JP3321823B2 - Non-reducing dielectric porcelain composition - Google Patents

Non-reducing dielectric porcelain composition

Info

Publication number
JP3321823B2
JP3321823B2 JP08332392A JP8332392A JP3321823B2 JP 3321823 B2 JP3321823 B2 JP 3321823B2 JP 08332392 A JP08332392 A JP 08332392A JP 8332392 A JP8332392 A JP 8332392A JP 3321823 B2 JP3321823 B2 JP 3321823B2
Authority
JP
Japan
Prior art keywords
dielectric
less
porcelain
sample
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08332392A
Other languages
Japanese (ja)
Other versions
JPH05250916A (en
Inventor
野 晴 信 佐
地 幸 生 浜
部 行 雄 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP08332392A priority Critical patent/JP3321823B2/en
Priority to EP92116223A priority patent/EP0534378B1/en
Priority to DE69209417T priority patent/DE69209417T2/en
Priority to SG1996009093A priority patent/SG50701A1/en
Priority to US07/951,206 priority patent/US5248640A/en
Publication of JPH05250916A publication Critical patent/JPH05250916A/en
Application granted granted Critical
Publication of JP3321823B2 publication Critical patent/JP3321823B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は非還元性誘電体磁器組
成物に関し、特にたとえば積層セラミックコンデンサな
どに用いられる非還元性誘電体磁器組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-reducing dielectric porcelain composition, and more particularly to a non-reducing dielectric porcelain composition used for, for example, a multilayer ceramic capacitor.

【0002】[0002]

【従来の技術】積層セラミックコンデンサを製造するに
は、まず、その表面に内部電極となる電極材料を塗布し
たシート状の誘電体材料が準備される。この誘電体材料
としては、たとえばBaTiO3 を主成分とする材料な
どが用いられる。この電極材料を塗布したシート状の誘
電体材料を積層して熱圧着し、一体化したものを自然雰
囲気中において1250〜1350℃で焼成して、内部
電極を有する誘電体磁器が得られる。そして、この誘電
体磁器の端面に、内部電極と導通する外部電極を焼き付
けて、積層セラミックコンデンサが製造される。
2. Description of the Related Art To manufacture a laminated ceramic capacitor, first, a sheet-shaped dielectric material having an electrode material to be an internal electrode applied to the surface thereof is prepared. As the dielectric material, for example, a material mainly containing BaTiO 3 is used. The sheet-shaped dielectric material coated with the electrode material is laminated, thermocompression-bonded, and the integrated material is fired at 1250 to 1350 ° C. in a natural atmosphere to obtain a dielectric porcelain having internal electrodes. Then, an external electrode that is electrically connected to the internal electrode is baked on the end face of the dielectric ceramic to manufacture a multilayer ceramic capacitor.

【0003】したがって、内部電極の材料としては、次
のような条件を満たす必要がある。
Therefore, the material of the internal electrode must satisfy the following conditions.

【0004】(a)誘電体磁器と内部電極とが同時に焼
成されるので、誘電体磁器が焼成される温度以上の融点
を有すること。
(A) Since the dielectric porcelain and the internal electrodes are fired at the same time, the dielectric porcelain has a melting point higher than the temperature at which the dielectric porcelain is fired.

【0005】(b)酸化性の高温雰囲気中においても酸
化されず、しかも誘電体と反応しないこと。
(B) It is not oxidized even in an oxidizing high-temperature atmosphere and does not react with a dielectric.

【0006】このような条件を満足する電極材料として
は、白金,金,パラジウムあるいはこれらの合金などの
ような貴金属が用いられていた。
As an electrode material satisfying such conditions, noble metals such as platinum, gold, palladium and alloys thereof have been used.

【0007】しかしながら、これらの電極材料は優れた
特性を有する反面、高価であった。そのため、積層セラ
ミックコンデンサに占める電極材料費の割合は30〜7
0%にも達し、製造コストを上昇させる最大の要因とな
っていた。
However, these electrode materials have excellent characteristics, but are expensive. Therefore, the ratio of the electrode material cost to the multilayer ceramic capacitor is 30 to 7%.
It reached 0%, which was the biggest factor in increasing the manufacturing cost.

【0008】貴金属以外に高融点をもつものとしてN
i,Fe,Co,W,Moなどの卑金属があるが、これ
らの卑金属は高温の酸化性雰囲気中では容易に酸化され
てしまい、電極としての役目を果たさなくなってしま
う。そのため、これらの卑金属を積層セラミックコンデ
ンサの内部電極として使用するためには、誘電体磁器と
ともに中性または還元性雰囲気中で焼成される必要があ
る。しかしながら、従来の誘電体磁器材料では、このよ
うな還元性雰囲気中で焼成すると著しく還元されてしま
い、半導体化してしまうという欠点があった。
[0008] In addition to the noble metals, N
There are base metals such as i, Fe, Co, W, and Mo. However, these base metals are easily oxidized in a high-temperature oxidizing atmosphere, and do not serve as an electrode. Therefore, in order to use these base metals as the internal electrodes of the multilayer ceramic capacitor, they must be fired in a neutral or reducing atmosphere together with the dielectric porcelain. However, the conventional dielectric porcelain material has a drawback that when it is fired in such a reducing atmosphere, it is significantly reduced and becomes a semiconductor.

【0009】このような欠点を克服するために、たとえ
ば特公昭57−42588号公報に示されるように、チ
タン酸バリウム固溶体において、バリウムサイト/チタ
ンサイトの比を化学量論比より過剰にした誘電体材料が
考え出された。このような誘電体材料を使用することに
よって、還元性雰囲気中で焼成しても半導体化しない誘
電体磁器を得ることができ、内部電極としてニッケルな
どの卑金属を使用した積層セラミックコンデンサの製造
が可能となった。
In order to overcome such a drawback, for example, as disclosed in Japanese Patent Publication No. 57-42588, in a barium titanate solid solution, the ratio of barium site / titanium site is set to be larger than the stoichiometric ratio. Body material has been devised. By using such a dielectric material, it is possible to obtain a dielectric ceramic that does not turn into a semiconductor even when fired in a reducing atmosphere, and it is possible to manufacture a multilayer ceramic capacitor using a base metal such as nickel as an internal electrode. It became.

【0010】[0010]

【発明が解決しようとする課題】近年のエレクトロニク
スの発展に伴い電子部品の小型化が急速に進行し、積層
セラミックコンデンサも小型化の傾向が顕著になってき
た。積層セラミックコンデンサを小型化する方法として
は、一般的に大きな誘電率を有する材料を用いるか、誘
電体層を薄膜化することが知られている。しかし、大き
な誘電率を有する材料は結晶粒が大きく、10μm以下
のような薄膜になると、1つの層中に存在する結晶粒の
数が減少し、信頼性が低下してしまう。
With the development of electronics in recent years, the miniaturization of electronic components has rapidly progressed, and the tendency of miniaturization of multilayer ceramic capacitors has also become remarkable. As a method of reducing the size of the multilayer ceramic capacitor, it is generally known to use a material having a large dielectric constant or to reduce the thickness of the dielectric layer. However, a material having a large dielectric constant has a large crystal grain, and when the material is formed into a thin film having a thickness of 10 μm or less, the number of crystal grains existing in one layer is reduced, and reliability is reduced.

【0011】一方、特開昭58−135507号公報、
特開昭58−223669号公報、特開昭59−861
03号公報に示されるように、チタン酸バリウム固溶体
にLa,Nd,Sm,Dyなどの希土類酸化物を添加し
た、結晶粒径の小さい誘電体磁器が知られている。この
ように結晶粒径を小さくすることによって、1つの層中
に存在する結晶粒の数を増やすことができ、信頼性の低
下を防ぐことができる。
On the other hand, JP-A-58-135507 discloses
JP-A-58-223669, JP-A-59-861
As disclosed in Japanese Patent Application Publication No. 03-2003, a dielectric porcelain having a small crystal grain size in which a rare earth oxide such as La, Nd, Sm, or Dy is added to a barium titanate solid solution is known. By reducing the crystal grain size in this way, the number of crystal grains existing in one layer can be increased, and a decrease in reliability can be prevented.

【0012】しかしながら、この希土類酸化物を添加し
た材料では、大きな誘電率を得ることができない上、焼
成するときに還元されやすくなり、特性の面で問題があ
った。
[0012] However, the material to which the rare earth oxide is added cannot obtain a large dielectric constant, and is easily reduced during firing, and has a problem in characteristics.

【0013】それゆえに、この発明の主たる目的は、還
元性雰囲気中で焼成しても半導体化せず、しかも結晶粒
径が小さいにもかかわらず、大きな誘電率が得られ、こ
れを用いることによって積層セラミックコンデンサを小
型化することができる、非還元性誘電体磁器組成物を提
供することである。
[0013] Therefore, a main object of the present invention is to obtain a large dielectric constant despite the fact that it does not turn into a semiconductor even when fired in a reducing atmosphere and has a small crystal grain size. An object of the present invention is to provide a non-reducing dielectric ceramic composition that can reduce the size of a multilayer ceramic capacitor.

【0014】[0014]

【課題を解決するための手段】この発明は、その主成分
がBa,Sr,Ca,Ti,ZrおよびNbの各酸化物
からなり、次の一般式、{ (Ba1-x-y Srx Cay )
O}m ( Ti1-o-p Zro Nbp ) O2+p/2 で表され、
x,y,o,pおよびmが、0.05≦x≦0.35、
0.005≦y≦0.12、0<o≦0.20、0.0
005≦p≦0.010、1.002≦m≦1.04の
関係を満足し、前記主成分100モルに対して、Mn,
Fe,Cr,Co,Niの各酸化物をMnO2 ,Fe2
3 ,Cr2 3 ,CoO,NiOと表したとき、各酸
化物の少なくとも一種類が各酸化物の合計量で0.02
〜2.0モル添加され、前記主成分を100重量部とし
て、BaO−SrO−Li2 O−SiO2 を主成分とす
る酸化物ガラスを0.05重量部〜5.0重量部含み、
かつ結晶粒径が3μm以下である、非還元性誘電体磁器
組成物である。
Means for Solving the Problems] This invention has a main component Ba, becomes Sr, Ca, Ti, from the oxides of Zr and Nb, the following general formula, {(Ba 1-xy Sr x Ca y )
O} is represented by m (Ti 1-op Zr o Nb p) O 2 + p / 2,
x, y, o, p and m are 0.05 ≦ x ≦ 0.35,
0.005 ≦ y ≦ 0.12, 0 <o ≦ 0.20, 0.0
005 ≦ p ≦ 0.010, 1.002 ≦ m ≦ 1.04, and Mn,
Fe, Cr, Co, and Ni oxides were converted to MnO 2 , Fe 2
When represented by O 3 , Cr 2 O 3 , CoO, and NiO, at least one of the oxides is 0.02 in total amount of each oxide.
2.0 is moles added, the main component as 100 parts by weight, BaO-SrO-Li 2 O -SiO 2 oxide glass only contains 0.05 part by weight to 5.0 parts by weight of a main component,
A non-reducing dielectric ceramic composition having a crystal grain size of 3 μm or less .

【0015】[0015]

【発明の効果】この発明によれば、還元性雰囲気中で焼
成しても還元されず、半導体化しない非還元性誘電体磁
器組成物を得ることができる。したがって、この非還元
性誘電体磁器組成物を用いて磁器積層コンデンサを製造
すれば、電極材料として卑金属を用いることができ、1
250℃以下と比較的低温で焼成可能であるため、積層
セラミックコンデンサのコストダウンを図ることができ
る。
According to the present invention, it is possible to obtain a non-reducing dielectric ceramic composition which is not reduced even when fired in a reducing atmosphere and does not turn into a semiconductor. Therefore, if a porcelain multilayer capacitor is manufactured using this non-reducing dielectric porcelain composition, a base metal can be used as an electrode material, and
Since firing can be performed at a relatively low temperature of 250 ° C. or less, the cost of the multilayer ceramic capacitor can be reduced.

【0016】また、この非還元性誘電体磁器組成物を用
いた磁器では、誘電率が11000以上あり、しかもこ
のように高誘電率であるにもかかわらず、結晶粒が3μ
m以下と小さい。したがって、積層セラミックコンデン
サを製造するときに、誘電体層を薄膜化しても、従来の
積層セラミックコンデンサのように層中に存在する結晶
粒の量が少なくならない。このため、信頼性が高く、し
かも小型で大容量の積層セラミックコンデンサを得るこ
とができる。
Further, the porcelain using the non-reducing dielectric porcelain composition has a dielectric constant of 11,000 or more, and despite having such a high dielectric constant, has crystal grains of 3 μm.
m or less. Therefore, when manufacturing a multilayer ceramic capacitor, even if the dielectric layer is thinned, the amount of crystal grains present in the layer does not decrease as in the conventional multilayer ceramic capacitor. Therefore, a highly reliable, small-sized, large-capacity multilayer ceramic capacitor can be obtained.

【0017】この発明の上述の目的,その他の目的,特
徴および利点は、以下の実施例の詳細な説明から一層明
らかとなろう。
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments.

【0018】[0018]

【実施例】まず、原料として、純度99.8%以上のB
aCO3 ,SrCO3 ,CaCO3 ,TiO2 ,ZrO
2 ,Nb2 5 ,MnO2 ,Fe2 3 ,Cr2 3
CoO,NiOを準備した。これらの原料を{ (Ba
1-x-y Srx Cay ) O}m( Ti1-o-p Zro Nbp )
2+p/2 の組成式で表され、x,y,m,o,pが表
1に示す割合となるように配合して、配合原料を得た。
この配合原料をボールミルで湿式混合し、粉砕したのち
乾燥し、空気中において1100℃で2時間仮焼して仮
焼物を得た。この仮焼物を乾式粉砕機によって粉砕し、
粒径が1μm以下の粉砕物を得た。この粉砕物に、予め
準備した粒径1μm以下のBaO−SrO−Li2 O−
SiO2 を主成分とする酸化物ガラスを秤量し、純水と
酢酸ビニルバインダを加えて、ボールミルで16時間混
合して混合物を得た。
EXAMPLE First, as a raw material, B having a purity of 99.8% or more was used.
aCO 3 , SrCO 3 , CaCO 3 , TiO 2 , ZrO
2, Nb 2 O 5, MnO 2, Fe 2 O 3, Cr 2 O 3,
CoO and NiO were prepared. These raw materials are converted to {(Ba
1-xy Sr x Ca y) O} m (Ti 1-op Zr o Nb p)
It was represented by the composition formula of O 2 + p / 2 , and was blended so that x, y, m, o, and p had the ratios shown in Table 1, to obtain a blended raw material.
The raw materials were wet-mixed in a ball mill, pulverized, dried, and calcined in air at 1100 ° C. for 2 hours to obtain a calcined product. This calcined product is pulverized by a dry pulverizer,
A pulverized product having a particle size of 1 μm or less was obtained. BaO—SrO—Li 2 O— having a particle size of 1 μm or less prepared in advance is added to this pulverized material.
An oxide glass mainly composed of SiO 2 was weighed, pure water and a vinyl acetate binder were added, and mixed with a ball mill for 16 hours to obtain a mixture.

【0019】[0019]

【表1】 [Table 1]

【0020】この混合物を乾燥造粒した後、2000k
g/cm2 の圧力で成形し、直径10mm,厚さ0.5
mmの円板を得た。得られた円板を空気中において50
0℃まで加熱して有機バインダを燃焼させたのち、酸素
分圧が3×10-8〜3×10-10 atmのH2 −N2
空気ガスからなる還元雰囲気炉中において表2に示す温
度で2時間焼成し、円板状の磁器を得た。得られた磁器
の表面を、走査型電子顕微鏡で倍率1500倍で観察
し、グレインサイズを測定した。
After this mixture is dried and granulated,
g / cm 2 under pressure, diameter 10mm, thickness 0.5
mm discs were obtained. The obtained disk is placed in air for 50 minutes.
After heating to 0 ° C. to burn the organic binder, H 2 —N 2 — with an oxygen partial pressure of 3 × 10 −8 to 3 × 10 −10 atm.
It was fired in a reducing atmosphere furnace made of air gas at the temperature shown in Table 2 for 2 hours to obtain a disc-shaped porcelain. The surface of the obtained porcelain was observed with a scanning electron microscope at a magnification of 1500 times, and the grain size was measured.

【0021】[0021]

【表2】 [Table 2]

【0022】そして、得られた磁器の主表面に銀電極を
焼き付けて測定試料(コンデンサ)とした。得られた試
料について、室温での誘電率(ε),誘電損失(tan
δ)および温度変化に対する静電容量(C)の変化率を
測定した。なお、誘電率および誘電損失は、温度25
℃,1kHz,1Vrms の条件で測定した。また、温度
変化に対する静電容量の変化率については、20℃での
静電容量を基準とした−25℃と85℃での変化率(Δ
C/C20)および−25℃から85℃の範囲内で絶対値
としてその変化率が最大である値(|ΔC/C
20max )を示した。
Then, a silver electrode was baked on the main surface of the obtained porcelain to obtain a measurement sample (capacitor). About the obtained sample, the dielectric constant (ε) at room temperature, the dielectric loss (tan)
δ) and the rate of change of the capacitance (C) with respect to the temperature change. The dielectric constant and the dielectric loss were measured at a temperature
C., 1 kHz, 1 V rms . The rate of change of the capacitance with respect to the temperature change is the rate of change (−ΔC at −25 ° C. and 85 ° C. based on the capacitance at 20 ° C.)
C / C 20 ) and a value (│ΔC / C) at which the rate of change is maximum as an absolute value in the range of −25 ° C. to 85 ° C.
20 | max ).

【0023】さらに、また、絶縁抵抗計によって、50
0Vの直流電流を2分間印加したのちの絶縁抵抗値を測
定した。絶縁抵抗は、25℃および85℃の値を測定
し、それぞれの体積抵抗率の対数(logρ)を算出し
た。これらの測定結果を表2に示す。
[0023] Further, the insulation resistance is measured by 50.
The insulation resistance value was measured after applying a direct current of 0 V for 2 minutes. The insulation resistance was measured at 25 ° C. and 85 ° C., and the logarithm (log ρ) of each volume resistivity was calculated. Table 2 shows the measurement results.

【0024】次に、各組成の限定理由について説明す
る。
Next, the reasons for limiting each composition will be described.

【0025】 { (Ba1-x-y Srx Cay ) O}m ( Ti1-o-p Zr
o Nbp ) O2+p/2 において、試料番号1のように、ス
トロンチウム量xが0.05未満の場合、誘電率が11
000未満で、誘電損失が2.0%を超え、静電容量の
温度変化率も大きくなり好ましくない。また、試料番号
17のように、ストロンチウム量xが0.35を超える
と、磁器の焼結性が悪く、誘電率が11000未満で、
静電容量の温度変化率がJIS規格のF特性を満足しな
くなり好ましくない。
[0025] {(Ba 1-xy Sr x Ca y) O} m (Ti 1-op Zr
o Nb p ) O 2 + p / 2 , as shown in Sample No. 1, when the strontium content x is less than 0.05, the dielectric constant is 11
If it is less than 000, the dielectric loss exceeds 2.0%, and the temperature change rate of the capacitance becomes large, which is not preferable. When the strontium content x exceeds 0.35 as in sample No. 17, the sinterability of the porcelain is poor, the dielectric constant is less than 11,000,
The temperature change rate of the capacitance does not satisfy the JIS standard F characteristic, which is not preferable.

【0026】さらに、試料番号2のように、カルシウム
量yが0.005未満であれば、磁器の焼結性が悪く、
誘電損失が2.0%を超え、絶縁抵抗の低下が生じ好ま
しくない。一方、試料番号18のように、カルシウム量
yが0.12を超えると、焼結性が悪くなり、誘電率が
低下し好ましくない。
Further, when the amount of calcium y is less than 0.005 as in sample No. 2, the sinterability of the porcelain is poor,
The dielectric loss exceeds 2.0%, and the insulation resistance is undesirably reduced. On the other hand, when the amount of calcium y exceeds 0.12 as in Sample No. 18, the sinterability deteriorates and the dielectric constant decreases, which is not preferable.

【0027】試料番号3のように、ジルコニウム量oが
0の場合、誘電率が11000未満になり、静電容量の
温度変化率が大きくなり好ましくない。一方、試料番号
19のように、ジルコニウム量oが0.20を超える
と、焼結性が低下し、誘電率が11000未満になり好
ましくない。
When the zirconium amount o is 0 as in Sample No. 3, the dielectric constant is less than 11,000, and the rate of change in capacitance with temperature is undesirably large. On the other hand, when the zirconium amount o exceeds 0.20 as in Sample No. 19, the sinterability decreases and the dielectric constant becomes less than 11,000, which is not preferable.

【0028】試料番号4のように、ニオブ量pが0.0
005未満の場合、誘電率が11000未満になり、結
晶粒径が3μmより大きくなり、積層セラミックコンデ
ンサにした場合、誘電体層を薄膜化できず好ましくな
い。一方、試料番号20のように、ニオブ量pが0.0
1を超えると、還元性雰囲気で焼成したときに、磁器が
還元され、半導体化して絶縁抵抗が大幅に低下し好まし
くない。
As shown in Sample No. 4, the niobium amount p is 0.0
If it is less than 005, the dielectric constant will be less than 11,000, and the crystal grain size will be larger than 3 μm. On the other hand, as in Sample No. 20, the niobium amount p is 0.0
If it exceeds 1, when sintered in a reducing atmosphere, the porcelain is reduced and turned into a semiconductor, resulting in a significant decrease in insulation resistance, which is not preferable.

【0029】試料番号5のように、{ (Ba1-x-y Sr
x Cay ) O}m ( Ti1-o-p Zro Nbp ) O2+p/2
のモル比mが1.002未満では、還元性雰囲気中で焼
成したときに磁器が還元され、半導体化して絶縁抵抗が
低下してしまい好ましくない。一方、試料番号21のよ
うに、モル比mが1.04を超えると、焼結性が極端に
悪くなり好ましくない。
As shown in sample No. 5, {(Ba 1-xy Sr
x Ca y) O} m ( Ti 1-op Zr o Nb p) O 2 + p / 2
If the molar ratio m is less than 1.002, the porcelain is reduced when fired in a reducing atmosphere and turned into a semiconductor, resulting in a decrease in insulation resistance. On the other hand, when the molar ratio m exceeds 1.04 as in Sample No. 21, the sinterability becomes extremely poor, which is not preferable.

【0030】さらに、試料番号6のように、添加物
(A)としてのMnO2 ,Fe2 3 ,Cr2 3 ,C
oO,NiOの添加量が0.02モル未満の場合、85
℃以上での絶縁抵抗が小さくなり、高温中における長時
間使用の信頼性が低下し好ましくない。一方、試料番号
22のように、これらの添加物の量が2.0モルを超え
ると、誘電損失が2.0%を超えて大きくなり、同時に
絶縁抵抗も劣化し好ましくない。
Further, as shown in sample No. 6, MnO 2 , Fe 2 O 3 , Cr 2 O 3 , C
When the addition amount of oO and NiO is less than 0.02 mol, 85
It is not preferable because the insulation resistance at a temperature of not less than ℃ is reduced, and the reliability of long-time use at high temperatures is lowered. On the other hand, when the amount of these additives exceeds 2.0 moles as in sample No. 22, the dielectric loss increases beyond 2.0%, and at the same time the insulation resistance deteriorates, which is not preferable.

【0031】また、試料番号7のように、添加物(B)
としてのBaO−SrO−Li2 O−SiO2 を主成分
とする酸化物ガラスの添加量が0.05重量部未満の場
合、焼結性が悪くなり、誘電損失が2.0%を超えて好
ましくない。一方、試料番号23のように、BaO−S
rO−Li2 O−SiO2 を主成分とする酸化物ガラス
の添加量が5.0重量部を超えると、誘電率が1100
0未満に低下するとともに、結晶粒径が3μmより大き
くなり好ましくない。
Further, as shown in Sample No. 7, the additive (B)
When the addition amount of the oxide glass containing BaO—SrO—Li 2 O—SiO 2 as a main component is less than 0.05 part by weight, the sinterability deteriorates, and the dielectric loss exceeds 2.0%. Not preferred. On the other hand, as shown in Sample No. 23, BaO-S
If the amount of the oxide glass containing rO—Li 2 O—SiO 2 as a main component exceeds 5.0 parts by weight, the dielectric constant becomes 1100.
This is not preferable because the crystal grain size is reduced to less than 0 and the crystal grain size is larger than 3 μm.

【0032】それに対して、この発明の非還元性誘電体
磁器組成物を用いれば、誘電率が11000以上と高
く、誘電損失が2.0%以下で、温度に対する静電容量
の変化率が、−25℃〜85℃の範囲でJIS規格に規
定するF特性規格を満足する誘電体磁器を得ることがで
きる。さらに、この誘電体磁器では、25℃,85℃に
おける絶縁抵抗は、体積抵抗率の対数で表したときに1
2以上と高い値を示す。また、この発明の非還元性誘電
体磁器組成物は、焼成温度も1250℃以下と比較的低
温で焼結可能であり、粒径についても3μm以下と小さ
い。
On the other hand, when the non-reducing dielectric ceramic composition of the present invention is used, the dielectric constant is as high as 11,000 or more, the dielectric loss is 2.0% or less, and the rate of change of capacitance with temperature is It is possible to obtain a dielectric porcelain satisfying the F characteristic standard defined in the JIS standard in the range of -25 ° C to 85 ° C. Furthermore, in this dielectric porcelain, the insulation resistance at 25 ° C. and 85 ° C. is 1 when expressed in logarithm of volume resistivity.
It shows a high value of 2 or more. Further, the non-reducing dielectric ceramic composition of the present invention can be sintered at a relatively low temperature of 1250 ° C. or less, and has a small particle size of 3 μm or less.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−138003(JP,A) 特開 昭61−248304(JP,A) 特開 平2−239152(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 3/12 303 C04B 35/46 H01G 4/12 358 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-59-138003 (JP, A) JP-A-61-248304 (JP, A) JP-A-2-239152 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01B 3/12 303 C04B 35/46 H01G 4/12 358

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 その主成分がBa,Sr,Ca,Ti,
ZrおよびNbの各酸化物からなり、次の一般式 { (Ba1-x-y Srx Cay ) O}m ( Ti1-o-p Zro Nbp ) O2+p/2 で表され、x,y,o,pおよびmが、 0.05≦x≦0.35 0.005≦y≦0.12 0<o≦0.20 0.0005≦p≦0.010 1.002≦m≦1.04 の関係を満足し、前記主成分100モルに対して、M
n,Fe,Cr,Co,Niの各酸化物をMnO2 ,F
2 3 ,Cr2 3 ,CoO,NiOと表したとき、
各酸化物の少なくとも一種類が各酸化物の合計量で0.
02〜2.0モル添加され、前記主成分を100重量部
として、BaO−SrO−Li2 O−SiO2 を主成分
とする酸化物ガラスを0.05重量部〜5.0重量部含
み、かつ結晶粒径が3μm以下である、非還元性誘電体
磁器組成物。
1. The method according to claim 1, wherein the main components are Ba, Sr, Ca, Ti,
It made the oxides of Zr and Nb, represented by the following general formula {(Ba 1-xy Sr x Ca y) O} m (Ti 1-op Zr o Nb p) O 2 + p / 2, x, When y, o, p and m are 0.05 ≦ x ≦ 0.35 0.005 ≦ y ≦ 0.120 0 <o ≦ 0.20 0.0005 ≦ p ≦ 0.010 1.002 ≦ m ≦ 1 .04, and 100 mol of the main component, M
The oxides of n, Fe, Cr, Co, and Ni were converted to MnO 2 , F
When expressed as e 2 O 3 , Cr 2 O 3 , CoO, NiO,
At least one of the oxides has a total amount of 0.
02 to 2.0 is moles added, the 100 parts by weight of the main component, BaO-SrO-Li 2 O -SiO 2 as main components oxide glass, and 0.05 part by weight to 5.0 parts by weight including
A non-reducing dielectric ceramic composition having a crystal grain size of 3 μm or less .
JP08332392A 1991-09-25 1992-03-04 Non-reducing dielectric porcelain composition Expired - Lifetime JP3321823B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP08332392A JP3321823B2 (en) 1992-03-04 1992-03-04 Non-reducing dielectric porcelain composition
EP92116223A EP0534378B1 (en) 1991-09-25 1992-09-23 Non-reducible dielectric ceramic composition
DE69209417T DE69209417T2 (en) 1991-09-25 1992-09-23 Non-reducible dielectric ceramic composition
SG1996009093A SG50701A1 (en) 1991-09-25 1992-09-23 Non-reducible dielectric ceramic composition
US07/951,206 US5248640A (en) 1991-09-25 1992-09-25 Non-reducible dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08332392A JP3321823B2 (en) 1992-03-04 1992-03-04 Non-reducing dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH05250916A JPH05250916A (en) 1993-09-28
JP3321823B2 true JP3321823B2 (en) 2002-09-09

Family

ID=13799224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08332392A Expired - Lifetime JP3321823B2 (en) 1991-09-25 1992-03-04 Non-reducing dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3321823B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3435607B2 (en) * 1992-05-01 2003-08-11 株式会社村田製作所 Non-reducing dielectric porcelain composition
KR100424536B1 (en) * 1995-10-26 2004-06-30 솔베이 바리움 스트론티움 게엠베하 Carbonate of fine alkaline earth metal
TW492017B (en) 2000-06-29 2002-06-21 Tdk Corp Dielectrics porcelain composition and electronic parts
JP4836509B2 (en) * 2004-11-26 2011-12-14 京セラ株式会社 Dielectric porcelain

Also Published As

Publication number Publication date
JPH05250916A (en) 1993-09-28

Similar Documents

Publication Publication Date Title
JP3227859B2 (en) Non-reducing dielectric ceramic composition
JP3435607B2 (en) Non-reducing dielectric porcelain composition
JP2958817B2 (en) Non-reducing dielectric porcelain composition
JP3368602B2 (en) Non-reducing dielectric porcelain composition
JP3945033B2 (en) Manufacturing method of multilayer ceramic capacitor
JP3321823B2 (en) Non-reducing dielectric porcelain composition
JPH0734327B2 (en) Non-reducing dielectric ceramic composition
JP3368599B2 (en) Non-reducing dielectric porcelain composition
JP3385631B2 (en) Non-reducing dielectric porcelain composition
JP3438261B2 (en) Non-reducing dielectric porcelain composition
JP3385630B2 (en) Non-reducing dielectric porcelain composition
JP3064518B2 (en) Dielectric porcelain composition
JP3438334B2 (en) Non-reducing dielectric porcelain composition
JP3316717B2 (en) Multilayer ceramic capacitors
JPH0734326B2 (en) Non-reducing dielectric ceramic composition
JP3603842B2 (en) Non-reducing dielectric ceramic composition
JP3109171B2 (en) Non-reducing dielectric porcelain composition
JP3318952B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3318951B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3120500B2 (en) Non-reducing dielectric porcelain composition
JP2958826B2 (en) Dielectric porcelain composition
JP2958820B2 (en) Non-reducing dielectric porcelain composition
JP3185333B2 (en) Non-reducing dielectric ceramic composition
JP2958822B2 (en) Non-reducing dielectric porcelain composition
JPH03112858A (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10