JPS61253408A - Film thickness control of optical thin film - Google Patents

Film thickness control of optical thin film

Info

Publication number
JPS61253408A
JPS61253408A JP9545985A JP9545985A JPS61253408A JP S61253408 A JPS61253408 A JP S61253408A JP 9545985 A JP9545985 A JP 9545985A JP 9545985 A JP9545985 A JP 9545985A JP S61253408 A JPS61253408 A JP S61253408A
Authority
JP
Japan
Prior art keywords
film thickness
light
thin film
vacuum
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9545985A
Other languages
Japanese (ja)
Inventor
Susumu Himi
氷見 進
Yoshiharu Mori
森 佳治
Akira Yabushita
明 藪下
Kazuhiro Ogawa
小川 和裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9545985A priority Critical patent/JPS61253408A/en
Publication of JPS61253408A publication Critical patent/JPS61253408A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enable measurement of an optical film thickness with a wavelength less than 1/4 of the incident monochromic light, by irradiating a monochromic light beam in process of forming a thin film and monitor-controlling the thickness of the thin film by an optical phase angle calculated by the reciprocal of its transmissivity and differential value. CONSTITUTION:When increased vacuum intensity inside a vacuum chamber 1 and a closed shutter 2, preliminary vacuum deposition is made by heating the vacuum deposited substance 3 and the vacuum intensity is increased further and a monochromic light beam is irradiated into the vacuum chamber 1 from a light flasher 6 and a reciprocal of transmissivity only of the substrate 5 is calculated. Next, after heating the vacuum depositing substance, the shutter 2 is opened for starting forming of the thin film. At this moment, when irradiation of the monochromatic light beam is continued, the quantity of the transmitted light is decreased in reversed proportion of the film thickness. The transmitted light is received by a light receiver 7 and an electric signal corresponding to the received quantity of light is supplied to a controlling unit 8. The controlling unit 8 amplifies this signal for conversion into a digital signal and after uniformizing process with the laser time difference, an optical phase angle is calculated. Next, comparison is made with the set value decided by the required film thickness and upon achieving this value, a closing signal is issued to the shutter 12. Thus, control of the film thickness in the range of wavelengths less than 1/4 also can be available.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、光学薄膜の膜厚制御方法に係り、特に入射単
色光の1/4波長以下の膜厚の制御に好適な膜厚制御方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for controlling the thickness of an optical thin film, and particularly to a method for controlling a film thickness suitable for controlling a film thickness of 1/4 wavelength or less of incident monochromatic light. .

〔発明の背景〕[Background of the invention]

従来の光学薄膜の膜厚制御装置は、例えば特開昭56−
46404号公報に記載されているように、薄膜に単色
光を照射した時の反射光の反射率、あるいは透過光の透
過率が薄膜による元の干渉によって周期的に変化するこ
とを利用している。ところか、この方法では、計測でき
る膜厚は入射単色光の波長の1/4波長相当の膜厚であ
り、任意の膜厚を得るためには入射単色光の波長を変化
させる必要がある。それ故、計測できる膜厚はおのずと
入射単色光の波長に依存し、特に400nm以下の短波
長側では基板による吸収、膜の屈折率分散の影響が避け
られず、100nrn以下の薄い膜の計測には不向きで
ある。一方、特開昭58−140605号公報に記載さ
れているように、入射単色光の波長を変化させず、任意
の膜厚が計測可能な方法も存在するが、この方法では1
/4波長相当の透過率の値が既知である必要があり、ま
た、前述と同様に1/4波長以下の膜厚の計測には不向
きである。
A conventional film thickness control device for an optical thin film is, for example, disclosed in Japanese Patent Application Laid-Open No. 1986-
As described in Japanese Patent No. 46404, it utilizes the fact that when a thin film is irradiated with monochromatic light, the reflectance of reflected light or the transmittance of transmitted light changes periodically due to original interference by the thin film. . However, with this method, the film thickness that can be measured is a film thickness equivalent to 1/4 wavelength of the incident monochromatic light, and in order to obtain a desired film thickness, it is necessary to change the wavelength of the incident monochromatic light. Therefore, the measurable film thickness naturally depends on the wavelength of the incident monochromatic light, and especially on the short wavelength side of 400 nm or less, the effects of absorption by the substrate and refractive index dispersion of the film cannot be avoided, making it difficult to measure thin films of 100 nm or less. is not suitable. On the other hand, as described in Japanese Patent Application Laid-Open No. 58-140605, there is a method that can measure any film thickness without changing the wavelength of the incident monochromatic light;
It is necessary to know the value of the transmittance corresponding to /4 wavelength, and as mentioned above, it is not suitable for measuring film thickness of 1/4 wavelength or less.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、入射単色光の波長を変化させずに任意
の膜厚の計測制御が可能となり、且つ、入射単色光の1
74波長以下の膜厚の計測制御が可能となる膜厚制御方
法を提供することにある。
An object of the present invention is to enable measurement and control of any film thickness without changing the wavelength of incident monochromatic light, and to
It is an object of the present invention to provide a film thickness control method that enables measurement and control of film thickness of 74 wavelengths or less.

