JPH02242522A - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH02242522A
JPH02242522A JP1062415A JP6241589A JPH02242522A JP H02242522 A JPH02242522 A JP H02242522A JP 1062415 A JP1062415 A JP 1062415A JP 6241589 A JP6241589 A JP 6241589A JP H02242522 A JPH02242522 A JP H02242522A
Authority
JP
Japan
Prior art keywords
dielectric
composition
weight
parts
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1062415A
Other languages
Japanese (ja)
Other versions
JP2938468B2 (en
Inventor
Hidenori Kuramitsu
秀紀 倉光
Osamu Yamashita
修 山下
Satoshi Endo
遠藤 悟司
Takeshi Kimura
猛 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1062415A priority Critical patent/JP2938468B2/en
Publication of JPH02242522A publication Critical patent/JPH02242522A/en
Application granted granted Critical
Publication of JP2938468B2 publication Critical patent/JP2938468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain a dielectric porcelain composition of high dielectric constant, high insulation resistance and high insulation breakdown voltage, being excellent in quality Q, and of small temperature coefficient of electrostatic capacity by making the composition contain a specific amount of vanadium oxide as auxiliary component against main components that the composition contains in such a manner that when an expression is given as xBaO-y[(TiO2)(1-m)(ZrO2)m]- zRe2O3, (x), (y) and (z) are in a specific mol ratio range. CONSTITUTION:The dielectric porcelain composition is made to contain vanadium oxide as auxiliary component by 0.005 to 1.00 parts by weight in V2O5 against 100 parts by weight of main components that the composition contains in such a manner that when an expression is given as xBaO-y[(TiO2)(1-m)(ZrO2)m]- zRe2O3 (x+y+z=1.00; 0.001<=m<=0.200; Re2O3 is at least one kind of rare earth element selected among La2O3, Pr2O11/3, Nd2O3, and Sm2O3), (x), (y) and (z) are in a mole ratio range surrounded by points (a) to (f) in the figure. The composition thereby has its dielectric constant, insulation resistance, insulation breakdown voltage enhanced, its quality Q made excellent, and its temperature coefficient of electrostatic capacity reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は誘電率、絶縁抵抗、絶縁破壊電圧が高く、良好
度Qにすぐれ、静電容量温度係数が小さく、かつ積層セ
ラミックコンデンサへの利用においては、内部電極の厚
みを薄くしたときの静電容量と良好度Qの低下を防ぎ、
静電容量と良好度Qのバラツキを小さくできる誘電体磁
器組成物に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention has high dielectric constant, insulation resistance, and dielectric breakdown voltage, excellent quality Q, and small capacitance temperature coefficient, and is suitable for use in multilayer ceramic capacitors. , prevents a decrease in capacitance and quality Q when the thickness of the internal electrode is reduced,
The present invention relates to a dielectric ceramic composition that can reduce variations in capacitance and quality Q.

従来の技術 従来から誘電率、絶縁抵抗が高く、良好度Qにすぐれ、
静電容量温度係数が小さい誘電体磁器組成物として、下
記のような系が知られている。
Conventional technology Conventionally, the dielectric constant and insulation resistance are high, and the quality Q is excellent.
The following systems are known as dielectric ceramic compositions with a small capacitance temperature coefficient.

−Bad−TiO2−Nd2O3系 −Ba0−TiO2−Sm2O3系 発明が解決しようとする課題 しかし、これらの組成は、例えば0.11BaO−o、
6 s TiO□−0,21Nd2O3の組成比からな
る誘電体材料を使用し、パラジウムの内部電極厚み4μ
m、誘電体厚み12μm、内部電極の重なり寸法1.2
・慴×0.7請、誘電体層数19の積層構造をもつ積層
セラミックコンデンサを作製すると、静電容量の平均値
ニア42pF、良好度Qの平均値:8700、静電容量
温度係数の平均値:N 35 p p m / ”C1
絶縁抵抗の平均[直:6.0X1012Ω、絶縁破壊強
度の平均値:117kv/mπであり、絶縁抵抗と絶縁
破壊強度において満足のできる値ではない。まだ、結晶
粒径が1〜5μmと大きいため、素体中の気孔率が大き
くなるとともに結晶粒子1個当たりにかかる電界強度が
犬きくなり、絶縁破壊強度も満足のできる直ではない。
-Bad-TiO2-Nd2O3 system -Ba0-TiO2-Sm2O3 system Problems to be solved by the invention However, these compositions, for example, 0.11BaO-o,
A dielectric material consisting of a composition ratio of 6s TiO□-0,21Nd2O3 was used, and the internal electrode thickness of palladium was 4μ.
m, dielectric thickness 12 μm, internal electrode overlap dimension 1.2
・When a multilayer ceramic capacitor with a laminated structure of 19 dielectric layers is manufactured, the average value of capacitance is near 42 pF, the average value of quality Q is 8700, and the average temperature coefficient of capacitance is Value: N 35 p p m / ”C1
The average insulation resistance was 6.0×10 12 Ω, and the average dielectric breakdown strength was 117 kv/mπ, which were not satisfactory values for insulation resistance and dielectric breakdown strength. However, since the crystal grain size is as large as 1 to 5 μm, the porosity in the element increases, the electric field strength applied to each crystal grain becomes too strong, and the dielectric breakdown strength is not satisfactory.

