0.3
Is within the range of the present invention, and 0.0010,0.0100 mol parts is within the range of the present invention.

この仮焼粉砕粉末に、有機バインダー、可塑剤、分散
剤、有機溶剤を加え、アルミナボールを備えたポリエチ
レン製ポットで混合し、スラリーを作製した。混合後、
300メッシュのナイロン布を使用し、ろ過した。ろ過後
のスラリーは、ドクターブレードにより、焼結後の誘電
体厚みが12μmとなるように、離型処理をしたポリエス
テルフィルム上にシートを成形した。
An organic binder, a plasticizer, a dispersant, and an organic solvent were added to the calcined and pulverized powder, and mixed with a polyethylene pot equipped with alumina balls to prepare a slurry. After mixing
Filtration was performed using a 300 mesh nylon cloth. The slurry after filtration was formed into a sheet on a polyester film that had been subjected to a mold release treatment by a doctor blade so that the dielectric thickness after sintering was 12 μm.

次に、ポリエステルフィルムから剥がしたシート10枚
を支持台の上に積層した。この上に、昭栄化学(株)製
内部電極パラジウムペーストML−3724を焼結後の内部電
極厚みが2μmとなるようにスクリーン印刷し、乾燥し
た。この上にポリエステルフィルムから剥がしたシート
1枚を積層した。この上に、焼結後の内部電極重なり寸
法が1.2mm×0.7mmとなるように印刷位置をずらして内部
電極パラジウムペーストを印刷し、乾燥後、ポリエステ
ルフィルムから剥がしたシート1枚を積層した。これら
の操作を、誘電体層数が19となるまで繰り返した。この
上に、ポリエステルフィルムから剥がしたシート10枚を
積層した。この積層体を焼結後、内部電極重なり寸法が
1.2mm×0.7mm、誘電体厚みが12μm、誘電体層数が19の
積層構造を持つ積層セラミックコンデンサとなるように
切断した。この切断した試料は、ジルコニア粉末を敷い
たアルミナ質のサヤに入れ、空気中にて室温から350℃
までを5℃/hrで昇温し、350℃より100℃/hrで昇温し、
1270℃で2時間焼成後、100℃/hrで室温まで降温した。
次いで、焼成後の試料は、耐水サンドペーパーを内側に
貼ったポリエチレンポットに純水と共に入れ、ポリエチ
レンポットを回転させ焼成後の試料面を研磨し、外部電
極と接合する内部電極部分を充分露出させた。この試料
はポリエチレンポットより取り出し乾燥後、内部電極露
出部分に銀の外部電極を焼き付け、内部電極と導通さ
せ、積層セラミックコンデンサを作製した。
Next, ten sheets peeled from the polyester film were laminated on a support. On this, an internal electrode palladium paste ML-3724 manufactured by Shoei Chemical Co., Ltd. was screen-printed such that the internal electrode thickness after sintering became 2 μm, and dried. One sheet peeled from the polyester film was laminated thereon. On this, the printing position was shifted so that the internal electrode overlapping dimension after sintering was 1.2 mm × 0.7 mm, the internal electrode palladium paste was printed, and after drying, one sheet peeled off from the polyester film was laminated. These operations were repeated until the number of dielectric layers reached 19. On this, 10 sheets peeled from the polyester film were laminated. After sintering this laminate, the internal electrode overlap dimension
The multilayer ceramic capacitor was cut into a laminated ceramic capacitor having a laminated structure of 1.2 mm × 0.7 mm, a dielectric thickness of 12 μm, and 19 dielectric layers. The cut sample is placed in an alumina sheath covered with zirconia powder, and is heated from room temperature to 350 ° C. in air.
Up to 5 ° C / hr, from 350 ° C at 100 ° C / hr,
After firing at 1270 ° C for 2 hours, the temperature was lowered to room temperature at 100 ° C / hr.
Next, the fired sample is put together with pure water into a polyethylene pot with a waterproof sandpaper stuck on the inside, and the polyethylene pot is rotated to polish the fired sample surface to sufficiently expose the internal electrode portion to be joined to the external electrode. Was. This sample was taken out of the polyethylene pot and dried, and then a silver external electrode was baked on the exposed portion of the internal electrode to make conduction with the internal electrode, thereby producing a multilayer ceramic capacitor.

これらの試料の静電容量、良好度Q、静電容量温度係
数、絶縁抵抗、絶縁破壊強度は実施例1と同様の条件で
測定により求めた。また、積層構造の確認は、積層セラ
ミックコンデンサの長さ方向および幅方向の約1/2を研
磨断面を、内部電極の重なり寸法は倍率100、誘電体厚
みと内部電極厚みは倍率400での光学顕微鏡観察により
求めた。
The capacitance, goodness Q, capacitance temperature coefficient, insulation resistance, and dielectric breakdown strength of these samples were determined by measurement under the same conditions as in Example 1. In addition, the confirmation of the laminated structure was performed by polishing about 断面 of the length and width directions of the multilayer ceramic capacitor in a polished cross section, the overlap size of the internal electrodes was 100, and the dielectric thickness and internal electrode thickness were 400 magnifications. It was determined by microscopic observation.

