JPH03226573A - Method for controlling thickness of thin film - Google Patents

Method for controlling thickness of thin film

Info

Publication number
JPH03226573A
JPH03226573A JP2284490A JP2284490A JPH03226573A JP H03226573 A JPH03226573 A JP H03226573A JP 2284490 A JP2284490 A JP 2284490A JP 2284490 A JP2284490 A JP 2284490A JP H03226573 A JPH03226573 A JP H03226573A
Authority
JP
Japan
Prior art keywords
light
thin film
thickness
transmittance
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2284490A
Other languages
Japanese (ja)
Inventor
Yuji Kitagawa
裕士 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Meiva Industry Ltd filed Critical Shin Meiva Industry Ltd
Priority to JP2284490A priority Critical patent/JPH03226573A/en
Publication of JPH03226573A publication Critical patent/JPH03226573A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To control not only limited film thicknesses but also film thicknesses over a wide range including the thicknesses of thinner films and the integer times thereof by utilizing the phenomenon that a change in the reflectivity or transmittivity of the light to be used has a singular point as forming of thin films. CONSTITUTION:The T'' (d) obtd. by differentiating, twice, the transmittance T of the light through the thin film having the thickness (d) expressed by equation (where lambda: the wavelength of the light to be used as a reference, (d): the thickness of the thin film to be formed, (n): the refractive index of the light of the thin-film forming material, ng: the refractive index of the light of a monitor substrate) with respect to the thickness (d) is made into zero and the film thickness dh to become the inflection point of the transmittance or reflectivity is determined. The wavelength lambdah=lambda<2>/mdh is determined from this film thickness dh, integer (m), etc. While the thin film is formed, light is projected to the substrate and the transmittance or reflectivity is measured. The value obtd. by differentiating this transmittance or reflectivity twice with respect to the thickness (d) is observed and the formation of the thin film is stopped where the value attains zero.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、薄膜の膜厚を光学的手法を使用して制御する
方法に係り、特に使用する光の反射率または透過率の変
化が、薄膜の形成に伴い特異点をもつことt利用した膜
厚制御方法の改良に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for controlling the thickness of a thin film using an optical method, and in particular, a method for controlling the thickness of a thin film using an optical method. This invention relates to an improvement in a film thickness control method that takes advantage of the fact that a thin film has a singularity during its formation.

(従来の技術) 光学的手法によって薄膜の膜厚を制御する方法は、蒸着
膜形成を例にとると、蒸着を行うチャンバ内に膜厚測定
用のモニタ基板を設け、蒸着対象品とモニタ基板の両方
に蒸着膜を形成させながら、モニタ基板に投光し、その
透過光または反射光中の単色光を受光して透過率または
反射率を求め、これらが目標値に達したときに蒸着を終
らせることによって所望の膜厚を得るものである。
(Prior art) A method for controlling the thickness of a thin film using an optical method, taking vapor deposition film formation as an example, is to provide a monitor substrate for film thickness measurement in a chamber where vapor deposition is performed, and to connect the product to be vaporized and the monitor substrate. While forming a deposited film on both sides, light is projected onto the monitor substrate, and the transmitted light or monochromatic light in the reflected light is received to determine the transmittance or reflectance, and when these reach the target values, the deposition is stopped. The desired film thickness is obtained by finishing the coating.

ところで、透過率または反射率の目標値を算出するのに
蒸着膜の屈折率、モニタ基板の屈折率、単色光の波長λ
が用いられるが、このうち蒸着膜の屈折率が蒸着条件や
形成されている膜厚によって変化するのにもかかわらず
、この変化を無視し、既知の一定のものとみなしていた
だめ、透過率または反射率の目標値が適正でな(、正確
な膜厚が得られなかった。
By the way, to calculate the target value of transmittance or reflectance, the refractive index of the deposited film, the refractive index of the monitor substrate, and the wavelength λ of monochromatic light are used.
However, although the refractive index of the deposited film changes depending on the deposition conditions and the thickness of the film formed, this change was ignored and considered as a known constant, so the transmittance was Or, the target value of reflectance was not appropriate (or the accurate film thickness could not be obtained).

こうした欠点を補い、正確な膜厚が得られるようにする
ため、膜厚と屈折率との積がλ/4に達したとき透過率
または反射率が極大または極小になる性質を利用して膜
厚と屈折率との積がλ/4に達したときの透過率または
反射率を算出し、透過率または反射率の目標値を修正す
るようにした、蒸着膜厚制御方法が特開昭62−133
05号で公知になっている。
In order to compensate for these drawbacks and obtain an accurate film thickness, we developed a film using the property that the transmittance or reflectance becomes maximum or minimum when the product of film thickness and refractive index reaches λ/4. Japanese Patent Application Laid-Open No. 1988 (1982) describes a method for controlling the thickness of a deposited film in which the transmittance or reflectance is calculated when the product of the thickness and the refractive index reaches λ/4, and the target value of the transmittance or reflectance is corrected. -133
It has become publicly known in No. 05.

しかしながら、こうしたものでは蒸着膜厚と光の屈折率
との積を、使用する光の波長λの1/4またはその整数
倍になるように膜厚を制御することはできるが、例えば
膜厚と屈折率との積を1/8とかその整数倍などになる
ように制御することはできないので、成膜技術の適用が
広まり、種々の厚さの膜を形成することが必要になって
来たところ、その要求に応じることができな(なって来
た。
However, in these devices, the film thickness can be controlled so that the product of the deposited film thickness and the refractive index of light is 1/4 of the wavelength λ of the light used or an integral multiple thereof; Since it is not possible to control the product with the refractive index to be 1/8 or an integral multiple thereof, the application of film formation technology has become widespread, and it has become necessary to form films of various thicknesses. However, I was unable to meet that request.

(解決しようとする技術的課題) この発明は、こうした点に着目して行われたものであり
、形成される薄膜の膜厚な、膜厚と屈折率との積が使用
する光の波長スの1/4またはその整数倍といった限ら
れたものだけ制御するのではなく、もっと広範囲で制御
することのできる膜厚制御方法を提供すること7課題と
する。
(Technical Problems to be Solved) This invention was made with attention to these points. It is an object of the present invention to provide a film thickness control method that is capable of controlling a wider range of film thicknesses, rather than controlling only a limited number such as 1/4 of 1/4 or an integer multiple thereof.

(問題点を解決するだめの手段と作用)基準となる光の
波長λ、形成される薄膜の膜厚d、薄膜を形成する物質
の基準となる波長λにおける光の屈折率n、モニタ基板
の光の屈折率ngとしたとき、膜厚dの薄膜に対する光
の透過率Tを例にとるとTは、(1)式のとおりになる
(Means and actions to solve the problem) The reference wavelength λ of the light, the film thickness d of the thin film to be formed, the refractive index n of the light at the reference wavelength λ of the material forming the thin film, the monitor substrate For example, when the refractive index of light is ng, the transmittance T of light for a thin film having a thickness d is expressed as in equation (1).

(1)弐を膜厚dについて2回微分したものf(a)は
、大変複雑なものなので式?記入するのに省略するが、
そのものioと置(と(2)式のように表わせ、これか
ら変曲的となる膜厚dh?:求める。
(1) Since f(a), which is obtained by differentiating Ni twice with respect to the film thickness d, is very complicated, is it a formula? Although it is omitted when filling in,
Express it as shown in equation (2) and find the inflectional film thickness dh?

1゛電d) =0 (2) 次に、所望の膜厚doと薄膜形成物質の光の屈折率nと
の積ndが、基準波長λの17mになるようなmを選び
、(3)式によって使用する単色光の波長λhを求める
1゛electricity d) = 0 (2) Next, select m such that the product nd of the desired film thickness do and the light refractive index n of the thin film forming material is 17 m of the reference wavelength λ, and (3) The wavelength λh of the monochromatic light to be used is determined by the formula.

こうしたλhの求め方は、反射率の測定時についても同
様である。
The method for determining λh is the same when measuring reflectance.

λh −λ2/mdh (3) そして、この波長λhの光を使ってモニタ基板に形成さ
れた薄膜の光の透過率または反射率を測定して、これを
膜厚dについて2回微分したもの?観測し、それが零に
なったところで、薄膜形成するのを止める。
λh - λ2/mdh (3) Then, the light transmittance or reflectance of the thin film formed on the monitor substrate is measured using light of this wavelength λh, and this is differentiated twice with respect to the film thickness d? Observe it, and when it reaches zero, stop forming the thin film.

ところで、所望の膜厚doと薄膜形成物質の光、つ屈折
率nの積が、基準波長λの1/mまたはその整数倍の膜
厚を得るのには、従来の方式にあっても波長λ/mの光
乞使えばよい。しかしながら、例えば波長4000mの
光を使用することによって屈折率nと膜厚の積ndが、
400nmの1/4つまり1100nの膜厚を得ること
はできたとしても、400nmの1/8つまり5Qnm
の膜厚を得るには波長2001mの光を必要とするが、
波長200nmといえば可視光ではないため、光学的手
法の測定は事実上成立たなくなる。
By the way, in order to obtain a film thickness in which the product of the desired film thickness do, the light of the thin film forming material, and the refractive index n is 1/m of the reference wavelength λ or an integral multiple thereof, even in the conventional method, the wavelength Just use the light of λ/m. However, for example, by using light with a wavelength of 4000 m, the product nd of the refractive index n and the film thickness becomes
Even if it is possible to obtain a film thickness of 1/4 of 400 nm, or 1100 nm, the film thickness is 1/8 of 400 nm, or 5Q nm.
To obtain a film thickness of , light with a wavelength of 2001 m is required,
Since a wavelength of 200 nm is not visible light, optical measurements are virtually impossible.

また、薄膜を形成する物質の光の屈折率nは、光の波長
が変わると変わってくるので、使用する光の波長が違い
すぎると、透過率または反射率の目標値も変えな(では
ならない。これら二つのことから、使用する尤の波長は
、所望の膜厚を決めるうえで基準となる波長と余り違わ
ないことが必要になる。このため、前述のようにして使
用波長λhを決めており、こうした光を使用して、薄膜
からの透過光の透過率または反射光の反射率を観測し、
その2回微分が零となるところで薄膜形成をやめ、所望
の膜厚を得ることができる。
In addition, the refractive index n of the material forming the thin film changes as the wavelength of the light changes, so if the wavelength of the light used is too different, the target value of transmittance or reflectance should not be changed. For these two reasons, it is necessary that the appropriate wavelength to be used is not much different from the reference wavelength for determining the desired film thickness.For this reason, the wavelength λh to be used is determined as described above. Using this light, we can observe the transmittance of transmitted light or the reflectance of reflected light from a thin film,
Formation of the thin film is stopped when the second differential becomes zero, and the desired film thickness can be obtained.

(実施例) 真空槽内において、蒸着膜形式を行う装置における実施
例について、図面を用いて説明する。
(Example) An example of an apparatus for performing vapor deposition in a vacuum chamber will be described with reference to the drawings.

第1図において成膜対象品に薄膜の蒸着を行う真空槽1
の底部には、蒸着材料2を収容したるっぽ3を設置して
あり、るつぼ3上方には蒸発した材料を遮ぎるためのシ
ャッタ4を設置しである。
In Fig. 1, a vacuum chamber 1 is used to deposit a thin film on the target product.
A crucible 3 containing vapor deposition material 2 is installed at the bottom of the crucible, and a shutter 4 is installed above the crucible 3 to block the evaporated material.

真空槽1上部には図示しない保持具によって、成膜対象
品であるレンズ5を配列保持しており、その中央には蒸
着状況を観測するためのモニタ基板6を保持している。
Lenses 5, which are objects to be film-formed, are arranged and held in the upper part of the vacuum chamber 1 by a holder (not shown), and a monitor substrate 6 for observing the deposition status is held at the center thereof.

真空槽1の側方下部には光源7を配置し、真空槽1の中
心下方に設けたミラー8に臨ませてあり、真空槽底面中
央にはミラー8?:臨む下部窓9を設けである。また、
真空槽1上面中央には上部窓10を設けてあり、その上
方には図示しない保持具によって基準となる波長の干渉
フィルタ11または測定のために使用する干渉フィルタ
12を着脱自在に装着できるようにしである。
A light source 7 is arranged at the lower side of the vacuum chamber 1, facing a mirror 8 provided below the center of the vacuum chamber 1, and a mirror 8? : A lower window 9 facing the room is provided. Also,
An upper window 10 is provided at the center of the upper surface of the vacuum chamber 1, and above the upper window 10, an interference filter 11 for a reference wavelength or an interference filter 12 used for measurement can be detachably mounted using a holder (not shown). It is.

フィルタ装着部の上方中央には受光器13をフィルタ装
着、部に対面させて設けてあり、その出力は光ファイバ
によって信号処理装置14に入力するよう接続しである
A light receiver 13 is provided in the upper center of the filter mounting section so as to face the filter mounting section, and its output is connected to be input to a signal processing device 14 via an optical fiber.

こうした機器配置により、光源7からの光はミラー8、
下部窓9、モニタ基板6、上部窓10、フィルタ11ま
たは121に経て受光器13に到る光路を形成し、フィ
ルタ11または12を通過した単色光のみが受光され、
信号処理装置14で測定される。信号処理装置14は図
示しないコンピュータを内蔵し、単色光の透過率の測定
、その時間的変化曲線についての二回微分、変曲点の検
畠、シャッタ4への操作指令などを行う。
With this equipment arrangement, the light from the light source 7 is directed to the mirror 8,
An optical path is formed through the lower window 9, the monitor board 6, the upper window 10, and the filter 11 or 121 to the light receiver 13, and only the monochromatic light that has passed through the filter 11 or 12 is received.
Measured by the signal processing device 14. The signal processing device 14 has a built-in computer (not shown), and performs measurements of the transmittance of monochromatic light, double differentiation of its temporal change curve, inspection of inflection points, operation commands to the shutter 4, and the like.

基準波長λ=400nmの光に対する光の屈折率n=3
の蒸着物質を、その膜厚doと屈折率n=3の積がλ=
400nmの1/8となるようにレンズ5の表面に蒸着
するためには、(3)式におけるmを選定することが必
要になる。
Refractive index of light n=3 for light with reference wavelength λ=400 nm
The product of the film thickness do and the refractive index n=3 is λ=
In order to deposit on the surface of the lens 5 so as to have a thickness of 1/8 of 400 nm, it is necessary to select m in equation (3).

このため(1)式にλ−4001mY代入し、これを2
回微分して得た式を0とおいた(2)式より、h−46 を得る。また、(3)式においてm=9としたものt(
4)式とする。
For this reason, substitute λ-4001mY into equation (1) and convert it into 2
h-46 is obtained from equation (2) in which the equation obtained by differential differentiation is set to 0. In addition, when m = 9 in equation (3), t(
4) Let the formula be

λh−λ2/8dh          (4)(4)
式にλ=4QQnm、dh=4Qt代入して、λhに5
00を得る。これで使用する干渉フィルタの透過光波長
が求められた。
λh - λ2/8dh (4) (4)
Substitute λ=4QQnm and dh=4Qt into the equation, and set 5 to λh.
Get 00. The transmitted light wavelength of the interference filter to be used has now been determined.

真空槽1内の図示しない保持具にレンズ5および未使用
のモニタ基板6を装置し、透過光波長5QQnmの干渉
フィルタ12を装着する。
A lens 5 and an unused monitor board 6 are placed in a holder (not shown) in the vacuum chamber 1, and an interference filter 12 with a transmitted light wavelength of 5QQnm is attached.

光源7の出力を調整し、受光器13への初期入力を信号
処理装置に設定す・る。
The output of the light source 7 is adjusted, and the initial input to the light receiver 13 is set in the signal processing device.

蒸発を開始し、シャッタ4を開き、蒸着を行う。Evaporation is started, shutter 4 is opened, and vapor deposition is performed.

信号処理装置14において、受光器13の出力を測定し
、初期入力と比較して透過率の推移を観測する。
In the signal processing device 14, the output of the light receiver 13 is measured and compared with the initial input to observe the change in transmittance.

透過率の推移からその2回微分を求め、零になる点を探
す。2回微分値が零になったところで、5 Q n m
の膜厚が得られ、その後の零点でやめれの作業の流れを
第2図に示す。
Find the second derivative from the change in transmittance and find the point where it becomes zero. When the second differential value becomes zero, 5 Q n m
Figure 2 shows the flow of the work after obtaining a film thickness of 100 mL and then stopping at the zero point.

他の実施例として、基準波長λや定数mは適宜に選定す
ればよ(、形成する薄膜も蒸着以外のものであってもよ
い。また、透過率の測定だけでな(、反射光について反
射率を測定することによっても同様のことが行える。
As another example, the reference wavelength λ and the constant m may be appropriately selected (the thin film to be formed may also be made of a material other than vapor deposition). The same thing can be done by measuring the rate.

(効果) 以上のように、この発明によれば、モニタ基板測定に使
用する光の波長を決め、この波長の光を使用して透過率
または反射率の2回微分が零になる点で薄膜形成を停止
させるようにしたことで、使用する波長の1/4または
その整数倍といった限られた膜厚でな(、もっと薄いも
のやその整数倍など広範囲で膜厚を制御することができ
る。
(Effects) As described above, according to the present invention, the wavelength of light used for measuring the monitor board is determined, and light of this wavelength is used to measure the thin film at the point where the second differential of transmittance or reflectance becomes zero. By stopping the formation, it is possible to control the film thickness in a wide range, not only with a limited film thickness of 1/4 of the wavelength used or an integral multiple thereof, but also with a thinner film or an integral multiple thereof.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、この発明の実施例を示すものであって第1図は
概略図、第2図はフロー図である。 図面において、6はモニタ基板、7は光源、12は干渉
フィルタ、14は信号処理装置である。
The drawings show an embodiment of the invention, with FIG. 1 being a schematic diagram and FIG. 2 being a flow diagram. In the drawing, 6 is a monitor board, 7 is a light source, 12 is an interference filter, and 14 is a signal processing device.

Claims (1)

【特許請求の範囲】[Claims] 光学的手法を使用して薄膜の膜厚を制御する方法であっ
て、薄膜を透過した光の透過率または薄膜から反射した
光の反射率の、薄膜形成に伴う特異点を利用して膜厚を
制御する方法において、基準となる光の波長λ、形成さ
れる薄膜d、薄膜形成物質の光の屈折率n,モニタ基板
の光の屈折率ngの関数として表わされる透過光の透過
率または反射光の反射率を、膜厚dについて2回微分し
たものを零とおいて、透過率または反射率の変曲点とな
る膜厚dhを求め、このdhと基準となる光の波長λと
この波長λを所望の膜厚doと薄膜形成物質の光の屈折
率nとの積で除して得られる整数mから使用する光の波
長λhを求め、薄膜を形成させながら波長λhの光を使
用して、モニタ基板に投光し、その透過光の透過率また
は反射光の反射率を測定し、それらの推移について2回
微分が零となる点を検出したとき薄膜形成を停止させる
ようにした薄膜の膜厚制御方法。
A method of controlling the thickness of a thin film using an optical method, which takes advantage of the singularity of the transmittance of light transmitted through the thin film or the reflectance of light reflected from the thin film that accompanies thin film formation. In the method of controlling the wavelength λ of the reference light, the thin film d to be formed, the light refractive index n of the thin film forming material, and the light refractive index ng of the monitor substrate, the transmittance or reflection of transmitted light is determined. By setting the value obtained by differentiating the light reflectance twice with respect to the film thickness d as zero, find the film thickness dh that is the inflection point of the transmittance or reflectance, and calculate this dh, the reference wavelength λ of the light, and this wavelength. The wavelength λh of the light to be used is determined from the integer m obtained by dividing λ by the product of the desired film thickness do and the light refractive index n of the thin film-forming substance, and the light with the wavelength λh is used while forming the thin film. light is projected onto a monitor substrate, the transmittance of the transmitted light or the reflectance of the reflected light is measured, and thin film formation is stopped when a point where the second differential of these changes becomes zero is detected. film thickness control method.
JP2284490A 1990-01-31 1990-01-31 Method for controlling thickness of thin film Pending JPH03226573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2284490A JPH03226573A (en) 1990-01-31 1990-01-31 Method for controlling thickness of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2284490A JPH03226573A (en) 1990-01-31 1990-01-31 Method for controlling thickness of thin film

Publications (1)

Publication Number Publication Date
JPH03226573A true JPH03226573A (en) 1991-10-07

Family

ID=12094021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2284490A Pending JPH03226573A (en) 1990-01-31 1990-01-31 Method for controlling thickness of thin film

Country Status (1)

Country Link
JP (1) JPH03226573A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1094341A2 (en) * 1999-10-15 2001-04-25 Sony Corporation Apparatus and method for producing optical component
JP5189711B1 (en) * 2012-02-15 2013-04-24 株式会社シンクロン Optical film thickness measuring apparatus and thin film forming apparatus using optical film thickness measuring apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1094341A2 (en) * 1999-10-15 2001-04-25 Sony Corporation Apparatus and method for producing optical component
JP2001116902A (en) * 1999-10-15 2001-04-27 Sony Corp Device and method for manufacturing optical component
EP1094341A3 (en) * 1999-10-15 2002-08-28 Sony Corporation Apparatus and method for producing optical component
US6733821B1 (en) 1999-10-15 2004-05-11 Sony Corporation Method for forming an optical component
JP5189711B1 (en) * 2012-02-15 2013-04-24 株式会社シンクロン Optical film thickness measuring apparatus and thin film forming apparatus using optical film thickness measuring apparatus

Similar Documents

Publication Publication Date Title
TWI426258B (en) Real - time Monitoring of Film Growth by Dynamic Interferometer
KR100508007B1 (en) Process for forming a thin film and apparatus therefor
US5396080A (en) Thin film thickness monitoring with the intensity of reflected light measured at at least two discrete monitoring wavelengths
JPS5844961B2 (en) Film thickness control or monitoring equipment
EP0585883B1 (en) Method of measuring refractive index of thin film
JPH0439004B2 (en)
EP1094344B1 (en) Thin film forming method and apparatus
US7301149B2 (en) Apparatus and method for determining a thickness of a deposited material
JPH03226573A (en) Method for controlling thickness of thin film
GB2126338A (en) Interferometric measurement of short distances
US20090216474A1 (en) Optical monitor for rugate filter deposition
US5812264A (en) Method of measuring surface reflectance and a method of producing antireflective polarizing film
JPS6145702B2 (en)
RU2671927C1 (en) Method for determining thickness of layers of multilayer coating in process for deposition of optical elements
JPS6328862A (en) Method for controlling film thickness
JPH0790583A (en) Thin film forming method
JPH08136730A (en) Production of antireflection polarizing film
JPH01172569A (en) Process for controlling thickness of vapor deposition film
TWI753477B (en) System and method for monitoring optical thin film deposition
JPH0625851A (en) Device for controlling thickness of formed film
Spousta et al. In situ measurements of surface homogeneity of optical parameters of weakly absorbing thin films
JPS59143904A (en) Monitoring method of characteristics of dielectric thin film
JPS61253408A (en) Film thickness control of optical thin film
JPH05249312A (en) Production of optical multilayered film
JP2970020B2 (en) Method of forming coating thin film