さらに、積層セラミックコンデンサのコストダウンを行
うため、および素体内部の構造欠陥であるデラミネーシ
ョンの発生を防ぐため、パラジウムの内部電極厚みを4
μmから2μmに薄くすると、上記の組成比の誘電体材
料を使用し、上記の誘電体厚み、内部電葦重なシ寸法、
誘電体層数の積層構造をもつ積層セラミックコンデンサ
の静電容量の平均値が610 pFと小さくなるととも
に静電容量のバラツキが266〜了13 pF ト大き
くなる。さらに、良好度Qの平均直も4000と低くな
るとともに良好+tQのバラツキが600〜8800と
大きくなるという課題があった。
Furthermore, in order to reduce the cost of multilayer ceramic capacitors and to prevent the occurrence of delamination, which is a structural defect inside the element body, the thickness of the palladium internal electrode was increased by 4.
When thinning from μm to 2 μm, a dielectric material with the above composition ratio is used, the dielectric thickness is the above, the internal electric reed overlap dimensions,
The average value of capacitance of a multilayer ceramic capacitor having a laminated structure with a number of dielectric layers becomes as small as 610 pF, and the variation in capacitance increases by 266 to 13 pF. Furthermore, there was a problem in that the average straightness of the quality level Q was as low as 4,000, and the variation in quality + tQ was large, ranging from 600 to 8,800.

課題を解決するだめの手段 57、 これらの課題を解決するために本発明は、一般弐XBa
O−7[:’(’rio2)(1−、n)(ZrO2)
、n’:1−zRe206と表した時、 (ただし−X+y+Z=1.OO o、001≦m≦0.200 Re203は、La2oイPr2o、1/3、Nd2o
5、Sm2O3から選ばれる少なくとも一種以上の希土
類元素の酸化物) x、y、zが以下に表す各点a、b、c、d。
Means for Solving the Problems 57 In order to solve these problems, the present invention
O-7[:'('rio2)(1-,n)(ZrO2)
, n': 1-zRe206, (where -X+y+Z=1.OO o, 001≦m≦0.200 Re203 is La2o, Pr2o, 1/3, Nd2o
5. oxide of at least one rare earth element selected from Sm2O3) Points a, b, c, and d, where x, y, and z represent the following.

e、fで囲まれるモル比の範囲からなる主成分100重
量部に対し、副成分としてバナジウム酸化物ヲV、、0
5に換3E Lテo、oo es 〜1.oooN量部
含有したことを特徴とする誘電体磁器組成物を提案する
ものである。
For 100 parts by weight of the main component consisting of the molar ratio range surrounded by e and f, vanadium oxide V, 0 as a subcomponent.
5 to 3E Lteo,oo es ~1. A dielectric ceramic composition characterized by containing an amount of oooN is proposed.

作  用 第1図は本発明にかかる組成物の主成分の組成範囲を示
す三元図であシ、主成分の組成範囲を限定した理由を第
1図を参照しながら説明する。第1図において、A@域
では焼結が著しく困慮である。また、B領域では良好度
Qが低下し実用的でなくなる。さらに、C,D頂戦では
静電容量温度係数がマイナス側に犬きくなりすぎて実用
的でなくなる。そして、E領域では静電容量温度係数が
プラス方向に移行するが誘電率が小さく実用的でなくな
る。また、Re2O3をLa2o5、Pr2o1173
、Nd2O,、Sm2O3から選ぶことによfi、La
2o5、Pr20.、.5、Nd2o5、Sm203(
7)順で誘電率を大きく下げることなく、静電容量温度
係数をプラス方向に移行することが可能であり、La2
o5、Pr2011/3.Nd2o3,5m2o5の1
種あるいは組合せにより静電容量温度係数の調節が可能
である。
Operation FIG. 1 is a ternary diagram showing the composition range of the main components of the composition according to the present invention.The reason for limiting the composition range of the main components will be explained with reference to FIG. In FIG. 1, sintering is extremely difficult in the A@ region. Furthermore, in region B, the quality Q decreases, making it impractical. Furthermore, in the case of C and D peaks, the capacitance temperature coefficient becomes too steep on the negative side, making it impractical. In region E, the temperature coefficient of capacitance shifts to a positive direction, but the dielectric constant is too small to be practical. Also, Re2O3 is La2o5, Pr2o1173
, Nd2O, , Sm2O3, fi, La
2o5, Pr20. ,.. 5, Nd2o5, Sm203 (
7) It is possible to shift the capacitance temperature coefficient in the positive direction without significantly lowering the dielectric constant, and La2
o5, Pr2011/3. Nd2o3, 1 of 5m2o5
The capacitance temperature coefficient can be adjusted depending on the species or combination.