この測定結果を第2図に示す。この第2図を用いて誘
電体層中の副成分Ta2O5の含有範囲を限定した理由をグ
ラフで説明する。第2図に示すようにNb2O5,Ta2O5,V2O5
を含有することにより、絶縁抵抗、絶縁破壊強度が向上
し、また静電容量と良好度Qを高め、静電容量と良好度
Qのバラツキを小さくする効果を有する。そして、Nb2O
5,Ta2O5,V2O5の含有により、絶縁抵抗、絶縁破壊強度は
向上するが、Nb2O5,Ta2O5,V2O5の含有の合計が主成分10
0重量部に対し、0.001モル部未満はそれほど絶縁破壊強
度が大きくなく、静電容量と良好度Qが低く、また静電
容量と良好度Qのバラツキが大きいため、本発明の範囲
から除外した。一方、Nb2O5,Ta2O5,V2O5の含有の合計が
主成分に対し、0.010モル部を越えると良好度Q、絶縁
抵抗が低下し、静電容量温度係数がマイナス側に大きく
なり実用的でなくなる。また、Nb2O5,Ta2O5,V2O5から選
ばれる二種以上を含有することによりNb2O5,Ta2O5,V2O5
から選ばれる一種を含有するものに比べ、誘電率、絶縁
抵抗、絶縁破壊電圧が高く、良好度Qに優れ、静電容量
温度係数を小さくすることができる。
FIG. 2 shows the measurement results. With reference to FIG. 2, the reason why the content range of the auxiliary component Ta 2 O 5 in the dielectric layer is limited will be described with a graph. As shown in FIG. 2 , Nb 2 O 5 , Ta 2 O 5 , V 2 O 5
The effect of improving the insulation resistance and the dielectric breakdown strength, increasing the capacitance and the goodness Q, and reducing the variation in the capacitance and the goodness Q are obtained by containing. And Nb 2 O
5 , Ta 2 O 5 and V 2 O 5 improve the insulation resistance and dielectric breakdown strength, but the total content of Nb 2 O 5 , Ta 2 O 5 and V 2 O 5 is 10
If the amount is less than 0.001 mol part, the dielectric breakdown strength is not so large, the capacitance and the goodness Q are low, and the variation in the capacitance and the goodness Q is large, so that it is excluded from the scope of the present invention. . On the other hand, if the total content of Nb 2 O 5 , Ta 2 O 5 , and V 2 O 5 exceeds 0.010 mol parts with respect to the main component, the degree of goodness Q, insulation resistance is reduced, and the temperature coefficient of capacitance is negative. And become impractical. Further, Nb 2 O 5, Ta 2 O 5, Nb by containing two or more selected from V 2 O 5 2 O 5, Ta 2 O 5, V 2 O 5
The dielectric constant, the insulation resistance, and the dielectric breakdown voltage are higher than those containing one selected from the group consisting of:

なお、実施例における誘電体磁器及び積層セラミック
コンデンサの作製方法では、BaCO3,TiO2,La2O3,Pr6O11,
Nb2O3,Sm2O3,Nb2O5,Ta2O5およびV2O5を使用したが、こ
の方法に限定されるものではなく、所望の組成比になる
ようにBaTiO3などの化合物、あるいは炭酸塩、水酸化物
など空気中での加熱により、BaO,TiO2,La2O3,Pr6O11,Nb
2O3,Sm2O3,Nb2O5,Ta2O5およびV2O5となる化合物を使用
しても実施例と同程度の特性を得ることができる。
Incidentally, in the method of manufacturing dielectric ceramics and multilayer ceramic capacitors in the examples, BaCO 3 , TiO 2 , La 2 O 3 , Pr 6 O 11 ,
Nb 2 O 3 , Sm 2 O 3 , Nb 2 O 5 , Ta 2 O 5 and V 2 O 5 were used, but it is not limited to this method, such as BaTiO 3 so as to have a desired composition ratio BaO, TiO 2 , La 2 O 3 , Pr 6 O 11 , Nb
Even when a compound that becomes 2 O 3 , Sm 2 O 3 , Nb 2 O 5 , Ta 2 O 5 and V 2 O 5 is used, the same characteristics as those of the example can be obtained.

また、主成分をあらかじめ仮焼し、副成分を添加して
も実施例と同程度の特性を得ることができる。
Further, even if the main component is calcined in advance and the subcomponent is added, the same characteristics as those of the embodiment can be obtained.

