JP3438334B2 - Non-reducing dielectric porcelain composition - Google Patents

Non-reducing dielectric porcelain composition

Info

Publication number
JP3438334B2
JP3438334B2 JP15669494A JP15669494A JP3438334B2 JP 3438334 B2 JP3438334 B2 JP 3438334B2 JP 15669494 A JP15669494 A JP 15669494A JP 15669494 A JP15669494 A JP 15669494A JP 3438334 B2 JP3438334 B2 JP 3438334B2
Authority
JP
Japan
Prior art keywords
dielectric
sample
capacitance
temperature
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15669494A
Other languages
Japanese (ja)
Other versions
JPH07169328A (en
Inventor
野 晴 信 佐
地 幸 生 浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP15669494A priority Critical patent/JP3438334B2/en
Publication of JPH07169328A publication Critical patent/JPH07169328A/en
Application granted granted Critical
Publication of JP3438334B2 publication Critical patent/JP3438334B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は非還元性誘電体磁器組
成物に関し、特にたとえば積層セラミックコンデンサな
どに用いられる非還元性誘電体磁器組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-reducing dielectric porcelain composition, and more particularly to a non-reducing dielectric porcelain composition for use in, for example, laminated ceramic capacitors.

【0002】[0002]

【従来の技術】積層セラミックコンデンサを製造工程で
は、まず、その表面に内部電極となる電極材料を塗布し
たシート状の誘電体材料が準備される。この誘電体材料
としては、たとえばBaTiO3 を主成分とする材料な
どが用いられる。この電極材料を塗布したシート状の誘
電体材料を積層して熱圧着し、一体化したものを自然雰
囲気中において1250〜1350℃で焼成することに
よって、内部電極を有する誘電体磁器が得られる。そし
て、この誘電体磁器の端面に、内部電極と導通する外部
電極を焼き付けて、積層セラミックコンデンサが得られ
る。
2. Description of the Related Art In the process of manufacturing a monolithic ceramic capacitor, first, a sheet-shaped dielectric material is prepared by coating an electrode material for forming internal electrodes on the surface thereof. As the dielectric material, for example, a material containing BaTiO 3 as a main component is used. A sheet-shaped dielectric material coated with this electrode material is laminated, thermocompression bonded, and the integrated product is fired at 1250 to 1350 ° C. in a natural atmosphere to obtain a dielectric ceramic having internal electrodes. Then, an external electrode that is electrically connected to the internal electrode is printed on the end surface of the dielectric ceramic to obtain a monolithic ceramic capacitor.

【0003】したがって、内部電極の材料としては、次
のような条件を満たす必要がある。
Therefore, the material for the internal electrodes must satisfy the following conditions.

【0004】(a)誘電体磁器と内部電極とが同時に焼
成されるので、誘電体磁器が焼成される温度以上の融点
を有すること。
(A) Since the dielectric porcelain and the internal electrodes are fired at the same time, the dielectric porcelain must have a melting point higher than the firing temperature.

【0005】(b)酸化性の高温雰囲気中においても酸
化されず、しかも誘電体と反応しないこと。
(B) It should not be oxidized even in an oxidizing high temperature atmosphere and should not react with the dielectric.

【0006】このような条件を満足する電極材料として
は、白金,金,パラジウムあるいはこれらの合金などの
ような貴金属が用いられていた。
Noble metals such as platinum, gold, palladium or alloys thereof have been used as the electrode material satisfying such conditions.

【0007】しかしながら、これらの電極材料は優れた
特性を有する反面、高価であった。そのため、積層セラ
ミックコンデンサに占める電極材料費の割合は30〜7
0%にも達し、製造コストを上昇させる最大の要因とな
っていた。
However, while these electrode materials have excellent characteristics, they are expensive. Therefore, the ratio of the electrode material cost to the monolithic ceramic capacitor is 30 to 7
It reached 0%, which was the biggest factor in raising the manufacturing cost.

【0008】貴金属以外に高融点をもつものとしてN
i,Fe,Co,W,Moなどの卑金属があるが、これ
らの卑金属は高温の酸化性雰囲気中では容易に酸化され
てしまい、電極としての役目を果たさなくなってしま
う。そのため、これらの卑金属を積層セラミックコンデ
ンサの内部電極として使用するためには、誘電体磁器と
ともに中性または還元性雰囲気中で焼成される必要があ
る。しかしながら、従来の誘電体磁器材料では、このよ
うな還元性雰囲気中で焼成すると著しく還元されてしま
い、半導体化してしまうという欠点があった。
N having a high melting point other than precious metals
Although there are base metals such as i, Fe, Co, W, and Mo, these base metals are easily oxidized in a high-temperature oxidizing atmosphere and cannot serve as an electrode. Therefore, in order to use these base metals as the internal electrodes of the monolithic ceramic capacitor, it is necessary to fire them together with the dielectric ceramic in a neutral or reducing atmosphere. However, the conventional dielectric ceramic material has a drawback that it is remarkably reduced when it is fired in such a reducing atmosphere and becomes a semiconductor.

【0009】このような欠点を克服するために、たとえ
ば特公昭57−42588号公報に示されるように、チ
タン酸バリウム固溶体において、バリウムサイト/チタ
ンサイトの比を化学量論比より過剰にした誘電体材料が
考え出された。このような誘電体材料を使用することに
よって、還元性雰囲気中で焼成しても半導体化しない誘
電体磁器を得ることができ、内部電極としてニッケルな
どの卑金属を使用した積層セラミックコンデンサの製造
が可能となった。
In order to overcome such drawbacks, for example, as shown in Japanese Patent Publication No. 57-42588, in a barium titanate solid solution, the barium site / titanium site ratio is set to be more than stoichiometric. The body material was devised. By using such a dielectric material, it is possible to obtain a dielectric ceramic that does not become a semiconductor even when fired in a reducing atmosphere, and it is possible to manufacture a monolithic ceramic capacitor that uses a base metal such as nickel as an internal electrode. Became.