また、TiO2をZr 02で置換することにょ)。Also, TiO2 is replaced with Zr02).

誘電率、良好度Q、静電容量温度係数、絶縁抵抗の値を
大きく変えることなく、結晶粒径を小さく7 、、 し、絶縁破壊強度を大きくする効果を有し、その置換率
mが0.001未満では置換効果はなく、方、o200
を纏えると誘電率、良好度Q、絶縁抵抗が低下する。
It has the effect of reducing the crystal grain size and increasing the dielectric breakdown strength without significantly changing the values of the dielectric constant, goodness Q, capacitance temperature coefficient, and insulation resistance, and the substitution rate m is 0. If it is less than .001, there is no substitution effect;
When these factors are combined, the dielectric constant, quality Q, and insulation resistance decrease.

第2図は本発明にかかる組成物○主成分に対し、副成分
v205の含有効果を積層セラミックコンデンザの・特
性で示すグラフであシ、v205の含有範囲を限定した
理由をグラフを参照しながら説明する。第2図に示すよ
うにv2o!iを含有することにより、絶縁抵抗、絶縁
破壊強度が向、ヒし、また静電容量と良好度Qを高め、
静電容量と良好度Qのバラツキを小さくする効果を有す
る。そして、v205の含有により、絶縁抵抗、他線破
壊強度は向上するが、v205の含有液が主成分100
重量部に対し−0,005重叶部未満壮#遊容量と良好
度Qが低く、まだ静電容量と良好度Qのバラツキが大き
いため、この発明の範囲から除外した。
Figure 2 is a graph showing the effect of containing the subcomponent v205 on the characteristics of a multilayer ceramic capacitor with respect to the main component of the composition according to the present invention.The reason for limiting the content range of v205 can be explained by referring to the graph. I will explain. As shown in Figure 2, v2o! By containing i, the insulation resistance and dielectric breakdown strength are improved, the capacitance and the quality Q are increased,
This has the effect of reducing variations in capacitance and quality Q. Insulation resistance and other-line breakdown strength are improved by containing v205, but the liquid containing v205 has a main component of 100%
Since the free capacity and quality Q of less than -0,005 parts by weight were low, and the variation in capacitance and quality Q was still large, it was excluded from the scope of this invention.

方、v205の含有縫が主成分に対し、1. OO0重
量部を戦えると良好度Q、絶縁抵抗が低下し、静電容量
温度係数がマイナス側に大きくなり、実用的でなくなる
On the other hand, the content of v205 is 1. If OO0 parts by weight can be achieved, the quality Q and insulation resistance will decrease, and the temperature coefficient of capacitance will become large on the negative side, making it impractical.

本発明′dさらに、上記祖戎物に、マンガン、亜鉛、鉄
およびケイ素の駿化物から選ばれる少なくとも一種以上
を、そ凡ぞれMn02=  ZnOFe2O3およびS
iO□に換算して主・成分と副成分を合わせた100重
量部に対し、0.06〜1.00重量部添加せしめた構
1戎とすることができる。これらの添加物は磁器の暁@
畦を向上させる効果を有し、その添加量が0.05重量
部未満では添加効果はなく。
The present invention'd further includes adding at least one kind selected from manganese, zinc, iron, and silicon fluoride to the above-mentioned base material to form Mn02=ZnOFe2O3 and S, respectively.
It can be added in an amount of 0.06 to 1.00 parts by weight per 100 parts by weight of the main component and subcomponent in terms of iO□. These additives are the dawn of porcelain @
It has the effect of improving the ridges, but if the amount added is less than 0.05 parts by weight, there is no effect.

一方、1.00重量部を吠えると誘電率が低下し実用的
でなくなる。
On the other hand, if the amount is 1.00 parts by weight, the dielectric constant decreases, making it impractical.

実施例 以下に、本発明を具体的実施例により説明する。Example The present invention will be explained below using specific examples.

(実施例1) 出発原料には化学的に高純度のBaCO3,’rio2
、ZrOLaOPro  、Nd2O3、Sm2032
−    23−     6  Nおよびv205扮
末乞下記の第1表に示す組成比になるように装置し、め
Dうボールを備えたゴム内張りのボールミルに純水とと
もに入れ、湿式混合後、脱水乾燥した。この乾茅粉末を
高アルミナ質9 ぺ−1 のルツボに入れ、空気中で11oo”cにて2時間仮焼
した。この仮焼粉末を、めのうボールを備えたゴム内張
りのボールミルに純火とともに入れ、湿式粉砕後、脱水
乾燥した。この粉砕粉末に、有機バインダーを加え、均
質とした寓、32メソシユのふるいを通して整粒し、金
型と油圧プレスを用いて成形圧力1tOn/CrIで直
径15φπ、厚み0.4顧に成形した。次いで、成形円
板をジルコニア粉末を“放いたアルミナ質のサヤに入れ
、空気中にて下記の第1表に示す組成比の誘電体磁器を
得た。
(Example 1) Chemically high-purity BaCO3,'rio2 was used as the starting material.
, ZrOLaOPro, Nd2O3, Sm2032
-23-6 N and v205 were prepared so that the composition ratio was as shown in Table 1 below, and they were put into a rubber-lined ball mill equipped with a hollow ball with pure water, and after wet mixing, they were dehydrated and dried. . This dry grass powder was placed in a high alumina 9 p-1 crucible and calcined in air at 11 oo"c for 2 hours. This calcined powder was placed in a rubber-lined ball mill equipped with agate balls with pure fire. The pulverized powder was wet-pulverized and then dehydrated and dried. An organic binder was added to the pulverized powder to make it homogeneous. The pulverized powder was sized through a 32-mesh sieve, and then molded using a mold and a hydraulic press at a molding pressure of 1 tOn/CrI to a diameter of 15φπ. The molded disk was then molded to a thickness of 0.4 mm.The molded disk was then placed in an alumina pod containing zirconia powder, and dielectric porcelain having the composition ratio shown in Table 1 below was obtained in air.

このようにして得られた誘電体磁器円板は、厚みと直径
を測定し、誘電率、良好IQ、静覗容量温度係数測定用
試料は、誘電体磁器円板の両面全体に銀電極を焼き付け
、絶縁抵抗、杷縁破壊強度測定用試料は、誘電体磁器円
板の外周より内側に1魔の唱で銀電極の無い部分を設け
、銀電極を焼き付けた。そして誘電率、良好度Q、静五
容量温度係数は、YHP社製デジタルLCRメータのモ
デル4275Aを使用し、測定温度20゛C1測定10
、、−7 電圧1.OVrms 、測定周波数IMl−1zでの測
定より求めた。なお、静電容量温度係数、げ、20’C
185゛Cの静電容量を測定し1次式により求めた。
The thickness and diameter of the dielectric porcelain disk obtained in this way were measured, and the samples for measuring the dielectric constant, good IQ, and static capacitance temperature coefficient were prepared by baking silver electrodes on both sides of the dielectric porcelain disk. For the samples for measuring insulation resistance and edge breaking strength, a part without a silver electrode was provided inside the outer periphery of a dielectric ceramic disk, and a silver electrode was baked onto it. The dielectric constant, goodness Q, and static capacitance temperature coefficient were measured using a YHP digital LCR meter model 4275A at a measurement temperature of 20° C1 measurement 10
,,-7 Voltage 1. OVrms was determined by measurement at the measurement frequency IMl-1z. In addition, capacitance temperature coefficient, 20'C
The capacitance at 185°C was measured and calculated using a linear equation.

TG=(C−Go )/Co X 1/65X106T
C:静電容量温度係数(ppm/℃)Go:20”Cで
の静電容−1廿(pF)G:BE5’Qでの静電容量C
pF )まだ、誘電率は次式より求めた。
TG=(C-Go)/CoX 1/65X106T
C: Temperature coefficient of capacitance (ppm/℃) Go: Capacitance at 20"C -1 廿 (pF) G: Capacitance C at BE5'Q
pF) The dielectric constant was calculated from the following formula.

K  −143,8X Co X t/D2K :誘電
率 CO:20’Cでの静電容量(pF) D :誘電体磁器の直径(πm) t :誘電体磁器の厚み(yym ) さらに、絶縁抵抗は、YHP社製HRメータのモデ#4
329Aを使用し、測定電圧5 Q V、D、C。
K -143,8X Co This is YHP HR meter model #4.
329A is used, and the measurement voltage is 5 Q V, D, C.

測定時間1分間による測定より求めた。It was determined by measurement with a measurement time of 1 minute.

そして、絶縁破壊強度は、菊水電子工業:掬製高電圧電
源Pf(535に一3形を使用し、試料をシリコンオイ
ル中に入れ、昇圧速変50V/secにより求めた絶禄
彼壊電圧を誘電体厚みで除算し、11 /、−7 1廖当シの絶縁破壊強度とした。また、結晶粒径は1倍
率400での光学顕微鏡観察より求めた。
The dielectric breakdown strength was determined by using a high-voltage power supply Pf manufactured by Kikusui Electronics Co., Ltd. (Type 13 in 535), placing the sample in silicone oil, and calculating the breakdown voltage by changing the voltage at a step-up rate of 50 V/sec. The dielectric breakdown strength was calculated by dividing the dielectric thickness by the dielectric thickness, and the dielectric breakdown strength was determined as 11/, -7 1 kg.The crystal grain size was determined by optical microscopic observation at a magnification of 1:400.

試験条件を第1表に併せて示し、試験結果を下記の第2
表に示す。
The test conditions are also shown in Table 1, and the test results are shown in Table 2 below.
Shown in the table.

(以下余 白) 13へ 14、−ノ (実施例2) 出発原料には化学的に高純度のBaCO3,TiO2、
zrO2、L?L203.  Pr60.、−  Nd
2O3,Sm2O3゜v2051Mno2、ZnO、F
e2O,、および$102粉末を下記の第3表に示す組
成比になるように秤量し、それ以後は、実施例1の場合
と同様に処理して第3表に示す組成比の透電体磁器を得
た。
(Left below) 13 to 14, - (Example 2) Starting materials include chemically highly purified BaCO3, TiO2,
zrO2,L? L203. Pr60. , -Nd
2O3, Sm2O3゜v2051Mno2, ZnO, F
e2O, and $102 powder were weighed to have the composition ratios shown in Table 3 below, and then treated in the same manner as in Example 1 to produce a conductive material with the composition ratios shown in Table 3. Got porcelain.

これらの試料の試験方法は、実施例1と同様であり、試
験条件を第3表に併せて示し、試験結果を下記の第4表
に示す。
The testing methods for these samples were the same as in Example 1, the test conditions are also shown in Table 3, and the test results are shown in Table 4 below.

(以 下 余 白) 17 ヘー/ (実施例3) 呂発原料には化学的に高純度のBaCO3,TiO2゜
ZrOLa OPr ONd O、Sm2032 智 
    25 −    611−     25およ
びv205粉末を使用し、主成分0.11 BaO−0
−68((T iOz ) o、 9 (Zr O2)
 ol)  O−21Nd 205に対シ、v205を
OO,001,0,0050,010,0,10o、 
1.000.2.000 wtH含有した坂焼扮砕粉を
実施例1と同様の方法で作製する。ただし、v205 
 含有量0,0.0012、○0OWt(Xは、この発
明の範囲外であり、0.005.0.010.0.10
0,1.000 wt%は、この発明の範囲内である。
(Left below) 17 H/ (Example 3) Chemically high-purity BaCO3, TiO2゜ZrOLa OPr ONd O, Sm2032 Toshiba were used as raw materials.
Using 25-611-25 and v205 powder, main component 0.11 BaO-0
-68((T iOz ) o, 9 (ZrO2)
ol) against O-21Nd 205, v205 as OO,001,0,0050,010,0,10o,
A crushed Sakayaki powder containing 1.000.2.000 wtH is prepared in the same manner as in Example 1. However, v205
Content 0, 0.0012, 0OWt (X is outside the scope of this invention, 0.005.0.010.0.10
0.1.000 wt% is within the scope of this invention.

この仮焼粉砕粉末に、有機バインダー、可塑剤、分散剤
、有機溶剤を加え、アルミナボールを備えたポリエチレ
ン製ポットで混合し、スラリーを作製した。混合後、3
00メソシユのナイロン布を使用し、ろ過した。ろ過後
のスラリーは、ドクターブレードにより、焼結後の誘電
体厚みが12μmとなるように、離型処理をしたポリエ
ステルフィルム上にシートを成形した。
An organic binder, a plasticizer, a dispersant, and an organic solvent were added to this calcined and pulverized powder and mixed in a polyethylene pot equipped with alumina balls to prepare a slurry. After mixing, 3
It was filtered using a nylon cloth of 0.00 mS. The slurry after filtration was formed into a sheet using a doctor blade on a polyester film that had been subjected to mold release treatment so that the dielectric thickness after sintering was 12 μm.

8A−2 次に、ポリエステルフィルムから剥したシー1〜10枚
を支持台の上に、積層した。この上に、昭栄化学・、掬
裏向部電極パラジウムベース)ML3724を焼結後の
内部電極厚みが2μmとなるようにスクリーン印刷し、
乾燥した。この上にポリエステルフィルムから剥したシ
ート1枚を積層した。この上に、焼結後の内部電極重な
り寸法が1.2717ffX0.7fffflとなるよ
うに印刷位置をずらして内部電盃パラジウムペーストを
印刷し、乾燥後、ポリエステルフィルムから剥したシー
ト1枚を積層した。これらの操作を、誘電体層数が19
となるまで操り返しだ。この上に、ポリエステルフィル
ムから剥したシート10攻を積層した。この積層体を焼
結後、内部電極重なシ寸法が1.2 ffff XO,
7777711、誘電体厚みが12μm、誘電体層数が
19の積層構造をもつ積層セラミックコンデンサとなる
ように切断した。この切断した試料は、ジルコニア粉末
を放いたアルミナ質のザヤに入れ、空気中にて室温から
360′Cまでを5℃/ h rで昇温し、350゛C
より1oo’c/hrf昇温し。
8A-2 Next, 1 to 10 sheets peeled from the polyester film were laminated on a support stand. On top of this, ML3724 (Palladium base for the back facing electrode) of Shoei Kagaku was screen printed so that the internal electrode thickness after sintering was 2 μm.
Dry. A sheet peeled from a polyester film was laminated on top of this. On top of this, internal cup palladium paste was printed by shifting the printing position so that the internal electrode overlap dimensions after sintering were 1.2717ffx0.7ffffl, and after drying, one sheet peeled from the polyester film was laminated. . These operations are performed when the number of dielectric layers is 19.
Repeat the manipulation until it becomes . On top of this, 10 sheets peeled from a polyester film were laminated. After sintering this laminate, the internal electrode overlap dimension is 1.2 ffff XO,
No. 7777711 was cut into a multilayer ceramic capacitor having a multilayer structure with a dielectric thickness of 12 μm and 19 dielectric layers. The cut sample was placed in an alumina sheath containing zirconia powder, heated in air from room temperature to 360'C at a rate of 5°C/hr, and heated to 350°C.
Increase the temperature by 1oo'c/hrf.

19、、。19.

1270℃で2時間焼成後、1oo”C/hrで室温ま
で降温した。次いで、焼成後の試料゛は、耐水サンドペ
ーパーを内側に貼ったポリエチレンボットに純水ととも
に入れ、ポリエチレンボットを回転させ焼成後の試料面
を研磨し、外部電極と接合する内部型、原部分を充分露
出させた。この試料はポリエチレンポットより取り出し
乾燥後、内部電極露出部分に銀の外部電極を焼き付け、
内部電極と導通させ、積層セラミックコンデンサを作製
した。
After firing at 1270°C for 2 hours, the temperature was lowered to room temperature at 1oo"C/hr. Next, the fired sample was placed in a polyethylene bottle with water-resistant sandpaper on the inside, along with pure water, and the polyethylene bottle was rotated for firing. The rear surface of the sample was polished to fully expose the internal mold and original part that would be connected to the external electrode.The sample was removed from the polyethylene pot and after drying, a silver external electrode was baked on the exposed part of the internal electrode.
A multilayer ceramic capacitor was fabricated by connecting it to the internal electrode.

これらの試料の静電容量、良好度Q、静電容耽温度係数
、絶縁抵抗、絶縁破壊強度は、実施例1と同様の条件で
の測定により求めた。まだ、積層構造の確認は、積層セ
ラミックコンデンサの長さ方向および幅方向の約1/2
の研磨断面を、内部電極型なり寸法U倍率100、誘電
体厚みと内部電極厚みは倍率400での光学頑微境観察
より求めた。
The capacitance, quality Q, capacitance temperature coefficient, insulation resistance, and dielectric breakdown strength of these samples were determined by measurements under the same conditions as in Example 1. The confirmation of the laminated structure is still limited to approximately 1/2 of the length and width of the laminated ceramic capacitor.
The polished cross section was determined by optical robustness observation using the internal electrode type dimension U at a magnification of 100, and the dielectric thickness and internal electrode thickness at a magnification of 400.

この測定結果を第2図に示す。The measurement results are shown in FIG.

なお、実施例における誘電体磁器の作製方法では、Ba
GO,、ZrO2,TiO2,La2O3,Pr60.
、、NdOSmOVOMnOZnO Fe2O3および5102  を使用したが、この方法
に限定されるものではなく、所望の組成比になるように
、BaTi05などの化合物、あるいは炭談塩、水酸出
動など空気中での加鴻により、B?LOZrOT10 
    LaO?rONd05m0  、  ’VO−
MnOZn○、Fe2o3  およびSiO□ となる
化合物を防用しても実施例と同程度の特性を得ることが
できる。
In addition, in the method for manufacturing dielectric ceramic in the example, Ba
GO,, ZrO2, TiO2, La2O3, Pr60.
,, NdOSmOVOMnOZnO Fe2O3 and 5102 were used, but the method is not limited to this method. Compounds such as BaTi05, or addition of charcoal salt, hydroxide, etc. in the air are used to obtain the desired composition ratio. By B? LOZrOT10
LaO? rONd05m0, 'VO-
Even if compounds such as MnOZn◯, Fe2o3 and SiO□ are used as protection, properties comparable to those of the examples can be obtained.

まだ、主成分をあらかじめ仮焼し、副成分を添加しても
実施例と同程度の特性を得ることができる。
However, even if the main component is calcined in advance and subcomponents are added, properties comparable to those of the examples can be obtained.

発明の効果 以とのように本発明によれば、誘電率、絶縁抵抗、絶縁
破壊電圧が高く、良好度Qにすぐれ、静電容量温度係数
が小さく、かつ積層セラミックコンデンサへの利用にお
いては、内部電極の厚みを薄くシフこときの静電容量と
良好度Qの低下を防ぎ。
Effects of the Invention According to the present invention, the dielectric constant, insulation resistance, and dielectric breakdown voltage are high, the quality Q is excellent, the capacitance temperature coefficient is small, and when used in a multilayer ceramic capacitor, The thickness of the internal electrode is reduced to prevent a drop in capacitance and quality Q.

静屯容計と良好度Qのバラツキを小さくてきるた21 
/、 め、内部電極の厚みを薄くして、積層セラミノクコンデ
ンザのコストダウンが行えるとともに内部構造欠陥であ
るデラミネーションの発生を防ぐことができる。また、
絶縁破壊電圧が高いため、誘電体層の厚みを薄くシ、素
体の小型化、大容量化が可能である。
Reduce the variation in static volume meter and quality Q21
/Meanwhile, by reducing the thickness of the internal electrodes, it is possible to reduce the cost of the laminated ceramic capacitor and to prevent the occurrence of delamination, which is an internal structural defect. Also,
Since the dielectric breakdown voltage is high, it is possible to reduce the thickness of the dielectric layer, thereby making the element smaller and increasing the capacity.

さらに、マンガン、亜鉛、鉄およびケイ素の酸化物の添
加により、焼成温度を低下させることができる。
Furthermore, the addition of manganese, zinc, iron and silicon oxides allows the firing temperature to be lowered.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、け本発明にかかる組成物の主成分の組成範囲を
説明する三元図、第2図は本発明にかかる主成分0.1
1BaO−0,68((TiO2)、、(ZrO2)o
、+ )−0,21Nd206に対する副成分v205
ノ含有効果を、誘電体厚み:12μm、内部電極重なり
寸法:1.2朋X0.7ffiπ、誘電体層数=19の
積層構造をもつ積層セラミックコンデンサの電気特性で
示すグラフである。
FIG. 1 is a ternary diagram explaining the composition range of the main components of the composition according to the present invention, and FIG. 2 is a ternary diagram illustrating the composition range of the main components according to the present invention.
1BaO-0,68((TiO2),,(ZrO2)o
, + ) -0,21 subcomponent v205 for Nd206
2 is a graph illustrating the effect of the inclusion of 12 μm on the electrical characteristics of a multilayer ceramic capacitor having a laminated structure with a dielectric thickness of 12 μm, an internal electrode overlap dimension: 1.2×0.7ffiπ, and a number of dielectric layers=19.

Claims (2)

【特許請求の範囲】[Claims] (1)一般式 xBaO−y〔(TiO_2)_(_1_−_m_)(
ZrO_2)_m〕−zRe_2O_3と表した時、 (ただし、x+y+z=1.00 0.001≦m≦0.200 Re_2O_3は、La_2O_3、Pr_2O_1_
1_/_3、Nd_2O_3、Sm_2O_3から選ば
れる少なくとも一種以上の希土類元素の酸化物) x,y,zが以下に表す各点a,b,c,d,e,fで
囲まれるモル比の範囲からなる主成分100重量部に対
し、副成分としてバナジウム酸化物をV_2O_5に換
算して0.005〜1.000重量部含有したことを特
徴とする誘電体磁器組成物。 ▲数式、化学式、表等があります▼
(1) General formula xBaO-y [(TiO_2)_(_1_-_m_)(
When expressed as ZrO_2)_m]-zRe_2O_3, (where x+y+z=1.00 0.001≦m≦0.200 Re_2O_3 is La_2O_3, Pr_2O_1_
1_/_3, Nd_2O_3, Sm_2O_3) x, y, z are from the molar ratio range surrounded by each point a, b, c, d, e, f expressed below. A dielectric ceramic composition containing 0.005 to 1.000 parts by weight of vanadium oxide as a subcomponent in terms of V_2O_5 based on 100 parts by weight of the main component. ▲Contains mathematical formulas, chemical formulas, tables, etc.▼
(2)主成分と副成分を合わせた100重量部に対して
、マンガン、亜鉛、鉄およびケイ素の酸化物から選ばれ
る少なくとも一種以上を、それぞれMnO_2、ZnO
、Fe_2O_3およびSiO_2に換算して0.05
〜1.00重量部添加したことを特徴とする特許の請求
範囲第1項記載の誘電体磁器組成物。
(2) For 100 parts by weight of the main component and subcomponents combined, at least one selected from manganese, zinc, iron, and silicon oxides is added to MnO_2 and ZnO, respectively.
, 0.05 in terms of Fe_2O_3 and SiO_2
1. The dielectric ceramic composition according to claim 1, wherein 1.00 parts by weight is added.
JP1062415A 1989-03-15 1989-03-15 Multilayer ceramic capacitors Expired - Fee Related JP2938468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1062415A JP2938468B2 (en) 1989-03-15 1989-03-15 Multilayer ceramic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1062415A JP2938468B2 (en) 1989-03-15 1989-03-15 Multilayer ceramic capacitors

Publications (2)

Publication Number Publication Date
JPH02242522A true JPH02242522A (en) 1990-09-26
JP2938468B2 JP2938468B2 (en) 1999-08-23

Family

ID=13199497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1062415A Expired - Fee Related JP2938468B2 (en) 1989-03-15 1989-03-15 Multilayer ceramic capacitors

Country Status (1)

Country Link
JP (1) JP2938468B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0986076A2 (en) * 1998-09-11 2000-03-15 Murata Manufacturing Co., Ltd. Dielectric ceramic composition and laminated ceramic parts
CN109180184A (en) * 2018-07-19 2019-01-11 西安交通大学 A method of inhibit the leakage of barium zirconium phthalate ceramics to lead

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959299A (en) * 1972-10-12 1974-06-08
JPS6283364A (en) * 1985-10-08 1987-04-16 宇部興産株式会社 Dielectric ceramic composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959299A (en) * 1972-10-12 1974-06-08
JPS6283364A (en) * 1985-10-08 1987-04-16 宇部興産株式会社 Dielectric ceramic composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0986076A2 (en) * 1998-09-11 2000-03-15 Murata Manufacturing Co., Ltd. Dielectric ceramic composition and laminated ceramic parts
EP0986076A3 (en) * 1998-09-11 2006-05-10 Murata Manufacturing Co., Ltd. Dielectric ceramic composition and laminated ceramic parts
CN109180184A (en) * 2018-07-19 2019-01-11 西安交通大学 A method of inhibit the leakage of barium zirconium phthalate ceramics to lead

Also Published As

Publication number Publication date
JP2938468B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
JPH0355002B2 (en)
KR890004114B1 (en) Dielectric ceramic composition
JPH0518201B2 (en)
JP3634930B2 (en) Dielectric porcelain composition
JPH02242522A (en) Dielectric porcelain composition
KR900002518B1 (en) Low temperature sintered ceramic capacitor with a temperature compensating capability
JP2684754B2 (en) Dielectric porcelain composition
JPH02242517A (en) Dielectric porcelain composition
JPH0323261A (en) Dielectric porcelain composition
JPH02242516A (en) Dielectric porcelain composition
JPH0518202B2 (en)
JPS6386319A (en) Dielectric ceramic composition
JP2508373B2 (en) Dielectric ceramic composition and method for producing dielectric ceramic
JPH02267166A (en) Dielectric porcelain composition
JP2928258B2 (en) Multilayer ceramic capacitors
JP2933634B2 (en) Multilayer ceramic capacitors
JP2907437B2 (en) Multilayer ceramic capacitors
JP2568565B2 (en) Dielectric porcelain composition
JP2928259B2 (en) Multilayer ceramic capacitors
JPH05334915A (en) Dielectric porcelain composition
JPH0323259A (en) Dielectric porcelain composition
JP2933635B2 (en) Multilayer ceramic capacitors
JPH08171814A (en) Dielectric ceramic composition and laminated ceramic capacitor using thereof
JPH0323260A (en) Dielectric porcelain composition
JPH0554717A (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees