JPH08171814A - Dielectric ceramic composition and laminated ceramic capacitor using thereof - Google Patents

Dielectric ceramic composition and laminated ceramic capacitor using thereof

Info

Publication number
JPH08171814A
JPH08171814A JP6314897A JP31489794A JPH08171814A JP H08171814 A JPH08171814 A JP H08171814A JP 6314897 A JP6314897 A JP 6314897A JP 31489794 A JP31489794 A JP 31489794A JP H08171814 A JPH08171814 A JP H08171814A
Authority
JP
Japan
Prior art keywords
oxide
mol
dielectric
dielectric ceramic
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6314897A
Other languages
Japanese (ja)
Inventor
Tsugunobu Mizuno
嗣伸 水埜
Harunobu Sano
晴信 佐野
Yukio Hamachi
幸生 浜地
Shigenori Nishiyama
茂紀 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP6314897A priority Critical patent/JPH08171814A/en
Priority to TW084113384A priority patent/TW332302B/en
Priority to KR1019950051895A priority patent/KR0170577B1/en
Publication of JPH08171814A publication Critical patent/JPH08171814A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PURPOSE: To provide a dielectric ceramic composition with high dielectric constant in spite of small grain size, small temperature and voltage dependence of the dielectric constant, and high dielectric breakdown voltage and a laminated ceramic capacitor using the ceramic composition. CONSTITUTION: A dielectric ceramic composition contains 83.3-96.7 mole % of BaTiO3 in which the content of alkali metal oxide impurity is not more than 0.03wt.%, 1.4-5.0 mole % (in conversion into LaO3/2 , CeO2 , PrO11/6 , NdO3/2 , SmO3/2 ) of at least one oxide selected from lanthanum oxide, cerium oxide, praseodymium oxide, and samarium oxide, 0.5-6.7 mole % of CaZrO3 , and 1.4-5.0 mole % of TiO2 . A laminated ceramic capacitor is composed by using the dielectric ceramic composition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は誘電体磁器組成物と、そ
れを用いた積層セラミックコンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition and a laminated ceramic capacitor using the same.

【0002】[0002]

【従来の技術】従来より、セラミックコンデンサに用い
られる誘電体磁器組成物として、BaTiO3 を主体と
するものが数多く知られている。BaTiO3 は120
℃付近にキュリー点を持ち、その温度近傍で10000
近い高誘電率を示すが、常温では誘電率が低下する。そ
こで、シフター材と呼ばれるものを加え、キュリー点を
常温に移動させて常温で高誘電率が得られるようにして
いる。このシフター材としてはSn酸化物、Zr酸化
物、希土類酸化物等が知られている。
2. Description of the Related Art Heretofore, many dielectric ceramic compositions mainly composed of BaTiO 3 have been known for use in ceramic capacitors. BaTiO 3 is 120
It has a Curie point near ℃ and 10,000 near that temperature.
Although it has a high dielectric constant, it is low at room temperature. Therefore, a material called a shifter material is added to move the Curie point to room temperature so that a high dielectric constant can be obtained at room temperature. As the shifter material, Sn oxide, Zr oxide, rare earth oxide, etc. are known.

【0003】このようなシフター材を利用したBaTi
3 を主体とするセラミックコンデンサとしては、単板
型リード線付タイプのものが製造されてきた。ところ
が、近年積層化技術が進歩し、30〜80μm程度の誘
電体グリーンシートが容易に得られるようになった。そ
して、内部電極で誘電体薄膜を挟持する形で複数層積層
したいわゆる積層セラミックコンデンサがエレクトロニ
クス業界に進出し、従来の誘電体磁器組成物もこのよう
な積層セラミックコンデンサの材料として利用されるよ
うになった。
BaTi using such a shifter material
As a ceramic capacitor mainly composed of O 3 , a single plate type with lead wire has been manufactured. However, in recent years, the lamination technology has advanced, and it has become possible to easily obtain a dielectric green sheet having a thickness of about 30 to 80 μm. Then, so-called multilayer ceramic capacitors in which a plurality of layers are laminated by sandwiching a dielectric thin film between internal electrodes have entered the electronics industry, and conventional dielectric ceramic compositions are also used as materials for such multilayer ceramic capacitors. became.

【0004】一方、最近のセラミックコンデンサは小型
化の傾向があり、特に積層セラミックコンデンサにおい
ては磁器誘電体層の厚みが6〜10μmというように薄
層化する傾向にある。この場合、100〜10000μ
mの厚みを持つ単板型コンデンサに比べて、10倍以上
の電界強度を受ける。このため、単板型コンデンサに比
べて電圧依存性の小さい組成物が要求されている。
On the other hand, recent ceramic capacitors tend to be miniaturized, and particularly in laminated ceramic capacitors, the thickness of the porcelain dielectric layer tends to be as thin as 6 to 10 μm. In this case, 100-10,000μ
Compared to a single-plate type capacitor having a thickness of m, it receives electric field strength ten times or more. Therefore, there is a demand for a composition having a smaller voltage dependency than a single plate capacitor.

【0005】また、誘電体層が薄くなるに従って、セラ
ミックの構造的な欠陥により特性が影響を受けやすくな
るので、結晶粒子の大きさ(グレインサイズ)が均一で
かつ微細であることと、空孔が少なくかつ小さいことが
望まれている。
Further, as the thickness of the dielectric layer becomes thinner, the characteristics are more likely to be affected by structural defects in the ceramic, so that the crystal grain size (grain size) is uniform and fine, and the pores are Is desired to be small and small.

【0006】このBaTiO3 を主体としたグレインサ
イズの小さい誘電体磁器組成物としては、例えば、特願
昭56−18059号,特願昭57−16809号,特
願昭57−105919号,特願昭57−196469
号公報等に開示されている。これらは、BaTiO3
CeO2 、またはCeO2 とBaZrO3 、またはNd
2 5 を加えることによって、BaTiO3 のグレイン
サイズを小さくしたものである。
Examples of the dielectric ceramic composition mainly composed of BaTiO 3 and having a small grain size include, for example, Japanese Patent Application Nos. 56-18059, 57-16809, 57-105919, and 57-105919. 57-196469
It is disclosed in Japanese Patent Publication No. These are BaTiO 3 with CeO 2 , or CeO 2 and BaZrO 3 , or Nd.
The grain size of BaTiO 3 is reduced by adding 2 O 5 .

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
グレインサイズが小さい誘電体磁器では、誘電率が常温
で最大10000前後であり、グレインサイズの大きい
ものに比べると誘電率が低く、積層コンデンサを小型に
した場合、大きな静電容量を得ることが困難であった。
However, in the conventional dielectric ceramics having a small grain size, the dielectric constant is about 10,000 at maximum at room temperature, and the dielectric constant is lower than that of a large grain size, and the multilayer capacitor is small. However, it was difficult to obtain a large capacitance.

【0008】また、誘電率の温度変化が急峻であり、こ
れを改善するために添加剤を加えると、誘電率が常温で
7000前後まで低下するという問題を有していた。
Further, there is a problem that the change in the dielectric constant with temperature is sharp, and if an additive is added to improve the change, the dielectric constant is lowered to around 7,000 at room temperature.

【0009】したがって、本発明の目的は、グレインサ
イズが小さいにもかかわらず高い誘電率を有し、誘電率
の温度及び電圧依存性が小さく、かつ、絶縁破壊電圧の
高い誘電体磁器組成物、及びそれを用いた積層セラミッ
クコンデンサを提供することにある。
Therefore, an object of the present invention is to provide a dielectric ceramic composition which has a high dielectric constant even though the grain size is small, has a small temperature and voltage dependency of the dielectric constant, and has a high dielectric breakdown voltage. And to provide a laminated ceramic capacitor using the same.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明の誘電体磁器組成物は、請求項1において、
不純物としてのアルカリ金属酸化物の含有量が0.03
重量%以下のBaTiO3 を83.3〜96.7モル%
に対して、酸化ランタン、酸化セリウム、酸化プラセオ
ジウム、酸化ネオジウム及び酸化サマリウムの中から選
ばれる少なくとも1種類を、それぞれLaO3/2 、Ce
2 、PrO11/6、、NdO3/2 及びSmO3/2 に換算
して1.4〜5.0モル%、CaZrO3 を0.5〜
6.7モル%、及びTiO2 を1.4〜5.0モル%含
有することを特徴とするものである。
In order to achieve the above object, the dielectric ceramic composition of the present invention comprises:
Content of alkali metal oxides as impurities is 0.03
83.3-96.7 mol% of BaTiO 3 in an amount of not more than wt%
On the other hand, at least one selected from lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, and samarium oxide is replaced with LaO 3/2 and Ce, respectively.
O 2, PrO 11/6 ,, NdO 1.4~5.0 mol% in terms of 3/2 and SmO 3/2, 0.5 to the CaZrO 3
It is characterized by containing 6.7 mol% and 1.4 to 5.0 mol% of TiO 2 .

【0011】また、請求項2において、不純物としての
アルカリ金属酸化物の含有量が0.03重量%以下のB
aTiO3 を83.3〜96.7モル%に対して、酸化
ランタン、酸化セリウム、酸化プラセオジウム、酸化ネ
オジウム及び酸化サマリウムの中から選ばれる少なくと
も1種類を、それぞれLaO3/2 、CeO2 、PrO
11/6、NdO3/2 及びSmO3/2 に換算して1.4〜
5.0モル%、CaZrO3 を0.5〜6.7モル%、
及びTiO2 を1.4〜5.0モル%含有する主成分が
100重量部と、BaO−SrO−CaO−Li2 O−
SiO2 を主成分とするガラスからなる副成分が0.3
〜2.5重量部とからなることを特徴とするものであ
る。
In the second aspect, the content of the alkali metal oxide as an impurity is 0.03% by weight or less.
With respect to 83.3 to 96.7 mol% of aTiO 3 , at least one selected from lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide and samarium oxide is added to LaO 3/2 , CeO 2 , PrO, respectively.
Converted to 11/6 , NdO 3/2 and SmO 3/2 , 1.4-
5.0 mol%, CaZrO 3 0.5 to 6.7 mol%,
And 100 parts by weight of the main component containing 1.4 to 5.0 mol% of TiO 2 , and BaO-SrO-CaO-Li 2 O-
The glass containing SiO 2 as a main component has a subcomponent of 0.3.
.About.2.5 parts by weight.

【0012】また、本発明の積層セラミックコンデンサ
は、請求項3において、複数の誘電体セラミック層と、
前記誘電体セラミック層を介して配置された複数の内部
電極と、前記内部電極に接続された外部電極とからなる
積層セラミックコンデンサにおいて、前記誘電体セラミ
ック層が、不純物としてのアルカリ金属酸化物の含有量
が0.03重量%以下のBaTiO3 を83.3〜9
6.7モル%に対して、酸化ランタン、酸化セリウム、
酸化プラセオジウム、酸化ネオジウム及び酸化サマリウ
ムの中から選ばれる少なくとも1種類を、それぞれLa
3/2 、CeO2、PrO11/6、NdO3/2 及びSmO
3/2 に換算して1.4〜5.0モル%、CaZrO3
0.5〜6.7モル%、及びTiO2 を1.4〜5.0
モル%含有する誘電体材料によって構成され、前記内部
電極は、パラジウムを主成分として構成されていること
を特徴とするものである。
The laminated ceramic capacitor of the present invention is the same as that of claim 3 in which a plurality of dielectric ceramic layers are provided.
In a monolithic ceramic capacitor comprising a plurality of internal electrodes arranged via the dielectric ceramic layer and external electrodes connected to the internal electrode, the dielectric ceramic layer contains an alkali metal oxide as an impurity. BaTiO 3 in an amount of 0.03% by weight or less is 83.3 to 9
With respect to 6.7 mol%, lanthanum oxide, cerium oxide,
At least one selected from praseodymium oxide, neodymium oxide, and samarium oxide is La, respectively.
O 3/2 , CeO 2 , PrO 11/6 , NdO 3/2 and SmO
Converted to 3/2 , 1.4 to 5.0 mol%, CaZrO 3 0.5 to 6.7 mol%, and TiO 2 1.4 to 5.0.
It is characterized in that it is composed of a dielectric material containing mol%, and that the internal electrodes are composed mainly of palladium.

【0013】また、請求項4において、複数の誘電体セ
ラミック層と、前記誘電体セラミック層を介して配置さ
れた複数の内部電極と、前記内部電極に接続された外部
電極とからなる積層セラミックコンデンサにおいて、前
記誘電体セラミック層が、不純物としてのアルカリ金属
酸化物の含有量が0.03重量%以下のBaTiO3
83.3〜96.7モル%に対して、酸化ランタン、酸
化セリウム、酸化プラセオジウム、酸化ネオジウム及び
酸化サマリウムの中から選ばれる少なくとも1種類を、
それぞれLaO3/2 、CeO2 、PrO11/6、NdO
3/2 及びSmO3/2 に換算して1.4〜5.0モル%、
CaZrO3 を0.5〜6.7モル%、及びTiO2
1.4〜5.0モル%含有する主成分が100重量部
と、BaO−SrO−CaO−Li2 O−SiO2 を主
成分とするガラスからなる副成分が0.3〜2.5重量
部とからなる誘電体材料によって構成され、前記内部電
極は、パラジウムを主成分として構成されていることを
特徴とするものである。
The multilayer ceramic capacitor according to claim 4, comprising a plurality of dielectric ceramic layers, a plurality of internal electrodes arranged via the dielectric ceramic layers, and external electrodes connected to the internal electrodes. In the dielectric ceramic layer, the content of the alkali metal oxide as an impurity is 0.03% by weight or less with respect to BaTiO 3 of 83.3 to 96.7 mol% with respect to lanthanum oxide, cerium oxide, and oxidation. At least one selected from praseodymium, neodymium oxide and samarium oxide,
LaO 3/2 , CeO 2 , PrO 11/6 , NdO respectively
1.4 to 5.0 mol% in terms of 3/2 and SmO 3/2 ,
The main component containing 0.5 to 6.7 mol% of CaZrO 3 and 1.4 to 5.0 mol% of TiO 2 and 100 parts by weight of BaO—SrO—CaO—Li 2 O—SiO 2 are mainly used. It is characterized in that it is composed of a dielectric material composed of 0.3 to 2.5 parts by weight of a sub-component composed of glass as a component, and the internal electrode is composed mainly of palladium. .

【0014】[0014]

【実施例】次に本発明を実施例に基づき説明する。な
お、掲げる表中で*印を付した試料番号のものは本発明
の範囲外のものを示す。
EXAMPLES The present invention will now be described based on examples. In the table below, sample numbers marked with * indicate those outside the scope of the present invention.

【0015】(実施例1)まず、BaTiO3 原料粉末
を準備した。即ち、種々の純度のBaCO3 とTiO2
とを用いて、これらをBaCO3 とTiO2 とのモル比
が1.000となるように秤量し、ジルコニア玉石を用
いたボールミルによって16時間湿式混合した後、蒸発
乾燥して混合粉末を得た。得られた混合粉末を自然雰囲
気中において、1150℃で2時間仮焼した後、再びボ
ールミルで平均粒径が2μm以下になるまで粉砕した。
このようにして、表1のA、B、C及びDに示す純度の
異なる4種類のBaTiO3 を得た。
Example 1 First, a BaTiO 3 raw material powder was prepared. That is, BaCO 3 and TiO 2 of various purities
Were weighed so that the molar ratio of BaCO 3 and TiO 2 was 1.000, wet-mixed for 16 hours by a ball mill using zirconia boulders, and then evaporated to dryness to obtain a mixed powder. . The obtained mixed powder was calcined in a natural atmosphere at 1150 ° C. for 2 hours, and then ground again with a ball mill until the average particle size became 2 μm or less.
Thus, four kinds of BaTiO 3 shown in A, B, C and D of Table 1 having different purities were obtained.

【0016】次に、このBaTiO3 を83.3〜9
6.7モル%に対して、表2に示す組成比となるよう
に、La2 3 、CeO2 、Pr6 11、Nd2 3
Sm2 3 、CaZrO3 及びTiO2 を秤量し、酢酸
ビニル樹脂バインダを加えて16時間湿式混合して混合
物を得た。その後、この混合物を乾燥して造粒後、20
00kg/cm2 の圧力で直径10mm、厚み0.6m
mの円板に成形した。そして、この円板を表3に示す温
度で2時間焼成して円板状の磁器を得た。
Next, this BaTiO 3 is added to 83.3-9.
Against 6.7 mol%, such that the composition ratio shown in Table 2, La 2 O 3, CeO 2, Pr 6 O 11, Nd 2 O 3,
Sm 2 O 3 , CaZrO 3 and TiO 2 were weighed, a vinyl acetate resin binder was added, and wet mixing was performed for 16 hours to obtain a mixture. Then, this mixture is dried and granulated, and then 20
10 mm diameter and 0.6 m thickness at a pressure of 00 kg / cm 2.
It was molded into a disk of m. Then, the disc was fired at the temperature shown in Table 3 for 2 hours to obtain a disc-shaped porcelain.

【0017】その後、この磁器表面を電子顕微鏡を用い
て2000倍で観察し、グレインサイズを測定した。
Thereafter, the surface of this porcelain was observed at 2000 times with an electron microscope to measure the grain size.

【0018】次に、得られた磁器の両面に銀電極を焼き
付けて測定試料(コンデンサ)とした。そして、誘電率
(ε)、誘電損失(tanδ)、静電容量の温度変化
率、交流電圧印加時の誘電損失(tanδ)、比抵抗及
び絶縁破壊電圧を求めた。
Next, silver electrodes were baked on both sides of the obtained porcelain to obtain a measurement sample (capacitor). Then, the dielectric constant (ε), the dielectric loss (tan δ), the temperature change rate of the electrostatic capacitance, the dielectric loss (tan δ) when an AC voltage was applied, the specific resistance and the dielectric breakdown voltage were obtained.

【0019】この場合、誘電率および誘電損失は温度2
5℃、1kHz、1Vrmsの条件下で測定した。ま
た、静電容量の温度変化率は、20℃での静電容量を基
準とした−25℃及び85℃での静電容量の変化率(Δ
C/C20)を求めた。さらに、交流電圧印加時の誘電損
失は、温度25℃において、100V/mm、1kHz
の交流電圧を印加して誘電損失を測定した。また、比抵
抗は、25℃及び125℃において、100Vの直流電
圧を2分間印加して絶縁抵抗を測定して求めた。そし
て、絶縁破壊電圧は、昇圧速度100V/秒でAC電圧
及びDC電圧をそれぞれ別に印加し、それぞれAC電圧
及びDC電圧での破壊電圧を測定した。これらの測定結
果を表3に示す。
In this case, the dielectric constant and the dielectric loss are 2
The measurement was performed under the conditions of 5 ° C., 1 kHz, and 1 Vrms. The rate of change in capacitance with temperature is the rate of change in capacitance at −25 ° C. and 85 ° C. (Δ) with reference to the capacitance at 20 ° C.
C / C 20 ) was determined. Furthermore, the dielectric loss when applying an AC voltage is 100 V / mm, 1 kHz at a temperature of 25 ° C.
The AC voltage was applied to measure the dielectric loss. The specific resistance was determined by applying a DC voltage of 100 V for 2 minutes at 25 ° C. and 125 ° C. and measuring the insulation resistance. Then, as the dielectric breakdown voltage, an AC voltage and a DC voltage were separately applied at a boosting rate of 100 V / sec, and the breakdown voltages at the AC voltage and the DC voltage were measured. The results of these measurements are shown in Table 3.

【0020】(実施例2)まず、実施例1と同様にし
て、表1のA、B、C及びDに示す純度の異なる4種類
のBaTiO3 を準備した。
Example 2 First, in the same manner as in Example 1, four kinds of BaTiO 3 having different purities shown in A, B, C and D of Table 1 were prepared.

【0021】次に、低温焼結剤として、組成が8BaO
−6SrO−6CaO−30Li2O−50SiO
2 (モル%)で表される酸化物ガラスを準備した。すな
わち、出発原料として工業用原料であるBaCO3 、S
rCO3 、CaCO3 、Li2 O及びSiO2 を用意し
た。次に、これらの出発原料を上記酸化物ガラスの組成
となるように秤量し、ボールミルで16時間湿式混合粉
砕した後、蒸発乾燥して混合粉末を得た。その後、得ら
れた混合粉末をアルミナの坩堝に入れて1300℃の温
度で1時間放置し、その後急冷してガラス化した。そし
て、このガラスを200メッシュの篩を通過するように
粉砕してガラス粉末を得た。
Next, as a low temperature sintering agent, the composition is 8BaO.
-6SrO-6CaO-30Li 2 O- 50SiO
An oxide glass represented by 2 (mol%) was prepared. That is, as a starting material, industrial raw materials such as BaCO 3 and S
rCO 3 , CaCO 3 , Li 2 O and SiO 2 were prepared. Next, these starting materials were weighed so as to have the composition of the above oxide glass, wet mixed and pulverized by a ball mill for 16 hours, and then evaporated and dried to obtain a mixed powder. Then, the obtained mixed powder was put in an alumina crucible and left at a temperature of 1300 ° C. for 1 hour, and then rapidly cooled to vitrify. Then, this glass was crushed so as to pass through a 200-mesh sieve to obtain glass powder.

【0022】次に、先に準備したBaTiO3 を83.
3〜96.7モル%に対して、表4に示す組成比となる
ように、La2 3 、CeO2 、Pr6 11、Nd2
3 、Sm2 3 、CaZrO3 、及びTiO2 をそれぞ
れ秤量して主成分とし、さらにこの主成分に、同じく先
に準備したガラスを表4に示す組成となるように秤量添
加した。その後、実施例1と同様にして成形体を得た
後、表5に示す温度で焼成して円板状の磁器を得た。
Next, the previously prepared BaTiO 3 was added to 83.
Against 3 to 96.7 mol%, such that the composition ratio shown in Table 4, La 2 O 3, CeO 2, Pr 6 O 11, Nd 2 O
3 , Sm 2 O 3 , CaZrO 3 , and TiO 2 were weighed as main components, and the previously prepared glass was also weighed and added to the main components so that the composition shown in Table 4 was obtained. After that, a molded body was obtained in the same manner as in Example 1 and fired at the temperature shown in Table 5 to obtain a disk-shaped porcelain.

【0023】その後、この磁器表面を電子顕微鏡を用い
て2000倍で観察し、グレインサイズを測定した。
Then, the surface of this porcelain was observed at 2000 times with an electron microscope to measure the grain size.

【0024】次に、得られた磁器の両面に銀電極を焼き
付けて測定試料(コンデンサ)とした。そして、実施例
1と同様に、誘電率(ε)、誘電損失(tanδ)、静
電容量の温度変化率、交流電圧印加時の誘電損失(ta
nδ)、比抵抗及び絶縁破壊電圧を求めた。これらの測
定結果を表5に示す。
Next, silver electrodes were baked on both sides of the obtained porcelain to obtain a measurement sample (capacitor). Then, as in Example 1, the dielectric constant (ε), the dielectric loss (tan δ), the temperature change rate of the capacitance, and the dielectric loss (ta) when an AC voltage is applied.
nδ), specific resistance and dielectric breakdown voltage were determined. The results of these measurements are shown in Table 5.

【0025】次に、上記実施例1及び実施例2の結果に
基づいて、本発明の誘電体磁器組成物の組成範囲を限定
した理由について説明する。
Next, the reason why the composition range of the dielectric porcelain composition of the present invention is limited will be described based on the results of Examples 1 and 2 described above.

【0026】試料番号1−1、1−2、2−1及び2−
2に示すように、酸化ランタン、酸化セリウム、酸化プ
ラセオジウム、酸化ネオジウム及び酸化サマリウムの含
有量が、それぞれLaO3/2 、CeO2 、PrO11/6
NdO3/2 及びSmO3/2 に換算して1.4モル%未満
の場合、誘電率が低くなり、グレインサイズが4μm以
上となって好ましくない。一方、試料番号1−12、1
−13、2−17及び2−18に示すように、これらの
含有量が5.0モル%を超える場合、やはり誘電率が低
くなり、焼結温度が高くなって好ましくない。
Sample Nos. 1-1, 1-2, 2-1 and 2-
As shown in FIG. 2, the contents of lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide and samarium oxide are LaO 3/2 , CeO 2 , PrO 11/6 ,
If it is less than 1.4 mol% in terms of NdO 3/2 and SmO 3/2 , the dielectric constant becomes low and the grain size becomes 4 μm or more, which is not preferable. On the other hand, sample numbers 1-12, 1
As shown in -13, 2-17, and 2-18, when the content of these exceeds 5.0 mol%, the dielectric constant is also low and the sintering temperature is high, which is not preferable.

【0027】試料番号1−14及び2−19に示すよう
に、CaZrO3 の含有量が0.5モル%未満の場合、
静電容量の変化率が−55%を超えるため好ましくな
い。一方、試料番号1−15及び2−20に示すよう
に、CaZrO3 の含有量が6.7モル%を超える場
合、誘電率が大幅に低くなり好ましくない。
As shown in sample numbers 1-14 and 2-19, when the content of CaZrO 3 is less than 0.5 mol%,
The rate of change in capacitance exceeds -55%, which is not preferable. On the other hand, as shown in Sample Nos. 1-15 and 2-20, when the content of CaZrO 3 exceeds 6.7 mol%, the dielectric constant is significantly lowered, which is not preferable.

【0028】試料番号1−16、1−17、2−21及
び2−22に示すように、アルカリ金属酸化物の含有量
が多いBaTiO3 原料CまたはDを用いた場合、誘電
率が大幅に低くなり好ましくない。
As shown in Sample Nos. 1-16, 1-17, 2-21 and 2-22, when BaTiO 3 raw material C or D containing a large amount of alkali metal oxide was used, the dielectric constant was significantly increased. It becomes low, which is not preferable.

【0029】試料番号1−18及び2−23に示すよう
に、TiO2 の含有量が1.4モル%未満の場合、焼結
温度が高くなり好ましくない。一方、試料番号1−19
及び2−24に示すように、TiO2 の含有量が5.0
モル%を超える場合、25℃及び125℃での比抵抗、
すなわち絶縁抵抗が小さくなり好ましくない。
As shown in Sample Nos. 1-18 and 2-23, when the content of TiO 2 is less than 1.4 mol%, the sintering temperature becomes high, which is not preferable. On the other hand, sample number 1-19
And 2-24, the content of TiO 2 is 5.0.
If it exceeds mol%, the specific resistance at 25 ° C. and 125 ° C.,
That is, the insulation resistance becomes small, which is not preferable.

【0030】また、試料番号2−15に示すように、ガ
ラスの含有量が0.3重量部未満の場合、焼結温度が1
300℃を超えて、焼結温度を下げる効果がほとんど得
られない。一方、試料番号2−16に示すように、ガラ
スの含有量が2.5重量部を超える場合は、誘電率が低
下し好ましくない。
When the glass content is less than 0.3 parts by weight, the sintering temperature is 1 as shown in sample No. 2-15.
When it exceeds 300 ° C, the effect of lowering the sintering temperature is hardly obtained. On the other hand, as shown in Sample No. 2-16, when the glass content exceeds 2.5 parts by weight, the dielectric constant is lowered, which is not preferable.

【0031】これに対して、本発明の範囲内の誘電体磁
器組成物を用いた試料(試料番号1−3〜1−11、試
料番号2−3〜2−14)においては、いずれも、焼結
体のグレインサイズが1.0〜3.0μmと小さい。ま
た、20℃を基準にした−25℃および85℃での静電
容量の変化率が−55%以内であり、JIS規格のE特
性を満足する。
On the other hand, in the samples (Sample Nos. 1-3 to 1-11 and Sample Nos. 2-3 to 2-14) using the dielectric ceramic composition within the scope of the present invention, The grain size of the sintered body is as small as 1.0 to 3.0 μm. Further, the rate of change in capacitance at −25 ° C. and 85 ° C. based on 20 ° C. is within −55%, which satisfies the E characteristics of JIS standard.

【0032】また、低温焼結剤としてのガラスを添加し
ない組成の場合、誘電率が9300以上と高く、ガラス
成分を添加した組成の場合でも、誘電率は8900以上
と高い値を示す。そして、いずれも、100V/mmの
交流電圧を印加した時の誘電損失が3.0%以内と小さ
い。また、25℃での比抵抗が1013Ω・cm以上、1
25℃での比抵抗が1010Ω・cm以上と大きい。さら
に、絶縁破壊電圧がAC電圧で12〜13kV/mm、
DC電圧で14〜15kV/mmと大きい値を示す。
Further, in the case of the composition in which glass as the low temperature sintering agent is not added, the dielectric constant is as high as 9300 or more, and even in the case of the composition in which the glass component is added, the dielectric constant is as high as 8900 or more. And in each case, the dielectric loss when an AC voltage of 100 V / mm is applied is as small as 3.0% or less. Further, the specific resistance at 25 ° C. is 10 13 Ω · cm or more, 1
The specific resistance at 25 ° C. is as large as 10 10 Ω · cm or more. Furthermore, the dielectric breakdown voltage is 12 to 13 kV / mm in AC voltage,
The DC voltage shows a large value of 14 to 15 kV / mm.

【0033】(実施例3)本発明の誘電体磁器組成物を
用いた積層セラミックコンデンサを作製した。まず、試
料番号1−11の組成となるように秤量した原料に、ポ
リビニルブチラール系のバインダおよびトルエン、エチ
ルアルコール等の有機溶剤を加えて、ボールミルで16
時間混合してスラリーとし、ドクターブレード法によっ
て22μmのセラミックグリーンシートを作成した。こ
のセラミックグリーンシート上にスクリーン印刷法によ
って内部電極用のパラジウムペーストを印刷した。その
後、印刷したパラジウムペーストが互いに対向するよう
に、複数のセラミックグリーンシートを積層し、熱圧着
して積層体を得た。
Example 3 A multilayer ceramic capacitor using the dielectric ceramic composition of the present invention was produced. First, a polyvinyl butyral binder and an organic solvent such as toluene or ethyl alcohol were added to the raw materials weighed so as to have the composition of Sample No. 1-11, and the mixture was mixed with a ball mill to obtain 16
The mixture was mixed for a time to form a slurry, and a 22 μm ceramic green sheet was prepared by the doctor blade method. A palladium paste for internal electrodes was printed on this ceramic green sheet by a screen printing method. Then, a plurality of ceramic green sheets were laminated so that the printed palladium pastes face each other, and thermocompression bonded to obtain a laminated body.

【0034】次に、積層体を温度1300℃で2時間焼
成して焼結体を得た。そして、焼結体の両端面に銀ペー
ストを塗布し、空気中において800℃で焼付けて内部
電極と電気的に接続された外部電極を形成した。このよ
うにして、表6の試料番号3−1に示す、外形寸法が幅
1.6mm×長さ3.2mm×厚み1.2mm、内部電
極間の誘電体セラミック層の厚みが13μm、有効誘電
体セラミック層の総数が19、1層当たりの対向電極面
積が2.0mm2 の積層セラミックコンデンサを得た。
Next, the laminate was fired at a temperature of 1300 ° C. for 2 hours to obtain a sintered body. Then, silver paste was applied to both end faces of the sintered body and baked at 800 ° C. in air to form an external electrode electrically connected to the internal electrode. Thus, as shown in sample number 3-1 of Table 6, the outer dimensions are 1.6 mm in width × 3.2 mm in length × 1.2 mm in thickness, the thickness of the dielectric ceramic layer between the internal electrodes is 13 μm, and the effective dielectric A total of 19 body ceramic layers and a counter electrode area per layer of 2.0 mm 2 were obtained as a monolithic ceramic capacitor.

【0035】次に、試料番号2−11の組成となるよう
に秤量した原料を用い、焼成温度1270℃の条件下
で、その他は上記試料番号3−1と同様にして、表6の
試料番号3−2に示す積層セラミックコンデンサを作製
した。
Next, using the raw materials weighed so as to have the composition of Sample No. 2-11, and under the conditions of the firing temperature of 1270 ° C., otherwise in the same manner as in Sample No. 3-1, the sample No. of Table 6 was obtained. A multilayer ceramic capacitor shown in 3-2 was produced.

【0036】その後、以上得られた2種類の積層セラミ
ックコンデンサについて、静電容量、誘電損失(tan
δ)、絶縁抵抗(IR)、静電容量の温度変化率、絶縁
破壊電圧を求めた。
After that, the capacitance and the dielectric loss (tan) of the two types of monolithic ceramic capacitors obtained above are
δ), insulation resistance (IR), rate of change in capacitance with temperature, and breakdown voltage were determined.

【0037】この場合、誘電率及び誘電損失は温度25
℃、1kHz、1Vrmsの条件下で測定した。また、
絶縁抵抗は25℃において、25Vの直流電圧を2分間
印加して測定した。さらに、静電容量の温度変化率は、
20℃での静電容量を基準とした−25℃及び85℃で
の静電容量の変化率(ΔC/C20)を求めた。そして、
絶縁破壊電圧は、昇圧速度100V/秒でAC電圧及び
DC電圧をそれぞれ別に印加し、それぞれAC電圧及び
DC電圧での破壊電圧を測定した。
In this case, the dielectric constant and the dielectric loss are 25
The measurement was performed under the conditions of ° C, 1 kHz, and 1 Vrms. Also,
The insulation resistance was measured at 25 ° C. by applying a DC voltage of 25 V for 2 minutes. Furthermore, the temperature change rate of capacitance is
The rate of change in capacitance (ΔC / C 20 ) at −25 ° C. and 85 ° C. based on the capacitance at 20 ° C. was determined. And
As the dielectric breakdown voltage, an AC voltage and a DC voltage were separately applied at a boosting rate of 100 V / sec, and the breakdown voltages at the AC voltage and the DC voltage were measured.

【0038】なお、比較例としてBaTiO3 を78.
5モル%に対して、BaZrO3 14.5モル%及びC
aZrO3 7.0モル%を添加し、上記と同様の方法に
よって積層セラミックコンデンサを作製した。そして、
この比較例について同様に各特性を測定した。
As a comparative example, BaTiO 3 of 78.
Based on 5 mol%, BaZrO 3 14.5 mol% and C
7.0 mol% of aZrO 3 was added, and a laminated ceramic capacitor was produced by the same method as described above. And
Each characteristic was measured similarly for this comparative example.

【0039】また、それぞれの積層セラミックコンデン
サの表面を電子顕微鏡で2000倍で観察し、グレイン
サイズを測定した。以上の結果を表6に示す。
The surface of each monolithic ceramic capacitor was observed with an electron microscope at a magnification of 2000 to measure the grain size. The above results are shown in Table 6.

【0040】表6に示すように、本発明の磁器組成物で
作製した積層セラミックコンデンサは、比較例に比べて
グレインサイズが小さく誘電損失が小さい。また、本発
明の積層セラミックコンデンサは比較例に比べて1.5
倍程度の高い絶縁破壊電圧を有する。即ち、本発明の磁
器組成物を誘電体セラミック層として用いることによ
り、良好な特性を有する積層セラミックコンデンサが得
られることを示している。
As shown in Table 6, the monolithic ceramic capacitor made of the porcelain composition of the present invention has a smaller grain size and a smaller dielectric loss than the comparative example. Further, the monolithic ceramic capacitor of the present invention has
It has a double breakdown voltage. That is, it is shown that a laminated ceramic capacitor having good characteristics can be obtained by using the porcelain composition of the present invention as a dielectric ceramic layer.

【0041】また、上記実施例においては、低温焼結剤
としてのガラスに、8BaO−6SrO−6CaO−3
0Li2 O−50SiO2 (モル%)で表されるガラス
を用いているが、それ以外の組成比のBaO−SrO−
CaO−Li2 O−SiO2系ガラス、あるいは他のS
iO2 を主成分とするガラス等を用いても、同等の特性
が得られる。
Further, in the above embodiment, 8BaO-6SrO-6CaO-3 was added to the glass as the low temperature sintering agent.
Although glass represented by 0Li 2 O-50SiO 2 (mol%) is used, BaO—SrO— having a composition ratio other than that is used.
CaO-Li 2 O-SiO 2 based glass or other S,
The same characteristics can be obtained by using glass or the like containing iO 2 as a main component.

【0042】なお、上記実施例に示した誘電体磁器組成
物の出発原料に、MnCO3 を還元防止剤として、主成
分100重量部に対し0.48重量部を超えない範囲で
添加しても、得られる誘電体磁器の特性を損なうことは
ない。前記還元防止剤MnCO3 の添加量は、0.48
重量部を超えると比抵抗が小さくなったり、グレインサ
イズが大きくなって好ましくない。また、その他に還元
防止剤として、微量のFe2 3 、Co3 4 、NiO
等を添加しても、MnCO3 と同じく、得られる誘電体
磁器の特性を損なうことはない。
Even if MnCO 3 is added as a reducing agent to the starting material of the dielectric ceramic composition shown in the above-mentioned embodiment in an amount not exceeding 0.48 parts by weight with respect to 100 parts by weight of the main component. , The characteristics of the obtained dielectric ceramic are not impaired. The amount of the reduction inhibitor MnCO 3 added is 0.48.
When it exceeds the weight part, the specific resistance becomes small and the grain size becomes large, which is not preferable. In addition, a small amount of Fe 2 O 3 , Co 3 O 4 , and NiO are used as reducing agents.
Like MnCO 3 , the addition of the above does not impair the characteristics of the obtained dielectric ceramic.

【0043】[0043]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、グレインサイズが小さいにもかかわらず高い誘
電率を有し、誘電率の温度及び電圧依存性が小さく、か
つ、絶縁破壊電圧の高い誘電体磁器組成物を得ることが
できる。
As is apparent from the above description, according to the present invention, the grain size is small, the dielectric constant is high, the temperature and voltage dependence of the dielectric constant is small, and the dielectric breakdown is achieved. It is possible to obtain a dielectric ceramic composition having a high voltage.

【0044】また、上記誘電体組成物にBaO−SrO
−CaO−Li2 O−SiO2 を主成分とするガラスを
添加することにより、焼結温度を下げることができる。
Further, BaO--SrO is added to the above dielectric composition.
The sintering temperature can be lowered by adding glass containing —CaO—Li 2 O—SiO 2 as a main component.

【0045】そして、上記誘電体組成物を誘電体セラミ
ック層として用いることにより、グレインサイズが小さ
いにもかかわらず高い誘電率を有し、誘電率の温度及び
電圧依存性が小さく、かつ、絶縁破壊電圧の高い積層セ
ラミックコンデンサを得ることができる。
By using the above-mentioned dielectric composition as the dielectric ceramic layer, it has a high dielectric constant even though the grain size is small, the temperature and voltage dependence of the dielectric constant is small, and the dielectric breakdown is caused. A monolithic ceramic capacitor having a high voltage can be obtained.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【表4】 [Table 4]

【0050】[0050]

【表5】 [Table 5]

【0051】[0051]

【表6】 [Table 6]

フロントページの続き (72)発明者 西山 茂紀 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内Front page continued (72) Inventor Shigeki Nishiyama 2-10-10 Tenjin, Nagaokakyo-shi, Kyoto Murata Manufacturing Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 不純物としてのアルカリ金属酸化物の含
有量が0.03重量%以下のBaTiO3 を83.3〜
96.7モル%に対して、 酸化ランタン、酸化セリウム、酸化プラセオジウム、酸
化ネオジウム及び酸化サマリウムの中から選ばれる少な
くとも1種類を、それぞれLaO3/2 、CeO2 、Pr
11/6、NdO3/2 及びSmO3/2 に換算して1.4〜
5.0モル%、CaZrO3 を0.5〜6.7モル%、
及びTiO2 を1.4〜5.0モル%含有することを特
徴とする誘電体磁器組成物。
1. BaTiO 3 having an alkali metal oxide content as an impurity of 0.03% by weight or less is 83.3 to.
With respect to 96.7 mol%, at least one selected from lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide and samarium oxide is added to LaO 3/2 , CeO 2 , Pr.
1.4- converted to O 11/6 , NdO 3/2 and SmO 3/2
5.0 mol%, CaZrO 3 0.5 to 6.7 mol%,
And TiO 2 in an amount of 1.4 to 5.0 mol%, a dielectric ceramic composition.
【請求項2】 不純物としてのアルカリ金属酸化物の含
有量が0.03重量%以下のBaTiO3 を83.3〜
96.7モル%に対して、 酸化ランタン、酸化セリウム、酸化プラセオジウム、酸
化ネオジウム及び酸化サマリウムの中から選ばれる少な
くとも1種類を、それぞれLaO3/2 、CeO2 、Pr
11/6、NdO3/2 及びSmO3/2 に換算して1.4〜
5.0モル%、CaZrO3 を0.5〜6.7モル%、
及びTiO2 を1.4〜5.0モル%含有する主成分が
100重量部と、 BaO−SrO−CaO−Li2 O−SiO2 を主成分
とするガラスからなる副成分を0.3〜2.5重量部含
有することを特徴とする誘電体磁器組成物。
2. BaTiO 3 having an alkali metal oxide content as an impurity of 0.03% by weight or less is 83.3 to.
With respect to 96.7 mol%, at least one selected from lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide and samarium oxide is added to LaO 3/2 , CeO 2 , Pr.
1.4- converted to O 11/6 , NdO 3/2 and SmO 3/2
5.0 mol%, CaZrO 3 0.5 to 6.7 mol%,
And 100 parts by weight of the main component containing 1.4 to 5.0 mol% of TiO 2 and 0.3 to 0.3% of a sub-component made of glass containing BaO—SrO—CaO—Li 2 O—SiO 2 as the main component. A dielectric ceramic composition containing 2.5 parts by weight.
【請求項3】 複数の誘電体セラミック層と、前記誘電
体セラミック層を介して配置された複数の内部電極と、
前記内部電極に接続された外部電極とからなる積層セラ
ミックコンデンサにおいて、 前記誘電体セラミック層が、不純物としてのアルカリ金
属酸化物の含有量が0.03重量%以下のBaTiO3
を83.3〜96.7モル%に対して、 酸化ランタン、酸化セリウム、酸化プラセオジウム、酸
化ネオジウム及び酸化サマリウムの中から選ばれる少な
くとも1種類を、それぞれLaO3/2 、CeO2 、Pr
11/6、NdO3/2 及びSmO3/2 に換算して1.4〜
5.0モル%、CaZrO3 を0.5〜6.7モル%、
及びTiO2 を1.4〜5.0モル%含有する誘電体材
料によって構成され、 前記内部電極は、パラジウムを主成分として構成されて
いることを特徴とする積層セラミックコンデンサ。
3. A plurality of dielectric ceramic layers, a plurality of internal electrodes arranged via the dielectric ceramic layers,
A multilayer ceramic capacitor comprising an external electrode connected to the internal electrode, wherein the dielectric ceramic layer has a BaTiO 3 content of 0.03 wt% or less of an alkali metal oxide as an impurity.
To 83.3-96.7 mol%, at least one selected from lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide and samarium oxide is added to LaO 3/2 , CeO 2 , Pr.
1.4- converted to O 11/6 , NdO 3/2 and SmO 3/2
5.0 mol%, CaZrO 3 0.5 to 6.7 mol%,
And a dielectric material containing 1.4 to 5.0 mol% of TiO 2 , and the internal electrodes are composed of palladium as a main component.
【請求項4】 複数の誘電体セラミック層と、前記誘電
体セラミック層を介して配置された複数の内部電極と、
前記内部電極に接続された外部電極とからなる積層セラ
ミックコンデンサにおいて、 前記誘電体セラミック層が、不純物としてのアルカリ金
属酸化物の含有量が0.03重量%以下のBaTiO3
を83.3〜96.7モル%に対して、 酸化ランタン、酸化セリウム、酸化プラセオジウム、酸
化ネオジウム及び酸化サマリウムの中から選ばれる少な
くとも1種類を、それぞれLaO3/2 、CeO2 、Pr
11/6、NdO3/2 及びSmO3/2 に換算して1.4〜
5.0モル%、CaZrO3 を0.5〜6.7モル%、
及びTiO2 を1.4〜5.0モル%含有する主成分が
100重量部と、 BaO−SrO−CaO−Li2 O−SiO2 を主成分
とするガラスからなる副成分が0.3〜2.5重量部と
からなる誘電体材料によって構成され、 前記内部電極は、パラジウムを主成分として構成されて
いることを特徴とする積層セラミックコンデンサ。
4. A plurality of dielectric ceramic layers, a plurality of internal electrodes arranged via the dielectric ceramic layers,
A multilayer ceramic capacitor comprising an external electrode connected to the internal electrode, wherein the dielectric ceramic layer has a BaTiO 3 content of 0.03 wt% or less of an alkali metal oxide as an impurity.
To 83.3-96.7 mol%, at least one selected from lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide and samarium oxide is added to LaO 3/2 , CeO 2 , Pr.
1.4- converted to O 11/6 , NdO 3/2 and SmO 3/2
5.0 mol%, CaZrO 3 0.5 to 6.7 mol%,
And 100 parts by weight of the main component containing 1.4 to 5.0 mol% of TiO 2 and 0.3 to 0.3% of a sub-component made of glass containing BaO—SrO—CaO—Li 2 O—SiO 2 as the main component. A monolithic ceramic capacitor, characterized in that it is made of a dielectric material of 2.5 parts by weight, and the internal electrodes are made of palladium as a main component.
JP6314897A 1994-12-19 1994-12-19 Dielectric ceramic composition and laminated ceramic capacitor using thereof Pending JPH08171814A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6314897A JPH08171814A (en) 1994-12-19 1994-12-19 Dielectric ceramic composition and laminated ceramic capacitor using thereof
TW084113384A TW332302B (en) 1994-12-19 1995-12-15 Composition for ceramic dielectric
KR1019950051895A KR0170577B1 (en) 1994-12-19 1995-12-19 Dielectric porcelain composition and laminated ceramic capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6314897A JPH08171814A (en) 1994-12-19 1994-12-19 Dielectric ceramic composition and laminated ceramic capacitor using thereof

Publications (1)

Publication Number Publication Date
JPH08171814A true JPH08171814A (en) 1996-07-02

Family

ID=18058956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6314897A Pending JPH08171814A (en) 1994-12-19 1994-12-19 Dielectric ceramic composition and laminated ceramic capacitor using thereof

Country Status (2)

Country Link
JP (1) JPH08171814A (en)
TW (1) TW332302B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100489885B1 (en) * 2002-06-22 2005-05-27 주식회사 지믹스 Microwave dielectric ceramic compositions and preperation method therof
KR100489887B1 (en) * 2002-06-22 2005-05-27 주식회사 지믹스 Microwave dielectric ceramic compositions and prepartion method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100489885B1 (en) * 2002-06-22 2005-05-27 주식회사 지믹스 Microwave dielectric ceramic compositions and preperation method therof
KR100489887B1 (en) * 2002-06-22 2005-05-27 주식회사 지믹스 Microwave dielectric ceramic compositions and prepartion method thereof

Also Published As

Publication number Publication date
TW332302B (en) 1998-05-21

Similar Documents

Publication Publication Date Title
JP3039397B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3227859B2 (en) Non-reducing dielectric ceramic composition
TWI433184B (en) Ultra low temperature fired x7r and bx dielectric ceramic composition and method of making
KR100192563B1 (en) Monolithic ceramic capacitors
JP2001006966A (en) Ceramic capacitor and its manufacture
JP5668572B2 (en) Dielectric ceramic composition and ceramic electronic component
JP2011201761A (en) Dielectric ceramic composition and ceramic electronic part
JP2013043819A (en) Dielectric ceramic composition and ceramic electronic component
WO2010100827A1 (en) Dielectric ceramic and laminated ceramic capacitor
JPH0925162A (en) Nonreducing dielectric porcelain composition and laminated ceramic capacitor using the same
JP3259406B2 (en) Dielectric porcelain composition
JP3143922B2 (en) Non-reducing dielectric ceramic composition
JP3634930B2 (en) Dielectric porcelain composition
JPH08171814A (en) Dielectric ceramic composition and laminated ceramic capacitor using thereof
JP3259394B2 (en) Dielectric porcelain composition
KR0170577B1 (en) Dielectric porcelain composition and laminated ceramic capacitor using the same
JP3362408B2 (en) Dielectric porcelain composition
JP2508373B2 (en) Dielectric ceramic composition and method for producing dielectric ceramic
JP2508374B2 (en) Dielectric porcelain composition
JPH08208325A (en) Dielectric porcelain composition and laminated ceramic capacitor using same
JPH056710A (en) Dielectric porcelain composition
JP3438334B2 (en) Non-reducing dielectric porcelain composition
JP2958826B2 (en) Dielectric porcelain composition
JP3106371B2 (en) Dielectric porcelain composition
JP3087387B2 (en) Non-reducing dielectric porcelain composition

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20040109

Free format text: JAPANESE INTERMEDIATE CODE: A7424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040413

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040507

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080514

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100514

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130514

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20140514