さらに上述の主成分と副成分のほかに、SiO2,MnO2,Fe
2O3,ZnOなど、一般にフラックスと考えられている塩
類、酸化物などを特性を損なわない範囲で加えることも
できる。
Furthermore, in addition to the above-mentioned main components and sub-components, SiO 2 , MnO 2 , Fe
Salts, oxides, and the like, which are generally considered to be fluxes, such as 2 O 3 and ZnO, can also be added as long as the properties are not impaired.

発明の効果 以上本発明によると、誘電体層中の4価のTiの一部を
5価のNb,Ta,Vの内から選ばれる二種類以上で置換する
ことにより生じた陽イオン空孔で、焼成時の酸素欠陥に
よるe-を補償し、TiO2が還元されるのを抑制するため、
TiとPbとの化合物の生成を防止できる。その結果、誘電
体層と内部電極の界面の密着性が向上するため、静電容
量とQ値が大きく、そのバラツキが小さい積層セラミッ
クコンデンサを得ることができる。
Effects of the Invention According to the present invention, cation vacancies generated by replacing a part of tetravalent Ti in a dielectric layer with two or more kinds selected from pentavalent Nb, Ta, and V are described above. , due to oxygen defect during firing e - order to compensate for and suppress the TiO 2 is reduced,
Generation of a compound of Ti and Pb can be prevented. As a result, the adhesion at the interface between the dielectric layer and the internal electrode is improved, so that a multilayer ceramic capacitor having a large capacitance and a large Q value and a small variation can be obtained.

また従来の誘電体層は焼成時に還元されたTiO2が冷却
過程である程度再酸化されるが、誘電体層の内部、及び
各結晶粒子の内側は再酸化されにくく酸素欠乏状態のま
ま残る。この酸素欠乏が電気伝導に寄与し、誘電体層の
絶縁抵抗、絶縁破壊強度を劣化させる。本発明の誘電体
層は、4価のTiの一部を5価のNb,Ta,Vから選ばれる二
種類以上で置換することにより生じた陽イオン空孔で、
焼成時の酸素欠陥によるe-を補償する。従って絶縁抵
抗、絶縁破壊強度が従来よりも向上した積層セラミック
コンデンサを得ることができる。
Further, in the conventional dielectric layer, TiO 2 reduced during firing is reoxidized to some extent during the cooling process, but the inside of the dielectric layer and the inside of each crystal particle are hardly reoxidized and remain in an oxygen-deficient state. This oxygen deficiency contributes to electric conduction and degrades the insulation resistance and dielectric breakdown strength of the dielectric layer. The dielectric layer of the present invention is a cation vacancy generated by replacing a part of tetravalent Ti with two or more types selected from pentavalent Nb, Ta, V,
Due to oxygen defect during firing e - to compensate for. Therefore, it is possible to obtain a multilayer ceramic capacitor having improved insulation resistance and dielectric breakdown strength as compared with the prior art.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明にかかる誘電体層の主成分の組成物の組
成範囲を説明する三元図、第2図は本発明に係る誘電体
層の主成分0.11BaO−0.63TiO2−0.21Nd2O3に対する副成
分(Nb2O50.4(Ta2O50.3(V2O50.3の含有効果
を、誘電体厚み:12μm、内部電極重なり寸法:1.2mm×
0.7mm、誘電体層数:19の積層構造をもつ積層セラミック
コンデンサの電気特性で示すグラフである。
FIG. 1 is a ternary diagram illustrating the composition range of the composition of the main component of the dielectric layer according to the present invention, and FIG. 2 is the ternary diagram of the main component of the dielectric layer according to the present invention, 0.11BaO-0.63TiO 2 -0.21Nd. The effect of sub-component (Nb 2 O 5 ) 0.4 (Ta 2 O 5 ) 0.3 (V 2 O 5 ) 0.3 with respect to 2 O 3 was obtained by measuring the dielectric thickness: 12 μm and the internal electrode overlap dimension: 1.2 mm ×
6 is a graph showing electrical characteristics of a multilayer ceramic capacitor having a multilayer structure of 0.7 mm and the number of dielectric layers: 19;

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−56361(JP,A) 特開 昭62−83364(JP,A) 特開 昭62−17069(JP,A) 特開 昭57−90808(JP,A) 特開 昭59−154703(JP,A) 特開 昭63−246810(JP,A) 特開 昭63−298910(JP,A) 特開 昭63−292509(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-56361 (JP, A) JP-A-62-83364 (JP, A) JP-A-62-17069 (JP, A) JP-A 57-56 90808 (JP, A) JP-A-59-154703 (JP, A) JP-A-63-246810 (JP, A) JP-A-63-298910 (JP, A) JP-A-63-292509 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】誘電体層と内部電極とを交互に積層した積
層体と、この積層体の前記内部電極の露出した端面に設
けた外部電極とを備え、前記誘電体層は、一般式xBaO−
yTiO2−zRe2O3(ただし、x+y+z=1.00,Re2O3は、L
a2O3,Pr2O11/3,Nd2O3,Sm2O3から選ばれる少なくとも一
種以上の希土類元素の酸化物。)と表した時、x,y,zが
以下の表に示す各点a,b,c,d,e,fで囲まれるモル比の範
囲からなる主成分100重量部に対し、副成分としてNb
2O5、Ta2O5、V2O5から選ばれる二種類以上を合計で0.00
1〜0.010モル部含有したものであり、前記内部電極はパ
ラジウムを含有することを特徴とする積層セラミックコ
ンデンサ。
1. A laminate comprising alternately laminated dielectric layers and internal electrodes, and an external electrode provided on an exposed end face of the internal electrode of the laminate, wherein the dielectric layer has a general formula xBaO −
yTiO 2 -zRe 2 O 3 (where x + y + z = 1.00, Re 2 O 3 is L
a 2 O 3, Pr 2 O 11/3, Nd 2 O 3, Sm oxide of at least one or more rare earth elements selected from 2 O 3. ), X, y, z are the sub-components for 100 parts by weight of the main component consisting of the molar ratio range surrounded by the points a, b, c, d, e, f shown in the table below. Nb
Two or more selected from 2 O 5 , Ta 2 O 5 , V 2 O 5 are 0.00 in total
A multilayer ceramic capacitor containing 1 to 0.010 mol part, wherein the internal electrode contains palladium.
JP1062411A 1989-03-15 1989-03-15 Multilayer ceramic capacitors Expired - Fee Related JP2907437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1062411A JP2907437B2 (en) 1989-03-15 1989-03-15 Multilayer ceramic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1062411A JP2907437B2 (en) 1989-03-15 1989-03-15 Multilayer ceramic capacitors

Publications (2)

Publication Number Publication Date
JPH02242518A JPH02242518A (en) 1990-09-26
JP2907437B2 true JP2907437B2 (en) 1999-06-21

Family

ID=13199380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1062411A Expired - Fee Related JP2907437B2 (en) 1989-03-15 1989-03-15 Multilayer ceramic capacitors

Country Status (1)

Country Link
JP (1) JP2907437B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790808A (en) * 1980-11-28 1982-06-05 Fujitsu Ltd Porcelain composition having high permittivity
JPS6217069A (en) * 1985-07-15 1987-01-26 三菱電機株式会社 Dielectric ceramic material
JPS6256361A (en) * 1985-09-05 1987-03-12 富士チタン工業株式会社 Dielectric ceramic composition
JPH0712971B2 (en) * 1985-10-08 1995-02-15 宇部興産株式会社 Dielectric porcelain composition

Also Published As

Publication number Publication date
JPH02242518A (en) 1990-09-26

Similar Documents

Publication Publication Date Title
KR101836194B1 (en) Laminated ceramic capacitor and method for manufacturing same
JP3568030B2 (en) Method for producing dielectric ceramic composition and method for producing electronic component containing dielectric layer
KR100414331B1 (en) Nonreducing dielectric ceramic and monolithic ceramic capacitor using the same
JP2002080275A (en) Dielectric ceramic and electronic component
JP4428187B2 (en) Dielectric ceramic composition and electronic component
JP2007258661A (en) Laminated ceramic capacitor and its manufacturing method
JP2003040671A (en) Dielectric and laminated electronic parts and manufacturing method of laminated electronic parts
JP4729847B2 (en) Non-reducing dielectric ceramic and multilayer ceramic capacitors
JP2938468B2 (en) Multilayer ceramic capacitors
JP2899303B2 (en) Multilayer ceramic capacitors
JP2899302B2 (en) Multilayer ceramic capacitors
JP2907437B2 (en) Multilayer ceramic capacitors
JP2917505B2 (en) Multilayer ceramic capacitors
JP2022122145A (en) Dielectric composition, electronic part, and multilayer electronic part
JP2933634B2 (en) Multilayer ceramic capacitors
JP2933635B2 (en) Multilayer ceramic capacitors
JP2847767B2 (en) Multilayer ceramic capacitors
JP2928258B2 (en) Multilayer ceramic capacitors
JP2928259B2 (en) Multilayer ceramic capacitors
JP4771817B2 (en) Multilayer ceramic capacitor
JP2003192433A (en) Dielectric ceramic composition and electronic parts
JP2684754B2 (en) Dielectric porcelain composition
JP2928260B2 (en) Multilayer ceramic capacitors
JP2000169226A (en) Dielectric ceramic composition and laminated ceramic capacitor using the same and its production
JP2847766B2 (en) Multilayer ceramic capacitors

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees