JPH04357616A - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH04357616A
JPH04357616A JP3130993A JP13099391A JPH04357616A JP H04357616 A JPH04357616 A JP H04357616A JP 3130993 A JP3130993 A JP 3130993A JP 13099391 A JP13099391 A JP 13099391A JP H04357616 A JPH04357616 A JP H04357616A
Authority
JP
Japan
Prior art keywords
point
rare earth
dielectric
weight
nb2o5
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3130993A
Other languages
Japanese (ja)
Inventor
Hidenori Kuramitsu
秀紀 倉光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3130993A priority Critical patent/JPH04357616A/en
Publication of JPH04357616A publication Critical patent/JPH04357616A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To provide a porcelain composition having a high dielectric constant, a low dielectric loss, a large dielectric voltage, large insulating resistance, and a small diameter of a crystalline particle by using a compound having a specific composition including Ba, Mg, Ti, Zr and rare earth oxide. CONSTITUTION:A composition expressed by Formula (x)>>(BaO)(1-m).(MgO)m].(y)>>(TiO2)(1-n)(ZrO2)n].(z)(R(1-t)Me)t)O3/2 is used, wherein R represents one kind or more of La, Pr, Nd and Sm; Me, a rare earth element other than La, Pr, Nd and Sm; and (m) ranges from 0.01 to 0.50; (n), from 0.001 to 0.200; and (t), from 0.01 to 0.20. (x)+(y)+(z)=1. 0.3-5.0 parts by weight of niobium in a form of Nb2O5 are incorporated into 100 parts by weight of a main component within a range of mol ratios surrounded by a point (a) of (x)=0.15, (y)=0.50, and (z)=0.35, a point (b) of (x)=0.16, (y)=0.61, and (z)=0.23, a point (c) of (x)=0.10, (y)=0.67, and (z)=0.23, a point (d) of (x)=0.09, (y)=0.60, and (z)=0.31, a point (e) of (x)=0.02, (y)=0.58, and (z)=0.40, and a point (f) of (x)=0.02. (y)=0.52, and (z)=0.46.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は電子機器用固定磁器コン
デンサの誘電体磁器組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition for a fixed ceramic capacitor for electronic equipment.

【0002】0002

【従来の技術】以下に従来の誘電体磁器組成物について
説明する。誘電体磁器組成物として下記のような系が知
られている。
BACKGROUND OF THE INVENTION Conventional dielectric ceramic compositions will be explained below. The following systems are known as dielectric ceramic compositions.

【0003】BaO・TiO2・Nd2O3系BaO・
TiO2・Sm2O3系 例えば0.09BaO・0.56TiO2・0.35N
dO3/2の組成比からなる誘電体磁器組成物を使用し
、誘電体磁器円板を作製し、電気特性および結晶粒径を
測定すると、誘電率:67,静電容量温度係数:N40
ppm/℃,Q:3000,絶縁抵抗:8.0×101
2Ω,絶縁破壊強度:30kv/mmおよび結晶粒径:
1〜5μmの値が得られた。
[0003] BaO・TiO2・Nd2O3 system BaO・
TiO2/Sm2O3 system e.g. 0.09BaO/0.56TiO2/0.35N
A dielectric ceramic disk was prepared using a dielectric ceramic composition having a composition ratio of dO3/2, and its electrical properties and crystal grain size were measured. Dielectric constant: 67, Capacitance temperature coefficient: N40
ppm/℃, Q: 3000, insulation resistance: 8.0×101
2Ω, dielectric breakdown strength: 30kv/mm and crystal grain size:
Values of 1-5 μm were obtained.

【0004】0004

【発明が解決しようとする課題】しかしながら、上記の
従来の構成では、絶縁抵抗が小さく、また結晶粒径が大
きいため、素体中の気孔率が大きくなるとともに結晶粒
子1個当たりにかかる電界強度が大きくなるので、絶縁
破壊強度も小さいという問題点を有していた。
[Problems to be Solved by the Invention] However, in the above conventional configuration, the insulation resistance is low and the crystal grain size is large, so the porosity in the element body increases and the electric field strength applied to each crystal grain increases. Since this increases, there is a problem in that the dielectric breakdown strength is also low.

【0005】本発明は上記従来の問題点を解決するもの
で、結晶粒径が小さく、絶縁抵抗,絶縁破壊強度が大き
い誘電体磁器を得ることができる誘電体磁器組成物を提
供することを目的とする。
The present invention solves the above-mentioned conventional problems, and aims to provide a dielectric ceramic composition capable of obtaining a dielectric ceramic having a small crystal grain size and high insulation resistance and dielectric breakdown strength. shall be.

【0006】[0006]

【課題を解決するための手段】この課題を解決するため
に本発明の誘電体磁器組成物は、一般式x[(BaO)
(1−m)(MgO)m]・y[(TiO2)(1−n
)(ZrO2)n]・z(R(1−t)Met)O3/
2で表され、式中RはLa,Pr,Nd,Smから選ば
れる一種以上の希土類元素で、MeはLa,Pr,Nd
,Smを除く希土類元素から選ばれる一種以上の希土類
元素であり、m,nおよびtの値が0.01≦m≦0.
50、0.001≦n≦0.200および0.01≦t
≦0.20なる範囲にある組成を有し、かつx,yおよ
びzはモル比を表し、x+y+z=1でx,y,zの値
が、aはx=0.15、y=0.50、z=0.35、
bはx=0.16、y=0.61、z=0.23、cは
x=0.10、y=0.67、z=0.23、dはx=
0.09、y=0.60、z=0.31、eはx=0.
02、y=0.58、z=0.40、fはx=0.02
、y=0.52、z=0.46、で示すa,b,c,d
,e,fで囲まれるモル比の範囲にある組成を有する主
成分100重量部、およびニオブをNb2O5の形に換
算して0.3〜5.0重量部からなるものである。
[Means for Solving the Problem] In order to solve this problem, the dielectric ceramic composition of the present invention has the general formula x[(BaO)
(1-m)(MgO)m]・y[(TiO2)(1-n
)(ZrO2)n]・z(R(1-t)Met)O3/
2, where R is one or more rare earth elements selected from La, Pr, Nd, and Sm, and Me is La, Pr, and Nd.
, one or more rare earth elements selected from rare earth elements excluding Sm, and the values of m, n and t are 0.01≦m≦0.
50, 0.001≦n≦0.200 and 0.01≦t
≦0.20, and x, y, and z represent molar ratios, where x+y+z=1, the values of x, y, and z are in the range of x=0.15, y=0. 50, z=0.35,
b is x=0.16, y=0.61, z=0.23, c is x=0.10, y=0.67, z=0.23, d is x=
0.09, y=0.60, z=0.31, e is x=0.
02, y=0.58, z=0.40, f is x=0.02
, y=0.52, z=0.46, a, b, c, d
, e, and f, and 0.3 to 5.0 parts by weight of niobium in the form of Nb2O5.

【0007】また、ニオブに代えて、タンタルがTa2
O5の形に換算して0.1〜10.0重量部含有されて
なるものである。
[0007] Also, instead of niobium, tantalum can be used as Ta2.
It is contained in an amount of 0.1 to 10.0 parts by weight in terms of O5 form.

【0008】さらには、ニオブに代えて、バナジウムが
V2O5の形に換算して0.005〜1.000重量部
含有されてなるものである。
Furthermore, instead of niobium, vanadium is contained in an amount of 0.005 to 1.000 parts by weight in the form of V2O5.

【0009】さらにまた、ニオブに代えて、ニオブ,タ
ンタル,バナジウムから選ばれる2種以上がNb2O5
,Ta2O5,V2O5の形に換算して合計で0.00
1〜0.010モル部含有されてなるものである。
Furthermore, in place of niobium, two or more selected from niobium, tantalum, and vanadium are Nb2O5.
, Ta2O5, V2O5 in total is 0.00
It contains 1 to 0.010 mole part.

【0010】0010

【作用】この構成によって、RをLa,Pr,Nd,S
mから選ぶことにより、La,Pr,Nd,Smの順で
静電容量温度係数をプラス方向に移行することとなる。
[Operation] With this configuration, R can be changed to La, Pr, Nd, S
By selecting from m, the capacitance temperature coefficient shifts in the positive direction in the order of La, Pr, Nd, and Sm.

【0011】また、La,Pr,Nd,Smから選ばれ
る一種以上の希土類元素の一部を、La,Pr,Nd,
Smを除く希土類元素から選ばれる一種以上の希土類元
素で置換することにより、Qを大きくすることとなる。
[0011] Further, a part of one or more rare earth elements selected from La, Pr, Nd, and Sm may be replaced with La, Pr, Nd,
Q can be increased by substituting with one or more rare earth elements selected from rare earth elements other than Sm.

【0012】さらに、BaOをMgOで置換することに
より、静電容量温度係数をプラス方向に移行させ、絶縁
抵抗を大きくすることとなる。
Furthermore, by substituting BaO with MgO, the temperature coefficient of capacitance is shifted to the positive direction, and the insulation resistance is increased.

【0013】そして、TiO2をZrO2で置換するこ
とにより、結晶粒径を小さくし、絶縁破壊強度を大きく
することとなる。
[0013] By substituting TiO2 with ZrO2, the crystal grain size is reduced and the dielectric breakdown strength is increased.

【0014】また、ニオブ,タンタル,バナジウムもし
くはそれらから選ばれる二種以上を副成分として含有さ
せることにより、絶縁抵抗,絶縁破壊強度を大きくする
こととなる。
Furthermore, by containing niobium, tantalum, vanadium, or two or more selected from these as subcomponents, the insulation resistance and dielectric breakdown strength can be increased.

【0015】[0015]

【実施例】以下、本発明の一実施例について説明する。[Embodiment] An embodiment of the present invention will be described below.

【0016】(実施例1)出発原料には化学的に高純度
のNb2O5,La2O3,Pr6O11,Nd2O3
,Sm2O3,CeO2,Gd2O3,Dy2O3,Z
rO2,TiO2,MgOおよびBaCO3粉末を下記
の(表1)に示す組成比になるように秤量し、めのうボ
ールを備えたゴム内張りのボールミルに純水とともに入
れ、湿式混合後、脱水乾燥した。この乾燥粉末を高アル
ミナ質のルツボに入れ、空気中で1100℃にて2時間
仮焼した。この仮焼粉末を、めのうボールを備えたゴム
内張りのボールミルに純水とともに入れ、湿式粉砕後、
脱水乾燥した。この粉砕粉末に、有機バインダーを加え
、均質とした後、32メッシュのふるいを通して整粒し
、金型と油圧プレスを用いて成形圧力1ton/cm2
で直径15mm,厚み0.4mmに成形した。次いで、
こうして得られた成形円板をジルコニア粉末を敷いたア
ルミナ質のサヤに入れ、空気中にて(表1)に示す焼成
温度で2時間焼成し、(表1)の試料番号1〜10に示
す組成比の誘電体磁器円板を得た。
(Example 1) Chemically high-purity Nb2O5, La2O3, Pr6O11, Nd2O3 are used as starting materials.
, Sm2O3, CeO2, Gd2O3, Dy2O3, Z
rO2, TiO2, MgO and BaCO3 powders were weighed so as to have the composition ratios shown below (Table 1), put into a rubber-lined ball mill equipped with agate balls together with pure water, wet mixed, and then dehydrated and dried. This dry powder was placed in a high alumina crucible and calcined in air at 1100°C for 2 hours. This calcined powder was put into a rubber-lined ball mill equipped with agate balls together with pure water, and after wet grinding,
Dehydrated and dried. After adding an organic binder to this pulverized powder and making it homogeneous, the powder was sized through a 32-mesh sieve, and the molding pressure was 1 ton/cm2 using a mold and a hydraulic press.
It was molded to a diameter of 15 mm and a thickness of 0.4 mm. Then,
The thus obtained molded disks were placed in an alumina pod covered with zirconia powder and fired in air at the firing temperatures shown in Table 1 for 2 hours. A dielectric ceramic disk with a composition ratio was obtained.

【0017】[0017]

【表1】[Table 1]

【0018】このようにして得られた誘電体磁器円板は
、厚みと直径を測定し、誘電率,Q,静電容量温度係数
測定用試料は、誘電体磁器円板の両面全体に銀電極を焼
き付け、絶縁抵抗,絶縁破壊強度測定用試料は、誘電体
磁器円板の外周より内側に1mmの幅で銀電極のない部
分を設け、銀電極を焼き付けた。そして、誘電率,Q,
静電容量温度係数は、横河・ヒューレット・パッカード
(株)社製デジタルLCRメータのモデル4275Aを
使用し、測定温度20℃,測定電圧1.0Vrms,測
定周波数1MHzでの測定より求めた。なお、静電容量
温度係数は、20℃と85℃の静電容量を測定し、次式
により求めた。
The thickness and diameter of the dielectric ceramic disk thus obtained were measured, and the sample for measuring the dielectric constant, Q, and capacitance temperature coefficient was prepared using silver electrodes on both sides of the dielectric ceramic disk. A sample for measuring insulation resistance and dielectric breakdown strength was prepared by providing a 1 mm wide portion without a silver electrode inside the outer periphery of a dielectric ceramic disk, and baking a silver electrode thereon. And the dielectric constant, Q,
The capacitance temperature coefficient was determined using a digital LCR meter model 4275A manufactured by Yokogawa-Hewlett-Packard Co., Ltd. at a measurement temperature of 20° C., a measurement voltage of 1.0 Vrms, and a measurement frequency of 1 MHz. The capacitance temperature coefficient was determined by measuring capacitance at 20° C. and 85° C. using the following formula.

【0019】 TC=(C−Co)/Co×1/65×106TC:静
電容量温度係数(ppm/℃)Co:20℃での静電容
量(pF) C:85℃での静電容量(pF) また、誘電率は次式より求めた。
TC=(C-Co)/Co×1/65×106TC: Temperature coefficient of capacitance (ppm/°C) Co: Capacitance at 20°C (pF) C: Capacitance at 85°C (pF) Further, the dielectric constant was determined from the following formula.

【0020】K=143.8×Co×t/D2K:誘電
率 Co:20℃での静電容量(pF) D:誘電体磁器の直径(mm) t:誘電体磁器の厚み(mm) さらに、絶縁抵抗は、横河・ヒューレット・パッカード
(株)社製HRメータのモデル4329Aを使用し、測
定電圧50V.D.C.,測定時間1分間による測定よ
り求めた。
K=143.8×Co×t/D2K: Dielectric constant Co: Capacitance at 20°C (pF) D: Diameter of dielectric ceramic (mm) t: Thickness of dielectric ceramic (mm) Further , insulation resistance was measured using Yokogawa-Hewlett-Packard Co., Ltd. HR meter model 4329A, and the measurement voltage was 50V. D. C. , was determined from measurements with a measurement time of 1 minute.

【0021】そして、絶縁破壊強度は、菊水電子工業(
株)製高電圧電源PHS35K−3形を使用し、試料を
シリコンオイル中に入れ、昇圧速度50V/secによ
り求めた絶縁破壊電圧を誘電体厚みで除算し、1mm当
たりの絶縁破壊強度とした。
[0021]The dielectric breakdown strength was determined by Kikusui Electronics (
Using a high voltage power supply model PHS35K-3 manufactured by Co., Ltd., the sample was placed in silicone oil, and the dielectric breakdown voltage determined at a voltage increase rate of 50 V/sec was divided by the dielectric thickness to obtain the dielectric breakdown strength per 1 mm.

【0022】また、結晶粒径は、倍率400での光学顕
微鏡観察より求めた。上記測定結果を試料番号1〜10
別に(表2)に示す。
Further, the crystal grain size was determined by optical microscope observation at a magnification of 400. The above measurement results are sample numbers 1 to 10.
It is shown separately (Table 2).

【0023】[0023]

【表2】[Table 2]

【0024】また、図1は本発明にかかる組成物の主成
分の組成範囲を示す三元図であり、主成分の組成範囲を
限定した理由を図1を参照しながら説明する。すなわち
、A領域では焼結が著しく困難である。また、B領域で
はQが小さく実用的でなくなる。さらに、C,D領域で
は静電容量温度係数がマイナス側に大きくなりすぎて実
用的でなくなる。そして、E領域では静電容量温度係数
がプラス方向に移行するが誘電率が小さく実用的でなく
なる。また、RをLa,Pr,Nd,Smから選ぶこと
により、La,Pr,Nd,Smの順で誘電率を大きく
下げることなく、静電容量温度係数をプラス方向に移行
することが可能であり、La,Pr,Nd,Smの1種
あるいはそれらの組合せにより静電容量温度係数の調節
が可能である。
FIG. 1 is a ternary diagram showing the composition range of the main components of the composition according to the present invention, and the reason for limiting the composition range of the main components will be explained with reference to FIG. That is, sintering is extremely difficult in region A. Further, in region B, Q is small and becomes impractical. Furthermore, in regions C and D, the capacitance temperature coefficient becomes too large on the negative side, making it impractical. In region E, the temperature coefficient of capacitance shifts to a positive direction, but the dielectric constant is too small to be practical. In addition, by selecting R from La, Pr, Nd, and Sm, it is possible to shift the capacitance temperature coefficient in the positive direction without significantly lowering the dielectric constant in the order of La, Pr, Nd, and Sm. , La, Pr, Nd, and Sm, or a combination thereof, the capacitance temperature coefficient can be adjusted.

【0025】さらに、La,Pr,Nd,Smから選ば
れる一種以上の希土類元素の一部を、La,Pr,Nd
,Smを除く希土類元素から選ばれる一種以上の希土類
元素で置換することにより、Qを大きくする効果を有し
ているが、その置換率tが0.01未満では置換効果は
なく、一方0.20を超えると誘電率が小さくなり実用
的でなくなる。
Furthermore, a part of one or more rare earth elements selected from La, Pr, Nd, and Sm is
, Sm is substituted with one or more rare earth elements selected from rare earth elements other than Sm, which has the effect of increasing Q. However, if the substitution rate t is less than 0.01, there is no substitution effect; If it exceeds 20, the dielectric constant becomes too small to be practical.

【0026】また、BaOをMgOで置換することによ
り、誘電率,Q,絶縁破壊強度の値を大きく変えること
なく、静電容量温度係数をプラス方向に移行させ、絶縁
抵抗を大きくする効果を有しているが、その置換率mが
0.01未満では置換効果はなく、一方0.50を超え
ると誘電率が小さくなり実用的でなくなる。
[0026] Furthermore, by replacing BaO with MgO, it is possible to shift the capacitance temperature coefficient in the positive direction and increase the insulation resistance without significantly changing the values of dielectric constant, Q, and dielectric breakdown strength. However, if the substitution rate m is less than 0.01, there is no substitution effect, while if it exceeds 0.50, the dielectric constant becomes small and is not practical.

【0027】さらに、TiO2をZrO2で置換するこ
とにより、誘電率,Q,静電容量温度係数,絶縁抵抗の
値を大きく変えることなく、結晶粒径を小さくし、絶縁
破壊強度を大きくする効果を有しているが、その置換率
nが0.001未満では置換効果はなく、一方0.20
0を超えると誘電率,Q,絶縁抵抗が小さくなる。
Furthermore, by replacing TiO2 with ZrO2, it is possible to reduce the crystal grain size and increase the dielectric breakdown strength without significantly changing the dielectric constant, Q, temperature coefficient of capacitance, and insulation resistance. However, if the substitution rate n is less than 0.001, there is no substitution effect; on the other hand, 0.20
When it exceeds 0, the dielectric constant, Q, and insulation resistance become small.

【0028】そして、主成分に対し、副成分としてのN
b2O5を含有することにより、絶縁抵抗,絶縁破壊強
度を大きくする効果を有しているが、Nb2O5の含有
量が主成分100重量部に対し、0.3重量部未満はそ
れほど絶縁破壊強度が大きくなく、この発明の範囲から
除外した。一方、Nb2O5の含有量が主成分に対し、
5.0重量部を超えるとQ,絶縁抵抗が小さくなり、静
電容量温度係数がマイナス側に大きくなり実用的でなく
なる。
[0028] Then, with respect to the main component, N as a subcomponent
Containing b2O5 has the effect of increasing insulation resistance and dielectric breakdown strength, but if the content of Nb2O5 is less than 0.3 parts by weight per 100 parts by weight of the main component, the dielectric breakdown strength is not so high. Therefore, it is excluded from the scope of this invention. On the other hand, the content of Nb2O5 is
If it exceeds 5.0 parts by weight, the insulation resistance (Q) decreases and the temperature coefficient of capacitance increases to the negative side, making it impractical.

【0029】(実施例2)実施例1の原料の中で高純度
のNb2O5に代えて、高純度のTa2O5粉末を用い
て下記の(表3)に示す組成比になるように秤量し、以
降の工程を実施例1と同様に処理して(表3)の試料番
号11〜20に示す組成比の誘電体磁器円板を得、実施
例1と同様に処理して特性を測定した結果を試料番号1
1〜20別に(表4)に示す。
(Example 2) High-purity Ta2O5 powder was used in place of high-purity Nb2O5 in the raw materials of Example 1, and the composition ratio was as shown in Table 3 below. Dielectric ceramic disks having the composition ratios shown in sample numbers 11 to 20 in Table 3 were obtained by processing the steps in the same manner as in Example 1, and the results were obtained by processing in the same manner as in Example 1 and measuring the characteristics. Sample number 1
1 to 20 (Table 4).

【0030】[0030]

【表3】[Table 3]

【0031】[0031]

【表4】[Table 4]

【0032】ここで、主成分の組成範囲と構成を限定し
た理由は、実施例1と同様であるので説明は省略する。 そして、主成分に対し、副成分としてのTa2O5を含
有することにより、絶縁抵抗,絶縁破壊強度を大きくす
る効果を有しているが、Ta2O5の含有量が主成分1
00重量部に対し、0.1重量部未満はそれほど絶縁破
壊強度が大きくなく、この発明の範囲から除外した。一
方、Ta2O5の含有量が主成分に対し、10.0重量
部を超えるとQ,絶縁抵抗が小さくなり、静電容量温度
係数がマイナス側に大きくなり実用的でなくなる。
[0032] Here, the reason for limiting the composition range and structure of the main components is the same as in Example 1, so the explanation will be omitted. The addition of Ta2O5 as a subcomponent to the main component has the effect of increasing insulation resistance and dielectric breakdown strength;
If the amount is less than 0.1 part by weight, the dielectric breakdown strength is not so large and it is excluded from the scope of the present invention. On the other hand, if the content of Ta2O5 exceeds 10.0 parts by weight based on the main component, the insulation resistance (Q) decreases and the temperature coefficient of capacitance increases to the negative side, making it impractical.

【0033】(実施例3)実施例1の原料の中で高純度
のNb2O5に代えて、高純度のV2O5粉末を用いて
下記の(表5)に示す組成比になるように秤量し、以降
の工程を実施例1と同様に処理して(表5)の試料番号
21〜30に示す組成比の誘電体磁器円板を得、実施例
1と同様に処理して特性を測定した結果を試料番号21
〜30別に(表6)に示す。
(Example 3) High-purity V2O5 powder was used in place of high-purity Nb2O5 in the raw materials of Example 1, and the composition ratio was as shown in Table 5 below. Dielectric ceramic disks having the composition ratios shown in sample numbers 21 to 30 in Table 5 were obtained by processing the steps in the same manner as in Example 1, and the results were obtained by processing in the same manner as in Example 1 and measuring the characteristics. Sample number 21
~30 separately (Table 6).

【0034】[0034]

【表5】[Table 5]

【0035】[0035]

【表6】[Table 6]

【0036】ここで、主成分の組成範囲と構成を限定し
た理由は、実施例1と同様であるので説明は省略する。 そして、主成分に対し、副成分としてのV2O5を含有
することにより、絶縁抵抗,絶縁破壊強度を大きくする
効果を有しているが、V2O5の含有量が主成分100
重量部に対し、0.005重量部未満はそれほど絶縁破
壊強度が大きくなく、この発明の範囲から除外した。一
方、V2O5の含有量が主成分に対し、1.000重量
部を超えるとQ,絶縁抵抗が小さくなり、実用的でなく
なる。
[0036] Here, the reason for limiting the composition range and structure of the main components is the same as in Example 1, so the explanation will be omitted. By containing V2O5 as a subcomponent to the main component, it has the effect of increasing insulation resistance and dielectric breakdown strength, but the content of V2O5 is 100% of the main component.
If the amount is less than 0.005 parts by weight, the dielectric breakdown strength is not so high and it is excluded from the scope of the present invention. On the other hand, if the content of V2O5 exceeds 1.000 parts by weight based on the main component, the insulation resistance will decrease, making it impractical.

【0037】(実施例4)実施例1の原料の中で高純度
のNb2O5に代えて、高純度のNb2O5,Ta2O
5およびV2O5粉末を用いて下記の(表7)に示す組
成比になるように秤量し、以降の工程を実施例1と同様
に処理して(表7)の試料番号31〜40に示す組成比
の誘電体磁器円板を得、実施例1と同様に処理して特性
を測定した結果を試料番号31〜40別に(表8)に示
す。
(Example 4) In place of high-purity Nb2O5 among the raw materials of Example 1, high-purity Nb2O5, Ta2O
5 and V2O5 powder were weighed so as to have the composition ratio shown in Table 7 below, and the subsequent steps were performed in the same manner as in Example 1 to obtain the compositions shown in sample numbers 31 to 40 (Table 7). Dielectric ceramic disks of different proportions were obtained, treated in the same manner as in Example 1, and their characteristics were measured. The results are shown in Table 8 for sample numbers 31 to 40.

【0038】[0038]

【表7】[Table 7]

【0039】[0039]

【表8】[Table 8]

【0040】ここで、主成分の組成範囲と構成を限定し
た理由は、実施例1と同様であるので説明は省略する。 そして、主成分に対し、副成分としてのNb2O5,T
a2O5,V2O5を含有することにより、絶縁抵抗,
絶縁破壊強度を大きくする効果を有しているが、Nb2
O5,Ta2O5,V2O5の含有量の合計が主成分1
00重量部に対し、0.001モル部未満はそれほど絶
縁破壊強度が大きくなく、この発明の範囲から除外した
。一方、Nb2O5,Ta2O5,V2O5の含有量の
合計が主成分に対し、0.010モル部を超えるとQ,
絶縁抵抗が小さくなり、静電容量温度係数がマイナス側
に大きくなり実用的でなくなる。また、Nb2O5,T
a2O5,V2O5から選ばれる二種以上を含有すると
ことにより、Nb2O5,Ta2O5,V2O5から選
ばれる一種を含有するものに比べ、誘電率,Q,絶縁抵
抗,絶縁破壊電圧が大きく、静電容量温度係数を小さく
することができる。
[0040] Here, the reason for limiting the composition range and structure of the main components is the same as in Example 1, so the explanation will be omitted. Then, with respect to the main component, Nb2O5 and T as subcomponents
By containing a2O5 and V2O5, insulation resistance,
Although it has the effect of increasing dielectric breakdown strength, Nb2
The total content of O5, Ta2O5, and V2O5 is the main component 1
If the amount is less than 0.001 parts by mole, the dielectric breakdown strength is not so large and is excluded from the scope of the present invention. On the other hand, if the total content of Nb2O5, Ta2O5, and V2O5 exceeds 0.010 mole part based on the main components, Q,
The insulation resistance becomes small and the temperature coefficient of capacitance becomes large on the negative side, making it impractical. Also, Nb2O5,T
By containing two or more types selected from a2O5 and V2O5, the dielectric constant, Q, insulation resistance, and dielectric breakdown voltage are larger, and the capacitance temperature coefficient is higher than those containing one type selected from Nb2O5, Ta2O5, and V2O5. can be made smaller.

【0041】なお、上記実施例における誘電体磁器の作
製方法では、V2O5,Ta2O5,Nb2O5,La
2O3,Pr6O11,Nd2O3,Sm2O3,Ce
O2,Gd2O3,Dy2O3,ZrO2,TiO2,
MgOおよびBaCO3を使用したが、この方法に限定
されるものではなく、所望の組成比になるように、Ba
TiO3などの化合物、あるいは炭酸塩,水酸化物など
空気中での加熱により、V2O5,Ta2O5,Nb2
O5,La2O3,Pr6O11,Nd2O3,Sm2
O3,CeO2,Gd2O3,Dy2O3,ZrO2,
TiO2,MgOおよびBaOとなる化合物を使用して
も実施例と同程度の特性を得ることができる。
[0041] In the method for manufacturing dielectric ceramic in the above embodiment, V2O5, Ta2O5, Nb2O5, La
2O3, Pr6O11, Nd2O3, Sm2O3, Ce
O2, Gd2O3, Dy2O3, ZrO2, TiO2,
Although MgO and BaCO3 were used, the method is not limited to this method, and BaCO3 can be used to obtain a desired composition ratio.
By heating compounds such as TiO3, carbonates, and hydroxides in air, V2O5, Ta2O5, Nb2
O5, La2O3, Pr6O11, Nd2O3, Sm2
O3, CeO2, Gd2O3, Dy2O3, ZrO2,
Even if compounds such as TiO2, MgO, and BaO are used, properties comparable to those of the examples can be obtained.

【0042】また、主成分をあらかじめ仮焼し、副成分
を添加しても実施例と同程度の特性を得ることができる
[0042] Furthermore, even if the main component is calcined in advance and subcomponents are added, properties comparable to those of the examples can be obtained.

【0043】さらに、誘電体磁器用として一般に使用さ
れる工業用原料の二酸化チタン、例えばチタン工業(株
)製二酸化チタンKA−10C、古河鉱業(株)製二酸
化チタンFA−55Wには最大0.45重量%のNb2
O5が含まれるが、これらの二酸化チタンを使用して実
施例1の主成分の誘電体磁器を作製しても主成分100
重量部に対して、Nb2O5の含有量は最大で0.2重
量部であり、この発明の範囲外であるが、工業用原料の
二酸化チタン中のNb2O5量を考慮し、不足分のNb
2O5を含有させることにより、実施例と同程度の特性
を得ることができる。
Furthermore, titanium dioxide, an industrial raw material commonly used for dielectric ceramics, such as titanium dioxide KA-10C manufactured by Titan Kogyo Co., Ltd. and titanium dioxide FA-55W manufactured by Furukawa Mining Co., Ltd., has a maximum of 0. 45% by weight Nb2
Although O5 is included, even if the dielectric ceramic having the main component of Example 1 is made using these titanium dioxides, the main component is 100%.
The content of Nb2O5 is at most 0.2 parts by weight, which is outside the scope of this invention, but considering the amount of Nb2O5 in titanium dioxide, which is an industrial raw material,
By containing 2O5, properties comparable to those of the examples can be obtained.

【0044】また、上述の基本組成のほかに、SiO2
,MnO2,Fe2O3,ZnO,Al2O3など、一
般にフラックスと考えられている塩類,酸化物などを、
特性を損なわない範囲で加えることもできる。
[0044] In addition to the above basic composition, SiO2
, MnO2, Fe2O3, ZnO, Al2O3, and other salts and oxides that are generally considered to be fluxes.
It can also be added within a range that does not impair the characteristics.

【0045】[0045]

【発明の効果】以上の実施例の説明からも明らかなよう
に本発明は、一般式x[(BaO)(1−m)(MgO
)m]・y[(TiO2)(1−n)(ZrO2)n]
・z(R(1−t)Met)O3/2で表され、式中R
はLa,Pr,Nd,Smから選ばれる一種以上の希土
類元素で、MeはLa,Pr,Nd,Smを除く希土類
元素から選ばれる一種以上の希土類元素であり、m,n
およびtの値が0.01≦m≦0.50、0.001≦
n≦0.200および0.01≦t≦0.20なる範囲
にある組成を有し、かつx,yおよびzはモル比を表し
、x+y+z=1でx,y,zの値が、所定の数値を示
すa,b,c,d,e,fで囲まれるモル比の範囲にあ
る組成を主成分とし、ニオブ,タンタル,バナジウムも
しくはそれらから選ばれる二種以上を副成分として含有
させた誘電体磁器組成物の構成により、結晶粒径が小さ
く、誘電率,Q,絶縁抵抗,絶縁破壊電圧が大きく、静
電容量温度係数が小さい誘電体磁器を得ることができる
ものである。
Effects of the Invention As is clear from the description of the examples above, the present invention provides the following advantages:
)m]・y[(TiO2)(1-n)(ZrO2)n]
・Represented by z(R(1-t)Met)O3/2, in the formula R
is one or more rare earth elements selected from La, Pr, Nd, and Sm; Me is one or more rare earth elements selected from rare earth elements other than La, Pr, Nd, and Sm;
and the value of t is 0.01≦m≦0.50, 0.001≦
It has a composition in the range of n≦0.200 and 0.01≦t≦0.20, and x, y, and z represent the molar ratio, and when x+y+z=1, the values of x, y, and z are in the predetermined range. The main component is a composition in the molar ratio range surrounded by a, b, c, d, e, f indicating the numerical value of Depending on the structure of the dielectric ceramic composition, it is possible to obtain a dielectric ceramic having a small crystal grain size, a large dielectric constant, Q, insulation resistance, and dielectric breakdown voltage, and a small temperature coefficient of capacitance.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例における誘電体磁器組成物の
主成分の組成範囲を説明する三元図
FIG. 1 is a ternary diagram illustrating the composition range of the main components of a dielectric ceramic composition in one embodiment of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一般式としてx[(BaO)(1−m)(
MgO)m]・y[(TiO2)(1−n)(ZrO2
)n]・z(R(1−t)Met)O3/2で表され、
式中RはLa,Pr,Nd,Smから選ばれる一種以上
の希土類元素で、MeはLa,Pr,Nd,Smを除く
希土類元素から選ばれる一種以上の希土類元素であり、
m,nおよびtの値が0.01≦m≦0.50、0.0
01≦n≦0.200および0.01≦t≦0.20な
る範囲にあり、かつx,yおよびzはモル比を表し、x
+y+z=1でx,y,zの値が、 aはx=0.15、y=0.50、z=0.35、bは
x=0.16、y=0.61、z=0.23、cはx=
0.10、y=0.67、z=0.23、dはx=0.
09、y=0.60、z=0.31、eはx=0.02
、y=0.58、z=0.40、fはx=0.02、y
=0.52、z=0.46、で示すa,b,c,d,e
,fで囲まれるモル比の範囲にある組成を有する主成分
100重量部、およびニオブをNb2O5の形に換算し
て0.3〜5.0重量部からなる誘電体磁器組成物。
Claim 1: The general formula is x[(BaO)(1-m)(
MgO)m]・y[(TiO2)(1-n)(ZrO2
)n]・z(R(1-t)Met)O3/2,
In the formula, R is one or more rare earth elements selected from La, Pr, Nd, and Sm; Me is one or more rare earth elements selected from rare earth elements other than La, Pr, Nd, and Sm;
The values of m, n and t are 0.01≦m≦0.50, 0.0
01≦n≦0.200 and 0.01≦t≦0.20, and x, y and z represent molar ratios, and x
+y+z=1 and the values of x, y, z are: a is x=0.15, y=0.50, z=0.35, b is x=0.16, y=0.61, z=0 .23, c is x=
0.10, y=0.67, z=0.23, d is x=0.
09, y=0.60, z=0.31, e is x=0.02
, y=0.58, z=0.40, f is x=0.02, y
=0.52, z=0.46, a, b, c, d, e
, f, and 0.3 to 5.0 parts by weight of niobium in the form of Nb2O5.
【請求項2】ニオブに代えて、タンタルがTa2O5の
形に換算して0.1〜10.0重量部含有されてなる請
求項1記載の誘電体磁器組成物。
2. The dielectric ceramic composition according to claim 1, containing 0.1 to 10.0 parts by weight of tantalum in the form of Ta2O5 instead of niobium.
【請求項3】ニオブに代えて、バナジウムがV2O5の
形に換算して0.005〜1.000重量部含有されて
なる請求項1記載の誘電体磁器組成物。
3. The dielectric ceramic composition according to claim 1, which contains 0.005 to 1.000 parts by weight of vanadium in the form of V2O5 in place of niobium.
【請求項4】ニオブに代えて、ニオブ,タンタル,バナ
ジウムから選ばれる2種以上がNb2O5,Ta2O5
,V2O5の形に換算して合計で0.001〜0.01
0モル部含有されてなる請求項1記載の誘電体磁器組成
物。
Claim 4: Instead of niobium, two or more selected from niobium, tantalum, and vanadium are Nb2O5, Ta2O5
, 0.001 to 0.01 in total when converted to V2O5 form
The dielectric ceramic composition according to claim 1, wherein the dielectric ceramic composition contains 0 mole part.
JP3130993A 1991-06-03 1991-06-03 Dielectric porcelain composition Pending JPH04357616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3130993A JPH04357616A (en) 1991-06-03 1991-06-03 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3130993A JPH04357616A (en) 1991-06-03 1991-06-03 Dielectric porcelain composition

Publications (1)

Publication Number Publication Date
JPH04357616A true JPH04357616A (en) 1992-12-10

Family

ID=15047426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3130993A Pending JPH04357616A (en) 1991-06-03 1991-06-03 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH04357616A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650367A (en) * 1994-01-28 1997-07-22 Kyocera Corporation Dielectric ceramic composition
US6835681B2 (en) * 2000-12-20 2004-12-28 Matsushita Electric Industrial Co., Ltd. Dielectric ceramic composition and dielectric device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650367A (en) * 1994-01-28 1997-07-22 Kyocera Corporation Dielectric ceramic composition
US6835681B2 (en) * 2000-12-20 2004-12-28 Matsushita Electric Industrial Co., Ltd. Dielectric ceramic composition and dielectric device

Similar Documents

Publication Publication Date Title
JPH04357616A (en) Dielectric porcelain composition
JPH04357615A (en) Dielectric porcelain composition
JPH04357617A (en) Dielectric porcelain composition
JPH07211140A (en) Dielectric ceramic composition
JPH04188506A (en) Dielectric porcelain composition
JPH04357619A (en) Dielectric porcelain composition
JPH04357612A (en) Dielectric porcelain composition
JPH0912364A (en) Dielectric porcelain composition
JPH04357618A (en) Dielectric porcelain composition
JPH04357611A (en) Dielectric porcelain composition
JPH04357609A (en) Dielectric porcelain composition
JPH04357613A (en) Dielectric porcelain composition
JPH04357610A (en) Dielectric porcelain composition
JPH04357614A (en) Dielectric porcelain composition
JP2936661B2 (en) Dielectric porcelain composition
JP2917454B2 (en) Dielectric porcelain composition
JPH06260026A (en) Dielectric ceramic composition
JPH06302219A (en) Dielectric porcelain composition
JPH04357608A (en) Dielectric porcelain composition
JPH08301658A (en) Dielectric ceramic composition
JP2921048B2 (en) Dielectric porcelain composition
JPH08301657A (en) Dielectric ceramic composition
JPH04357620A (en) Dielectric porcelain composition
JPH06260027A (en) Dielectric ceramic composition
JPH06260034A (en) Dielectric ceramic composition