【0010】[0010]

【発明が解決しようとする課題】近年のエレクトロニク
スの発展に伴い電子部品の小型化が急速に進行し、積層
セラミックコンデンサも小型化の傾向が顕著になってき
た。積層セラミックコンデンサを小型化する方法として
は、一般的に大きな誘電率を有する材料を用いるか、誘
電体層を薄膜化することが知られている。しかし、大き
な誘電率を有する材料は結晶粒が大きく、10μm以下
のような薄膜になると、1つの層中に存在する結晶粒の
数が減少し、信頼性が低下してしまう。
With the recent development of electronics, miniaturization of electronic parts has rapidly progressed, and the tendency of miniaturization of monolithic ceramic capacitors has become remarkable. As a method for miniaturizing the monolithic ceramic capacitor, it is generally known to use a material having a large dielectric constant or to thin the dielectric layer. However, a material having a large dielectric constant has a large number of crystal grains, and when the film is a thin film having a thickness of 10 μm or less, the number of crystal grains present in one layer decreases, and reliability decreases.

【0011】一方、特開昭61−101459号公報に
示されるように、チタン酸バリウム固溶体にLa,N
d,Sm,Dyなどの希土類酸化物を添加した、結晶粒
径の小さい非還元性誘電体磁器が知られている。このよ
うに結晶粒径を小さくすることによって、1つの層中に
存在する結晶粒の数を増やすことができる。
On the other hand, as disclosed in Japanese Patent Laid-Open No. 61-101459, a solid solution of barium titanate with La, N is used.
There is known a non-reducing dielectric ceramic having a small crystal grain size, to which a rare earth oxide such as d, Sm or Dy is added. By thus reducing the crystal grain size, the number of crystal grains present in one layer can be increased.

【0012】しかしながら、これらの希土類酸化物を添
加した材料では、大きな誘電率を得ることができない
上、焼成するときに還元されやすく、信頼性の面で問題
があった。
However, materials containing these rare earth oxides cannot provide a large dielectric constant, and are easily reduced during firing, which is problematic in terms of reliability.

【0013】それゆえに、この発明の主たる目的は、還
元性雰囲気中で焼成しても半導体化せず、しかも結晶粒
径が小さいにもかかわらず、大きな誘電率が得られ、こ
れを用いることによって積層セラミックコンデンサを小
型化することができる、非還元性誘電体磁器組成物を提
供することである。
Therefore, the main object of the present invention is that even if it is fired in a reducing atmosphere, it does not become a semiconductor and, despite its small crystal grain size, a large dielectric constant is obtained. It is an object of the present invention to provide a non-reducing dielectric ceramic composition capable of miniaturizing a monolithic ceramic capacitor.

【0014】[0014]

【課題を解決するための手段】の発明は、その主成分
が次の組成式、{(Ba1-o-p-q-r Sro Cap R1q
R2r )O1+q/2+r/2m (Ti1-x-y Zrx Hfy
2 (ただし、R1はLa,CeおよびNdの中から選
ばれる少なくとも一種類、R2はDy,Ho,Er,Y
bおよびYの中から選ばれる少なくとも一種類)で表さ
れ、o,p,q,r,x,yおよびmが、0<o≦0.
32、0p≦0.20、0<q≦0.02、0<r≦
0.02、0<x≦0.24、0<y≦0.16、1.
00≦m≦1.03、0<q+r≦0.03の関係を満
足し、前記主成分100モルに対して、Mn,Fe,C
r,Co,Niの各酸化物をMnO,Fe23 ,Cr
23 ,CoO,NiOと表したとき、各酸化物の少な
くとも一種類を合計量で0.02〜2.0モル含む、非
還元性誘電体磁器組成物である。
This invention SUMMARY OF], the main component the following composition formula, {(Ba 1-opqr Sr o Ca p R1 q
R2 r) O 1 + q / 2 + r / 2} m (Ti 1-xy Zr x Hf y)
O 2 (wherein R1 is at least one selected from La, Ce and Nd, and R2 is Dy, Ho, Er, Y
b, and at least one selected from Y), and o, p, q, r, x, y, and m are 0 <o ≦ 0.
32, 0 < p ≦ 0.20, 0 <q ≦ 0.02, 0 <r ≦
0.02, 0 <x ≦ 0.24, 0 <y ≦ 0.16, 1.
The relationship of 00 ≦ m ≦ 1.03 and 0 <q + r ≦ 0.03 is satisfied, and Mn, Fe, and C are added to 100 mol of the main component.
The oxides of r, Co and Ni were replaced with MnO, Fe 2 O 3 and Cr.
When expressed as 2 O 3 , CoO, and NiO, the non-reducing dielectric ceramic composition contains at least one kind of each oxide in a total amount of 0.02 to 2.0 mol.

【0015】また、この発明は、その主成分が次の組成
式、{(Ba 1-o-q-r Sr o R1 q R2 r )O 1+q/2+r/2
m (Ti 1-x-y Zr x Hf y )O 2 (ただし、R1
はLa,CeおよびNdの中から選ばれる少なくとも一
種類、R2はDy,Ho,Er,YbおよびYの中から
選ばれる少なくとも一種類)で表され、o,q,r,
x,yおよびmが、0<o≦0.32、0<q≦0.0
2、0<r≦0.02、0<x≦0.24、0<y≦
0.16、1.00≦m≦1.03、0<q+r≦0.
03の関係を満足し、前記主成分100モルに対して、
Mn,Fe,Cr,Co,Niの各酸化物をMnO,F
2 3 ,Cr 2 3 ,CoO,NiOと表したとき、
各酸化物の少なくとも一種類を合計量で0.02〜2.
0モル含む、非還元性誘電体磁器組成物である。
Further , in the present invention, the main components are as follows:
Formula, {(Ba 1-oqr Sr o R1 q R2 r ) O 1 + q / 2 + r / 2
} M (Ti 1-xy Zr x Hf y) O 2 ( however, R1
Is at least one selected from La, Ce and Nd
Type, R2 is from Dy, Ho, Er, Yb and Y
At least one selected), o, q, r,
x, y and m are 0 <o ≦ 0.32, 0 <q ≦ 0.0
2, 0 <r ≦ 0.02, 0 <x ≦ 0.24, 0 <y ≦
0.16, 1.00 ≦ m ≦ 1.03, 0 <q + r ≦ 0.
Satisfying the relation of 03, and for 100 moles of the main component,
The oxides of Mn, Fe, Cr, Co, and Ni are replaced with MnO and F.
e 2 O 3 , Cr 2 O 3 , CoO, NiO,
The total amount of at least one kind of each oxide is 0.02 to 2.
It is a non-reducing dielectric ceramic composition containing 0 mol.

【0016】[0016]

【発明の効果】この発明によれば、還元性雰囲気中で焼
成しても還元されず、半導体化しない非還元性誘電体磁
器組成物を得ることができる。したがって、この非還元
性誘電体磁器組成物を用いて磁器積層コンデンサを製造
すれば、電極材料として卑金属を用いることができ、1
300℃以下と比較的低温で焼成可能であるため、積層
セラミックコンデンサのコストダウンを図ることができ
る。
According to the present invention, it is possible to obtain a non-reducing dielectric ceramic composition which is not reduced even when fired in a reducing atmosphere and does not become a semiconductor. Therefore, if a porcelain multilayer capacitor is manufactured using this non-reducing dielectric porcelain composition, a base metal can be used as an electrode material.
Since it can be fired at a relatively low temperature of 300 ° C. or lower, the cost of the monolithic ceramic capacitor can be reduced.

【0017】また、この非還元性誘電体磁器組成物を用
いた磁器では、誘電率が9000以上あり、しかもこの
ように高誘電率であるにもかかわらず、結晶粒が3μm
以下と小さい。したがって、積層セラミックコンデンサ
を製造するときに、誘電体層を薄膜化しても、従来の積
層セラミックコンデンサのように層中に存在する結晶粒
の量が少なくならない。このため、信頼性が高く、しか
も小型で大容量の積層セラミックコンデンサを得ること
ができる。
Further, in the porcelain using this non-reducing dielectric ceramic composition, the dielectric constant is 9000 or more, and despite having such a high dielectric constant, the crystal grain is 3 μm.
Below is small. Therefore, when a multilayer ceramic capacitor is manufactured, even if the dielectric layer is thinned, the amount of crystal grains existing in the layer does not decrease unlike the conventional multilayer ceramic capacitor. Therefore, it is possible to obtain a highly reliable, small-sized, large-capacity monolithic ceramic capacitor.

【0018】この発明の上述の目的,その他の目的,特
徴および利点は、以下の実施例の詳細な説明から一層明
らかとなろう。
The above and other objects, features and advantages of the present invention will become more apparent from the detailed description of the embodiments below.

【0019】[0019]

【実施例】【Example】

(実施例1)まず、出発原料として、純度99.8%以
上のBaCO3 ,SrCO3 ,CaCO3 ,CeO2
La23 ,Nd23 ,Dy23 ,Ho23 ,E
23 ,Yb23 ,Y23 ,TiO2 ,ZrO
2 ,HfO2 ,MnO,Fe23 ,Cr23 ,Co
O,NiOを準備した。これらの原料を{ (Ba
1-o-p-q-r Sro Cap R1q R2r ) O1+q/2+r/2
m ( Ti1-x-y Zrx Hfy )O2 の組成式で表され、
o,p,q,r,m,x,yが表1および表2に示す割
合となるように配合して、配合原料を得た。この配合原
料をボールミルで湿式混合し、粉砕したのち乾燥し、空
気中において1100℃で2時間仮焼して仮焼物を得
た。この仮焼物を乾式粉砕機によって粉砕し、粒径が1
μm以下の粉砕物を得た。この粉砕物に純水と酢酸ビニ
ルバインダを加えて、ボールミルで16時間混合して混
合物を得た。
(Example 1) First, as starting materials, BaCO 3 , SrCO 3 , CaCO 3 , CeO 2 , with a purity of 99.8% or more,
La 2 O 3 , Nd 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , E
r 2 O 3 , Yb 2 O 3 , Y 2 O 3 , TiO 2 , ZrO
2 , HfO 2 , MnO, Fe 2 O 3 , Cr 2 O 3 , Co
O and NiO were prepared. These raw materials are {(Ba
1-opqr Sr o Ca p R1 q R2 r) O 1 + q / 2 + r / 2}
expressed by a composition formula m (Ti 1-xy Zr x Hf y) O 2,
O, p, q, r, m, x and y were blended so as to have the ratios shown in Table 1 and Table 2 to obtain blended raw materials. The blended raw materials were wet mixed in a ball mill, pulverized, dried, and calcined in air at 1100 ° C. for 2 hours to obtain a calcined product. This calcined product was crushed with a dry crusher to obtain a particle size of 1
A pulverized product having a size of not more than μm was obtained. Pure water and a vinyl acetate binder were added to this pulverized product, and the mixture was mixed for 16 hours with a ball mill to obtain a mixture.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】この混合物を乾燥造粒した後、2000k
g/cm2 の圧力で成形し、直径10mm,厚さ0.5
mmの円板を得た。得られた円板を空気中において50
0℃まで加熱して有機バインダを燃焼させたのち、酸素
分圧が2×10-10 〜3×10-12 atmのH2 −N2
−空気ガスからなる還元雰囲気炉中において表3および
表4に示す温度で2時間焼成し、円板状の磁器を得た。
得られた磁器の表面を、走査型電子顕微鏡で倍率150
0倍で観察し、グレインサイズを測定した。
After this mixture was dry granulated, 2000 k
Molded with a pressure of g / cm 2 , diameter 10 mm, thickness 0.5
A disc of mm was obtained. The resulting disk is 50 in air
After heating to 0 ° C. to burn the organic binder, H 2 —N 2 having an oxygen partial pressure of 2 × 10 −10 to 3 × 10 −12 atm.
-In a reducing atmosphere furnace composed of air gas, firing was performed for 2 hours at the temperatures shown in Tables 3 and 4 to obtain a disk-shaped porcelain.
The surface of the obtained porcelain was magnified 150 with a scanning electron microscope.
Observation was carried out at 0 times and the grain size was measured.

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【表4】 [Table 4]

【0025】そして、得られた磁器の主表面に銀電極
を、N2 雰囲気中において600℃の温度で焼き付けて
測定試料(コンデンサ)とした。得られた試料につい
て、室温での誘電率(ε),誘電損失(tanδ)およ
び温度変化に対する静電容量(C)の変化率を測定し
た。なお、誘電率および誘電損失は、温度25℃,1k
Hz,1Vrms の条件で測定した。また、温度変化に対
する静電容量の変化率については、20℃での静電容量
を基準とした−25℃と85℃での変化率(ΔC/
20)および−25℃から85℃の範囲内で絶対値とし
てその変化率が最大である値(|ΔC/C20max )を
示した。
Then, a silver electrode was baked on the main surface of the obtained porcelain at a temperature of 600 ° C. in an N 2 atmosphere to obtain a measurement sample (capacitor). The rate of change of the dielectric constant (ε) at room temperature, the dielectric loss (tan δ), and the capacitance (C) with respect to temperature changes was measured for the obtained sample. The dielectric constant and the dielectric loss are 25 ° C and 1k.
It was measured under the conditions of Hz and 1 V rms . Regarding the rate of change of the capacitance with respect to temperature change, the rate of change at −25 ° C. and 85 ° C. (ΔC /
C 20 ) and a value (| ΔC / C 20 | max ) at which the rate of change is maximum as an absolute value within the range of −25 ° C. to 85 ° C.

【0026】さらに、また、絶縁抵抗計によって、50
0Vの直流電流を2分間印加したのちの絶縁抵抗値を測
定した。絶縁抵抗は、25℃および85℃の値を測定
し、それぞれの体積抵抗率の対数(logρ)を算出し
た。これらの測定結果を表3および表4に示す。
Furthermore, by means of an insulation resistance tester, 50
The insulation resistance value was measured after a direct current of 0 V was applied for 2 minutes. The insulation resistance was measured at 25 ° C. and 85 ° C., and the logarithm (logρ) of each volume resistivity was calculated. The results of these measurements are shown in Tables 3 and 4.

【0027】次に、各組成の限定理由について説明す
る。
Next, the reasons for limiting each composition will be described.

【0028】{ (Ba1-o-p-q-r Sro Cap R1q
r ) O1+q/2+r/2m ( Ti1-x-y Zrx Hfy ) O
2 において、試料番号1のように、Sr量oが0の場
合、誘電率が11000未満で、誘電損失が2.0%を
超え、静電容量の温度変化率も大きくなり好ましくな
い。一方、試料番号18のように、Sr量oが0.32
を超えると、誘電率が11000未満で、静電容量の温
度変化率がJIS規格のF特性を満足しなくなり好まし
くない。
[0028] {(Ba 1-opqr Sr o Ca p R1 q R
2 r) O 1 + q / 2 + r / 2} m (Ti 1-xy Zr x Hf y) O
In Sample 2 , when the Sr amount o is 0 as in Sample No. 1, the dielectric constant is less than 11,000, the dielectric loss exceeds 2.0%, and the rate of change in capacitance with temperature is large, which is not preferable. On the other hand, as in sample No. 18, the Sr amount o is 0.32
When it exceeds, the dielectric constant is less than 11,000 and the temperature change rate of the capacitance does not satisfy the F characteristic of JIS standard, which is not preferable.

【0029】また、試料番号19のように、Ca量pが
0.20を超えると、焼結性が悪くなり、誘電率が低下
し好ましくない。
When the Ca content p exceeds 0.20 as in sample No. 19, the sinterability deteriorates and the dielectric constant decreases, which is not preferable.

【0030】さらに、試料番号2のように、R1量qが
0の場合、結晶粒径が3μmより大きくなり、積層セラ
ミックコンデンサにした場合、誘電体層を薄膜化できず
好ましくない。一方、試料番号20のように、R1量q
が0.02を超えると、誘電損失が2.0%を超え、2
5℃,85℃での絶縁抵抗が低下し好ましくない。
Further, as in Sample No. 2, when the R1 amount q is 0, the crystal grain size becomes larger than 3 μm, and in the case of a laminated ceramic capacitor, the dielectric layer cannot be thinned, which is not preferable. On the other hand, as in Sample No. 20, the R1 amount q
When exceeds 0.02, the dielectric loss exceeds 2.0% and 2
The insulation resistance at 5 ° C and 85 ° C decreases, which is not preferable.

【0031】試料番号3のように、R2量rが0の場
合、誘電率が11000未満で、静電容量の温度変化率
も大きくなり好ましくない。一方、試料番号21のよう
に、R2量rが0.02を超えると、誘電損失が2.0
%を超え、絶縁抵抗が低下し好ましくない。
When the R2 amount r is 0 as in Sample No. 3, the dielectric constant is less than 11,000 and the rate of change in capacitance with temperature is large, which is not preferable. On the other hand, when the R2 amount r exceeds 0.02 as in Sample No. 21, the dielectric loss is 2.0.
%, The insulation resistance decreases, which is not preferable.

【0032】また、試料番号22のように、R1量qと
R2量rの和q+rが0.03を超えると、還元性雰囲
気で焼成したときに、磁器が還元され、半導体化して絶
縁抵抗が大幅に低下し好ましくない。
When the sum q + r of the R1 amount q and the R2 amount r exceeds 0.03 as in the sample No. 22, the porcelain is reduced when it is fired in a reducing atmosphere to become a semiconductor, and the insulation resistance is increased. It is not preferable because it significantly decreases.

【0033】さらに、試料番号4のように、Zr量xが
0の場合、誘電率が11000未満になり、静電容量の
温度変化率が大きくなり好ましくない。一方、試料番号
23のように、Zr量xが0.24を超えると、焼結性
が低下し、誘電率が11000未満になり好ましくな
い。
Further, when the Zr amount x is 0 as in Sample No. 4, the dielectric constant becomes less than 11000, and the temperature change rate of the capacitance becomes large, which is not preferable. On the other hand, when the Zr amount x exceeds 0.24 as in Sample No. 23, the sinterability decreases and the dielectric constant becomes less than 11000, which is not preferable.

【0034】試料番号5のように、Hf量yが0の場
合、誘電率が11000未満となり好ましくない。ま
た、試料番号24のように、Hf量yが0.16を超え
ると、静電容量の温度変化率がJIS規格のF特性を満
足しなくなり好ましくない。
When the Hf amount y is 0 as in Sample No. 5, the dielectric constant is less than 11000, which is not preferable. When the Hf amount y exceeds 0.16 as in Sample No. 24, the temperature change rate of capacitance does not satisfy the JIS standard F characteristics, which is not preferable.

【0035】また、試料番号7のように、{ (Ba
1-o-p-q-r Sro Cap R1q R2r )O1+q/2+r/2
m ( Ti1-x-y Zrx Hfy ) O2 のモル比mが1.0
0未満では、還元性雰囲気中で焼成したときに磁器が還
元され、半導体化して絶縁抵抗が低下してしまい好まし
くない。一方、試料番号26のように、モル比mが1.
03を超えると、焼結性が極端に悪くなり好ましくな
い。
In addition, like sample number 7, {(Ba
1-opqr Sr o Ca p R1 q R2 r) O 1 + q / 2 + r / 2}
The molar ratio m of m (Ti 1-xy Zr x Hf y ) O 2 is 1.0.
If it is less than 0, the porcelain is reduced when fired in a reducing atmosphere, and it becomes a semiconductor to lower the insulation resistance, which is not preferable. On the other hand, as in Sample No. 26, the molar ratio m was 1.
If it exceeds 03, the sinterability is extremely deteriorated, which is not preferable.

【0036】さらに、試料番号6のように、添加物とし
てのMnO,Fe23 ,Cr23 ,CoOおよび
iOの添加量が0.02モル未満の場合、85℃以上で
の絶縁抵抗が小さくなり、高温中における長時間使用の
信頼性が低下し好ましくない。一方、試料番号25のよ
うに、これらの添加物の量が2.0モルを超えると、誘
電損失が2.0%を超えて大きくなり、同時に絶縁抵抗
も劣化し好ましくない。
Further, as in Sample No. 6, MnO, Fe 2 O 3 , Cr 2 O 3 , CoO and N as additives were added.
If the amount of iO added is less than 0.02 mol, the insulation resistance at 85 ° C. or higher becomes small, and the reliability of long-term use at high temperatures is reduced, which is not preferable. On the other hand, as in Sample No. 25, when the amount of these additives exceeds 2.0 mol, the dielectric loss exceeds 2.0% and increases, and at the same time, the insulation resistance deteriorates, which is not preferable.

【0037】それに対して、この発明の非還元性誘電体
磁器組成物を用いれば、誘電率が11000以上と高
く、誘電損失が2.0%以下で、温度に対する静電容量
の変化率が、−25℃〜85℃の範囲でJIS規格に規
定するF特性規格を満足する誘電体磁器を得ることがで
きる。さらに、この誘電体磁器では、25℃,85℃に
おける絶縁抵抗は、体積抵抗率の対数で表したときに1
2以上と高い値を示す。また、この発明の非還元性誘電
体磁器組成物は、焼成温度も1300℃以下と比較的低
温で焼結可能であり、粒径についても3μm以下と小さ
い。
On the other hand, when the non-reducing dielectric ceramic composition of the present invention is used, the dielectric constant is as high as 11000 or more, the dielectric loss is 2.0% or less, and the rate of change in capacitance with temperature is It is possible to obtain a dielectric porcelain satisfying the F characteristic standard defined in JIS in the range of -25 ° C to 85 ° C. Furthermore, in this dielectric porcelain, the insulation resistance at 25 ° C. and 85 ° C. is 1 when expressed as the logarithm of the volume resistivity.
It shows a high value of 2 or more. Further, the non-reducing dielectric ceramic composition of the present invention can be sintered at a relatively low firing temperature of 1300 ° C. or less, and has a small particle size of 3 μm or less.

【0038】[0038]

【0039】[0039]

【0040】[0040]

【0041】[0041]

【0042】[0042]

【0043】[0043]

【0044】[0044]

【0045】[0045]

【0046】[0046]

【0047】[0047]

【0048】[0048]

【0049】[0049]

【0050】[0050]

【0051】[0051]

【0052】[0052]

【0053】[0053]

【0054】[0054]

【0055】[0055]

【0056】[0056]

【0057】[0057]

【0058】[0058]

【0059】(実施例2) まず、実施例1の試料番号2,3,15,17の粒径が
1μm以下の誘電体原料を準備した。また、出発原料と
して、純度99.8%以上のBaCO3 ,SrCO3
CaCO3 ,TiO2 ,ZrO2 ,HfO2 ,MnO,
NiOを準備した。出発原料を100mol{(Ba
0.92Sr0.06Ca0.02)O}1.01(Ti0.83Zr0.16
0.01)O2 +0.3molMnO+0.1molNi
Oの組成比となるように配合して、配合原料を得た。こ
の配合原料をボールミルで湿式混合し、粉砕したのち乾
燥し、空気中において1100℃で2時間仮焼して仮焼
物を得た。この仮焼物を乾式粉砕機によって粉砕し、粒
径が1μm以下の誘電体原料を比較原料1として準備し
た。
( Example 2 ) First, the dielectric materials having the particle sizes of sample numbers 2, 3, 15, and 17 of Example 1 having a particle size of 1 μm or less were prepared. In addition, as a starting material, BaCO 3 , SrCO 3 having a purity of 99.8% or more,
CaCO 3 , TiO 2 , ZrO 2 , HfO 2 , MnO,
NiO was prepared. 100 mol {(Ba
0.92 Sr 0.06 Ca 0.02 ) O} 1.01 (Ti 0.83 Zr 0.16 H
f 0.01 ) O 2 +0.3 mol MnO + 0.1 mol Ni
The ingredients were blended so that the composition ratio of O was adjusted to obtain a blended raw material. The blended raw materials were wet mixed in a ball mill, pulverized, dried, and calcined in air at 1100 ° C. for 2 hours to obtain a calcined product. This calcined product was crushed by a dry crusher, and a dielectric material having a particle size of 1 μm or less was prepared as a comparative material 1.

【0060】この原料粉末にポリビニルブチラール系バ
インダおよびエタノールなどの有機溶剤を加えて、ボー
ルミルによって湿式混合し、セラミックスラリを調整し
た。そののち、セラミックスラリをドクターブレード法
によってシート成形し、厚み18μmの矩形のグリーン
シートを得た。次に、このセラミックグリーンシート上
に、Niを主体とする導電ペーストを印刷し、内部電極
を構成するための導電ペースト層を形成した。導電ペー
スト層が形成されたセラミックグリーンシートを、導電
ペーストの引き出されている側が互い違いとなるように
複数枚積層し、積層体を得た。得られた積層体をN2
囲気中において350℃の温度に加熱し、バインダを燃
焼させたのち、酸素分圧が2×10-10 〜3×10-12
atmのH2 −N2 −空気ガスからなる還元性雰囲気中
において表10に示す温度で2時間焼成し、セラミック
焼結体を得た。得られたセラミック焼結体の表面を、走
査型電子顕微鏡で倍率1500倍で観察し、グレインサ
イズを測定した。
A polyvinyl butyral binder and an organic solvent such as ethanol were added to this raw material powder and wet-mixed by a ball mill to prepare a ceramic slurry. After that, the ceramic slurry was formed into a sheet by a doctor blade method to obtain a rectangular green sheet having a thickness of 18 μm. Next, a conductive paste containing Ni as a main component was printed on this ceramic green sheet to form a conductive paste layer for forming internal electrodes. A plurality of ceramic green sheets having a conductive paste layer formed thereon were laminated so that the sides from which the conductive paste was drawn out were staggered to obtain a laminate. The obtained laminate was heated to a temperature of 350 ° C. in an N 2 atmosphere to burn the binder, and then the oxygen partial pressure was 2 × 10 −10 to 3 × 10 −12.
atm of H 2 -N 2 - calcined for 2 hours at a temperature shown in Table 10 in a reducing atmosphere consisting of air gas, to obtain a ceramic sintered body. The surface of the obtained ceramic sintered body was observed with a scanning electron microscope at a magnification of 1,500, and the grain size was measured.

【0061】[0061]

【表5】 [Table 5]

【0062】焼成後、得られた焼結体の両端面にAgペ
ーストを塗布し、N2 雰囲気中において600℃の温度
で焼き付け、内部電極と電気的に接続された外部電極を
形成した。このようにして得られた積層セラミックコン
デンサの外形寸法は、幅1.6mm,長さ3.2mm,
厚さ1.2mmであり、内部電極間に介在する誘電体セ
ラミック層の厚みは15μmである。また、有効誘電体
セラミック層の総数は19であり、一層当たりの対向電
極の面積は2.1mm2 である。
After firing, Ag paste was applied to both end faces of the obtained sintered body and baked at a temperature of 600 ° C. in an N 2 atmosphere to form external electrodes electrically connected to the internal electrodes. The external dimensions of the thus-obtained monolithic ceramic capacitor are 1.6 mm in width, 3.2 mm in length,
The thickness is 1.2 mm, and the thickness of the dielectric ceramic layer interposed between the internal electrodes is 15 μm. The total number of effective dielectric ceramic layers is 19, and the area of the counter electrode per layer is 2.1 mm 2 .

【0063】静電容量(C)および誘電損失(tan
δ)は、自動ブリッジ式測定器を用いて、周波数1kH
z,1Vrms ,温度25℃にて測定し、静電容量から誘
電率(ε)を算出した。次に、絶縁抵抗(R)を測定す
るために、絶縁抵抗計を用い、16Vの直流電圧を2分
間印加して、25℃,85℃での絶縁抵抗(R)を測定
し、静電容量(C)と絶縁抵抗(R)との積、すなわち
CR積を求めた。また、温度変化に対する静電容量の変
化率を測定した。なお、温度変化に対する静電容量の変
化率については、20℃での静電容量を基準とした−2
5℃と85℃での変化率(ΔC/C20)を示した。高温
負荷寿命試験としては、各試料を36個ずつ、温度15
0℃で直流電圧を150V印加して、その絶縁抵抗の経
時変化を測定した。また、高温負荷試験としては、各試
料を36個ずつ、温度85℃で直流電圧を32V印加し
て、1000時間経過後の静電容量(C)を測定した。
なお、高温負荷寿命試験では、各試料の絶縁抵抗値
(R)が106 Ω以下になったときの時間を寿命時間と
し、36個の平均値をその平均寿命時間として示した。
また、高温負荷試験では、試験前の静電容量(C0 )に
対する1000時間経過後の静電容量(C1000)の変化
率((C1000−C0 /C0 ×100)の36個の平均値
を示した。以上の各試験の結果を表5に示す。
Capacitance (C) and dielectric loss (tan)
δ) is a frequency of 1 kHz using an automatic bridge type measuring instrument
The measurement was performed at z, 1 V rms , and temperature of 25 ° C., and the dielectric constant (ε) was calculated from the capacitance. Next, in order to measure the insulation resistance (R), a DC voltage of 16 V was applied for 2 minutes using an insulation resistance meter to measure the insulation resistance (R) at 25 ° C. and 85 ° C. The product of (C) and insulation resistance (R), that is, the CR product was obtained. In addition, the rate of change of capacitance with respect to temperature change was measured. The rate of change in capacitance with respect to temperature change was based on the capacitance at 20 ° C.
The rate of change (ΔC / C 20 ) at 5 ° C. and 85 ° C. is shown. As a high temperature load life test, 36 pieces of each sample and a temperature of 15
A direct current voltage of 150 V was applied at 0 ° C., and the change with time of the insulation resistance was measured. As the high temperature load test, 36 samples of each sample were applied with a DC voltage of 32 V at a temperature of 85 ° C., and the capacitance (C) after 1000 hours was measured.
In the high temperature load life test, the time when the insulation resistance (R) of each sample was 10 6 Ω or less was defined as the life time, and the average value of 36 samples was shown as the mean life time.
Further, in the high temperature load test, the change rate ((C 1000 -C 0 / C 0 × 100)) of the capacitance (C 1000 ) after 1000 hours elapsed with respect to the capacitance (C 0 ) before the test was 36. The average value is shown in Table 5. The results of the above tests are shown in Table 5 .

【0064】表5から明らかなように、この発明の非還
元性誘電体磁器組成物を用いた積層セラミックコンデン
サは、誘電率(ε)が高く、誘電損失(tanδ)も小
さい。また、温度変化に対する静電容量の変化率(ΔC
/C20)が、−25℃〜85℃の範囲でJIS規格に規
定するF特性規格を満足する。しかも、25℃,85℃
における絶縁抵抗は、CR積で表したときに、それぞ
れ、10000MΩ・μF,5000MΩ・μF以上と
高い値を示す。また、高温寿命時間が100時間以上と
長く、高温負荷試験1000時間前後での静電容量の変
化が10%以内と小さい。さらに、焼成温度も1300
℃以下と比較的低温で焼結可能であり、粒径についても
3μm以下と小さい。
As is apparent from Table 5 , the laminated ceramic capacitor using the non-reducing dielectric ceramic composition of the present invention has a high dielectric constant (ε) and a small dielectric loss (tan δ). In addition, the rate of change in capacitance with respect to temperature changes (ΔC
/ C 20 ) satisfies the F characteristic standard defined in JIS in the range of -25 ° C to 85 ° C. Moreover, 25 ℃, 85 ℃
Insulation resistance in 1) shows a high value of 10000 MΩ · μF, 5000 MΩ · μF or more, respectively, when expressed by the CR product. Further, the high temperature life time is as long as 100 hours or more, and the change in capacitance before and after the high temperature load test of 1000 hours is as small as 10% or less. Furthermore, the firing temperature is 1300
It can be sintered at a relatively low temperature of ℃ or less, and the particle size is as small as 3 µm or less.

【0065】それに対して、La,Ce,Nd,Pr,
Smの中から選ばれる少なくとも一種類から構成される
R1量が0である非還元性誘電体磁器組成物を用いたこ
の発明の範囲外の試料番号2の積層セラミックコンデン
サは、高温負荷寿命時間が100時間より短くなる。ま
た、Dy,Ho,Er,Yb,Yの中から選ばれる少な
くとも一種類から構成されるR2量が0である非還元性
誘電体磁器組成物を用いたこの発明の範囲外の試料番号
3の積層セラミックコンデンサは、誘電率(ε)が低
く、誘電損失(tanδ)も大きく、高温負荷試験10
00時間での静電容量の変化が大きくなる。
On the other hand, La, Ce, Nd, Pr,
The multilayer ceramic capacitor of Sample No. 2 using the non-reducing dielectric ceramic composition in which the amount of R1 is 0, which is composed of at least one selected from Sm, has a high temperature load life time of It will be shorter than 100 hours. Further, in the case of Sample No. 3 outside the scope of the present invention, a non-reducing dielectric porcelain composition having an R2 content of 0 composed of at least one kind selected from Dy, Ho, Er, Yb and Y was used. The monolithic ceramic capacitor has a low dielectric constant (ε) and a large dielectric loss (tan δ).
The change in electrostatic capacitance at 00 hours becomes large.

【0066】さらに、これらのR1およびR2が添加さ
れていない比較原料1の積層セラミックコンデンサは、
高温負荷寿命時間が短く、高温負荷試験1000時間で
の静電容量の変化が大きくなる。すなわち、R1および
R2を同時に添加することによって、高温負荷寿命が長
く、高温負荷時の静電容量の経時変化の小さい積層セラ
ミックコンデンサを得ることができる。
Furthermore, the multilayer ceramic capacitor of Comparative Raw Material 1 to which these R1 and R2 are not added is
The high-temperature load life time is short, and the change in capacitance becomes large after 1000 hours of high-temperature load test. That is, by adding R1 and R2 at the same time, it is possible to obtain a monolithic ceramic capacitor which has a long life under high temperature load and a small change in capacitance with time under high temperature load.

【0067】[0067]

【0068】[0068]

【0069】[0069]

【0070】[0070]

【0071】[0071]

【0072】[0072]

【0073】[0073]

【0074】[0074]

【0075】なお、上記実施例では、出発原料として、
BaCO3 ,SrCO3 ,CaCO3 ,TiO2 ,Zr
2 ,HfO2 などの酸化物粉末を用いたが、これらの
酸化物粉末に限定されるものではなく、アルコキシド
法,共沈法または水熱合成法によって作製された粉末を
用いてもよい。これらの粉末を用いることによって、本
実施例で示した特性より向上する可能性もある。
In the above examples, as the starting material,
BaCO 3 , SrCO 3 , CaCO 3 , TiO 2 , Zr
Although oxide powders such as O 2 and HfO 2 are used, the powders are not limited to these oxide powders, and powders produced by an alkoxide method, a coprecipitation method, or a hydrothermal synthesis method may be used. By using these powders, there is a possibility that the characteristics shown in this example will be improved.

【0076】また、この発明にかかる非還元性誘電体磁
器組成物において、微量のシリカあるいは酸化物ガラス
のような焼結助剤を添加しても、得られる特性を何ら損
なうものではない。
In the non-reducing dielectric ceramic composition according to the present invention, the addition of a slight amount of a sintering aid such as silica or oxide glass does not impair the obtained characteristics.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01B 3/12 309 H01B 3/12 303 C04B 35/46 H01G 4/12 358 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01B 3/12 309 H01B 3/12 303 C04B 35/46 H01G 4/12 358

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 その主成分が次の組成式 {(Ba1-o-p-q-r Sro Cap R1q R2r )O
1+q/2+r/2m (Ti1-x-y Zrx Hfy )O2 (ただ
し、R1はLa,CeおよびNdの中から選ばれる少な
くとも一種類、R2はDy,Ho,Er,YbおよびY
の中から選ばれる少なくとも一種類)で表され、o,
p,q,r,x,yおよびmが、 0<o≦0.32 0p≦0.20 0<q≦0.02 0<r≦0.02 0<x≦0.24 0<y≦0.16 1.00≦m≦1.03 0<q+r≦0.03 の関係を満足し、前記主成分100モルに対して、M
n,Fe,Cr,Co,Niの各酸化物をMnO,Fe
23 ,Cr23 ,CoO,NiOと表したとき、各
酸化物の少なくとも一種類を合計量で0.02〜2.0
モル含む、非還元性誘電体磁器組成物。
1. A main components the following composition formula {(Ba 1-opqr Sr o Ca p R1 q R2 r) O
1 + q / 2 + r / 2} m (Ti 1-xy Zr x Hf y) O 2 ( provided that at least one R1 is selected from among La, Ce and Nd, R2 is Dy, Ho, Er, Yb and Y
At least one selected from among), o,
p, q, r, x, y and m are 0 <o ≦ 0.32 0 < p ≦ 0.20 0 <q ≦ 0.02 0 <r ≦ 0.02 0 <x ≦ 0.24 0 < The relation of y ≦ 0.16 1.00 ≦ m ≦ 1.03 0 <q + r ≦ 0.03 is satisfied, and M is based on 100 moles of the main component.
The oxides of n, Fe, Cr, Co and Ni are replaced with MnO and Fe.
When expressed as 2 O 3 , Cr 2 O 3 , CoO, and NiO, the total amount of at least one kind of each oxide is 0.02 to 2.0.
A non-reducing dielectric ceramic composition containing a mole.
【請求項2】 その主成分が次の組成式 {(Ba 1-o-q-r Sr o R1 q R2 r )O 1+q/2+r/2
m (Ti 1-x-y Zr x Hf y )O 2 (ただし、R1はL
a,CeおよびNdの中から選ばれる少なくとも一種
類、R2はDy,Ho,Er,YbおよびYの中から選
ばれる少なくとも一種類)で表され、o,q,r,x,
yおよびmが、 0<o≦0.32 0<q≦0.02 0<r≦0.02 0<x≦0.24 0<y≦0.16 1.00≦m≦1.03 0<q+r≦0.03 の関係を満足し、前記主成分100モルに対して、M
n,Fe,Cr,Co,Niの各酸化物をMnO,Fe
2 3 ,Cr 2 3 ,CoO,NiOと表したとき、各
酸化物の少なくとも一種類を合計量で0.02〜2.0
モル含む、非還元性誘電体磁器組成物。
2. The following composition formula {(Ba 1-oqr Sr o R1 q R2 r ) O 1 + q / 2 + r / 2 } is the main component .
m (Ti 1-xy Zr x Hf y) O 2 ( however, R1 L
at least one selected from a, Ce and Nd
R2 is selected from Dy, Ho, Er, Yb and Y.
At least one type), o, q, r, x,
y and m are 0 <o ≦ 0.32 0 <q ≦ 0.02 0 <r ≦ 0.02 0 <x ≦ 0.24 0 <y ≦ 0.16 1.00 ≦ m ≦ 1.03 0 <Q + r ≦ 0.03 is satisfied, and if 100 mol of the main component is satisfied, M
The oxides of n, Fe, Cr, Co and Ni are replaced with MnO and Fe.
When expressed as 2 O 3 , Cr 2 O 3 , CoO and NiO,
0.02 to 2.0 in total of at least one kind of oxide
A non-reducing dielectric ceramic composition containing a mole.
JP15669494A 1993-06-15 1994-06-14 Non-reducing dielectric porcelain composition Expired - Lifetime JP3438334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15669494A JP3438334B2 (en) 1993-06-15 1994-06-14 Non-reducing dielectric porcelain composition

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP16962293 1993-06-15
JP5-169622 1993-06-15
JP5-243698 1993-09-02
JP24369893 1993-09-02
JP15669494A JP3438334B2 (en) 1993-06-15 1994-06-14 Non-reducing dielectric porcelain composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001368050A Division JP3603842B2 (en) 1993-06-15 2001-12-03 Non-reducing dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPH07169328A JPH07169328A (en) 1995-07-04
JP3438334B2 true JP3438334B2 (en) 2003-08-18

Family

ID=27321034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15669494A Expired - Lifetime JP3438334B2 (en) 1993-06-15 1994-06-14 Non-reducing dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3438334B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7887934B2 (en) * 2007-12-18 2011-02-15 General Electric Company Wetting resistant materials and articles made therewith

Also Published As

Publication number Publication date
JPH07169328A (en) 1995-07-04

Similar Documents

Publication Publication Date Title
JP3180681B2 (en) Multilayer ceramic capacitors
JP2001006966A (en) Ceramic capacitor and its manufacture
JP3435607B2 (en) Non-reducing dielectric porcelain composition
JPH1074660A (en) Laminated ceramic capacitor
JPH09232180A (en) Laminated ceramic capacitor
JP3389408B2 (en) Multilayer capacitors
JP3368602B2 (en) Non-reducing dielectric porcelain composition
JP3796771B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3482654B2 (en) Dielectric ceramic composition powder, multilayer ceramic capacitor using the same, and method for producing dielectric ceramic composition powder
US5202814A (en) Nonreducing dielectric ceramic composition
JPH0734327B2 (en) Non-reducing dielectric ceramic composition
JP3634930B2 (en) Dielectric porcelain composition
JP3321823B2 (en) Non-reducing dielectric porcelain composition
JP3438261B2 (en) Non-reducing dielectric porcelain composition
JP3438334B2 (en) Non-reducing dielectric porcelain composition
JP3316717B2 (en) Multilayer ceramic capacitors
JPH1050549A (en) Laminated ceramic capacitor
JPH0734326B2 (en) Non-reducing dielectric ceramic composition
JP3362408B2 (en) Dielectric porcelain composition
JP3385631B2 (en) Non-reducing dielectric porcelain composition
JP3603842B2 (en) Non-reducing dielectric ceramic composition
JP3385630B2 (en) Non-reducing dielectric porcelain composition
JP3368599B2 (en) Non-reducing dielectric porcelain composition
JP3064518B2 (en) Dielectric porcelain composition
JP3318952B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

EXPY Cancellation because of completion of term