〔発明の概要〕[Summary of the invention]

例えば蒸着により基板上に形成した薄膜に、波長λの単
色光を入射する。この時の透過光の透過率をTとすると
、その逆数1/+IIIは次式(1)により求まる。
For example, monochromatic light with a wavelength λ is incident on a thin film formed on a substrate by vapor deposition. If the transmittance of transmitted light at this time is T, its reciprocal 1/+III can be found by the following equation (1).

’/T = A + Csinδ      0000
1300910.(1)A = (1−)−n ) /
4n 1B = ”、7%δ= (2yt /λ) −
Nd%C=(CB+n) −A)/4nここで、nは基
板屈折率、Nは蒸着膜の屈折率、dは膜厚、δは光学位
相角である。この様にして求めた1/Tを光学位相角δ
で微分するとΔ(1/’[’ )=2Csinδ−0δ
   ・−曲−・・(2)となる。従って、(1)式と
(2)式より(1Δ−A)/  Δ(’/T)= 1/
2・−δ・・・・・・(3)が得られる。
'/T = A + Csinδ 0000
1300910. (1) A = (1-)-n) /
4n 1B = ”, 7% δ = (2yt / λ) −
Nd%C=(CB+n)-A)/4n where n is the refractive index of the substrate, N is the refractive index of the deposited film, d is the film thickness, and δ is the optical phase angle. 1/T obtained in this way is the optical phase angle δ
When differentiated by Δ(1/'[' )=2Csinδ−0δ
・-Song--...(2). Therefore, from equations (1) and (2), (1Δ-A)/Δ('/T)=1/
2.−δ (3) is obtained.

ここで、Aは初期値すなわちδ=0(基板に薄膜が形成
されていない時)の1/Tの測定値である。
Here, A is a measured value of 1/T of the initial value, ie, δ=0 (when no thin film is formed on the substrate).

それ故、透過率測定値の逆数1/Tを実時間で測定し、
(1/T −A )とΔl/T)の比を計算する演算処
理を実時間で行なえば、常に光学位相角δを計測するこ
とが可能である。
Therefore, the reciprocal 1/T of the transmittance measurement value is measured in real time,
If the arithmetic processing for calculating the ratio of (1/T - A ) and Δl/T) is performed in real time, it is possible to always measure the optical phase angle δ.

従って、本発明では、(1/T−A)とΔC1/T)と
を求め、この両者から光学位相角δを演算する。この光
学位相角δは、前記したように、δ=(”/2) ・N
dであり、λ、Nが予め定めることができる定数である
ため、δと膜厚dとは一義に定まるものである。このた
め、あらかじめ所定のδを設定しておくことで、Nd=
λ/4以下の領域でも任意に膜厚の制御が可能となる。
Therefore, in the present invention, (1/T-A) and ΔC1/T) are determined, and the optical phase angle δ is calculated from both. As mentioned above, this optical phase angle δ is δ=(”/2)・N
d, and since λ and N are constants that can be determined in advance, δ and the film thickness d are uniquely determined. Therefore, by setting a predetermined value δ in advance, Nd=
The film thickness can be arbitrarily controlled even in the region of λ/4 or less.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は本発明方法を適用した膜厚制御装置の全体構成
図である。第1図において、真空槽1内にはドーム4が
配設され、該ドーム4の所定位置に光透過性を有する基
板5が配置されている。更に、真空槽1内の底部には蒸
着物質3が配置され、この蒸着物質3と基板5との間に
シャッター2が取り付けられている。
FIG. 1 is an overall configuration diagram of a film thickness control device to which the method of the present invention is applied. In FIG. 1, a dome 4 is disposed within a vacuum chamber 1, and a light-transmitting substrate 5 is disposed at a predetermined position of the dome 4. Further, a vapor deposition material 3 is placed at the bottom of the vacuum chamber 1, and a shutter 2 is installed between the vapor deposition material 3 and the substrate 5.

また、真空槽1の外部下側には投光器6が設けられ、真
空槽1の上部には受光器7が設けられている。そして、
受光器7&i、投光器6から照射され基板5を透過した
単色光の光量を電気信号に変換して制御部8に供給し、
該制御部8が前述したシャッター2を開閉制御するよう
になっている。
Further, a light projector 6 is provided at the bottom of the outside of the vacuum chamber 1, and a light receiver 7 is provided at the top of the vacuum chamber 1. and,
Converting the amount of monochromatic light emitted from the light receiver 7&i and the projector 6 and transmitted through the substrate 5 into an electrical signal and supplying it to the control unit 8;
The control section 8 controls the opening and closing of the shutter 2 described above.

第2図は第1図に示した制御部8の詳細構成図である。FIG. 2 is a detailed configuration diagram of the control section 8 shown in FIG. 1.

制御部Bは、増幅器81.アナログディジタル変換器8
2.平均化処理部85.演算部84゜および判定部85
よりなる。
The control section B includes an amplifier 81. Analog digital converter 8
2. Averaging processing section 85. Arithmetic unit 84° and determination unit 85
It becomes more.

斯かる構成により、真空槽1内の真空度を上げ、シャッ
ター2を閉じた状態で、先ず、蒸着物質3を加熱してプ
レ蒸着を行なう。その後、更EX空度を上げ、投光器6
から単色光を真空槽1内に入射し、基板号のみの透過率
Tの逆数’/Tを算出しておく。つまり、前述の第(5
)式次に、蒸着物質5を加熱してシャッター2を開き、
蒸着即ち薄膜の形成を開始する。このとき、常時投光器
6から単色光を入射させておく。
With this configuration, the degree of vacuum in the vacuum chamber 1 is increased and the vapor deposition substance 3 is heated to perform pre-evaporation while the shutter 2 is closed. After that, increase the EX airflow and use the floodlight 6.
Monochromatic light is input into the vacuum chamber 1 from , and the reciprocal of the transmittance T of only the substrate number '/T is calculated. In other words, the above-mentioned (5)
) Next, the vapor deposition substance 5 is heated and the shutter 2 is opened,
Vapor deposition, ie, thin film formation, begins. At this time, monochromatic light is constantly incident from the projector 6.

膜厚が厚くなるに従りて透過光量は減少する。The amount of transmitted light decreases as the film thickness increases.

この透過光を受光器7で受光し、受光量に応じた電気信
号を制御部Bに供給する。
This transmitted light is received by the light receiver 7, and an electric signal corresponding to the amount of received light is supplied to the control section B.

制御部8では、透過光量に比例した受光部7からの電気
信号が増幅器81で増幅され、アナログ−ディジタル変
換器82によりディジタル信号に変換される。この信号
を微小時間間隔Δtにわたり平均化処理部85で平均化
処理し、演算処理部84において前述の(2)式から光
学位相角aを算出する。この値δを、次に判定部85に
おいて設定値と比較し、値δが設定値に達した場合には
シャッター2へ閉信号を送出する、ここで、n 上記設定値は、所要の膜厚dに対してδ= < 丁’f
Ndで一義に定まる値である。
In the control section 8 , an electric signal from the light receiving section 7 proportional to the amount of transmitted light is amplified by an amplifier 81 and converted into a digital signal by an analog-digital converter 82 . This signal is averaged over a minute time interval Δt by an averaging processing section 85, and an arithmetic processing section 84 calculates an optical phase angle a from the above-mentioned equation (2). This value δ is then compared with a set value in the determination unit 85, and when the value δ reaches the set value, a closing signal is sent to the shutter 2. δ= <d'f for d
This is a value uniquely determined by Nd.

尚、本実施例は基板上に単層膜を形成する場合について
述べたか、多層膜でよいことはいり層か形成されている
場合には、この基板と薄膜層の第(2)式における人を
測定しておけば、その上に新たな所定膜厚の薄膜を上述
の実施例と同様に形成することができる。
Note that this embodiment describes the case where a single layer film is formed on a substrate, but if a multilayer film is formed, the person in equation (2) of the substrate and thin film layer may be used. Once measured, a new thin film with a predetermined thickness can be formed thereon in the same manner as in the above embodiment.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、入射単色光の波長の1/4波長以下の
光学的膜厚の計測が可能である。従って、入射単色光の
波長が例えば80 Q nfnの場合でも1001m程
度の膜厚計測ができる。また、入射単色光の波長を一定
にして任意の膜厚を設定でき、短波長側で屈接率分散や
吸収を持つ基板上に蒸着された膜、あるいは短波長側で
屈接率分散や吸収を持つ膜の膜厚の計測制御が容易にな
る効果がある。
According to the present invention, it is possible to measure optical film thickness at a wavelength of 1/4 wavelength or less of the wavelength of incident monochromatic light. Therefore, even when the wavelength of the incident monochromatic light is, for example, 80 Q nfn, a film thickness of about 1001 m can be measured. In addition, it is possible to set an arbitrary film thickness while keeping the wavelength of the incident monochromatic light constant, and it is possible to use a film deposited on a substrate that has refractive index dispersion or absorption on the short wavelength side, or a film that has refractive index dispersion or absorption on the short wavelength side. This has the effect of making it easier to control the measurement of the film thickness of the film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を適用した膜厚制御装置の全
体構成図、第2図は第1図に示す制御部の評m構成図で
ある。 1・・・・・・真空槽、 2・・・・・・シャッター、 5・・〜・・蒸着物質、 4・・・・・・ドーム、 5・・・・・・基板、 6・・・・・・投光部、 7・・・・・・受光部、 8・・−・・制御部、 81・・・・・・増幅器、 82・・・・・・アナロ久ディジタル変換器、8シ・・
・・・平均化処理部、 84・・・・・・演算部、 85・・・・・・判定部。
FIG. 1 is an overall configuration diagram of a film thickness control device to which an embodiment of the present invention is applied, and FIG. 2 is an evaluation configuration diagram of the control section shown in FIG. 1. 1... Vacuum chamber, 2... Shutter, 5... Vapor deposition substance, 4... Dome, 5... Substrate, 6... ...Light emitter, 7...Light receiving section, 8...Control section, 81...Amplifier, 82...Analog-to-digital converter, 8 series・・・
. . . Averaging processing section, 84 . . . Arithmetic section, 85 . . . Judgment section.

Claims (1)

【特許請求の範囲】[Claims] 1、単層から多層に及ぶ光学的薄膜の膜厚を単色光で計
測しながら該光学的薄膜を所定の膜厚に形成する膜厚制
御方法において、薄膜の形成中に単色光を照射し、その
透過率の逆数値と該逆数値の微分値とから形成中の薄膜
の光学位相角を演算し、該光学位相角により薄膜の膜厚
をモニターして膜厚を制御することを特徴とする光学薄
膜の膜厚制御方法。
1. In a film thickness control method of forming an optical thin film to a predetermined thickness while measuring the film thickness of an optical thin film ranging from a single layer to a multilayer with monochromatic light, irradiating monochromatic light during the formation of the thin film, The optical phase angle of the thin film being formed is calculated from the reciprocal value of the transmittance and the differential value of the reciprocal value, and the film thickness is controlled by monitoring the film thickness of the thin film using the optical phase angle. A method for controlling the thickness of optical thin films.
JP9545985A 1985-05-07 1985-05-07 Film thickness control of optical thin film Pending JPS61253408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9545985A JPS61253408A (en) 1985-05-07 1985-05-07 Film thickness control of optical thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9545985A JPS61253408A (en) 1985-05-07 1985-05-07 Film thickness control of optical thin film

Publications (1)

Publication Number Publication Date
JPS61253408A true JPS61253408A (en) 1986-11-11

Family

ID=14138257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9545985A Pending JPS61253408A (en) 1985-05-07 1985-05-07 Film thickness control of optical thin film

Country Status (1)

Country Link
JP (1) JPS61253408A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429214B1 (en) * 2001-09-17 2004-04-29 엘지전자 주식회사 Mehtod of Thin Film for Fabrication
KR100972769B1 (en) * 2002-03-25 2010-07-28 가부시키가이샤 알박 Optical film thickness controlling method, optical film thickness controlling apparatus, dielectric multilayer film manufacturing apparatus, and dielectric multilayer film manufactured using the same controlling apparatus or manufacturing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429214B1 (en) * 2001-09-17 2004-04-29 엘지전자 주식회사 Mehtod of Thin Film for Fabrication
KR100972769B1 (en) * 2002-03-25 2010-07-28 가부시키가이샤 알박 Optical film thickness controlling method, optical film thickness controlling apparatus, dielectric multilayer film manufacturing apparatus, and dielectric multilayer film manufactured using the same controlling apparatus or manufacturing apparatus
US7927472B2 (en) 2002-03-25 2011-04-19 Ulvac, Inc. Optical film thickness controlling method, optical film thickness controlling apparatus, dielectric multilayer film manufacturing apparatus, and dielectric multilayer film manufactured using the same controlling apparatus or manufacturing apparatus

Similar Documents

Publication Publication Date Title
EP1326097B1 (en) Process for forming a thin film and apparatus therefor
US5350236A (en) Method for repeatable temperature measurement using surface reflectivity
JPS5844961B2 (en) Film thickness control or monitoring equipment
US5364187A (en) System for repeatable temperature measurement using surface reflectivity
JPS61253408A (en) Film thickness control of optical thin film
JPS6189543A (en) Method and device for measuring dual beam spectral transmittance
JPS6328862A (en) Method for controlling film thickness
US4335961A (en) Refractive index measurement of optical thin-film
JP3866933B2 (en) Film thickness measuring device
JP2612089B2 (en) Method of detecting film thickness of film to be etched, film thickness detecting device and etching device
EP0470646B1 (en) In situ measurement of a thin film deposited on a wafer
US4985858A (en) Method and apparatus for temperature determination
JPS6073407A (en) Film thickness monitor
JPS627266B2 (en)
JPH1062129A (en) Film thickness measuring method
JPS58140605A (en) Controlling method of thickness of optical thin film
JPS61296305A (en) Production of interference filter made of multi-layered film
Peršin et al. Effect of thermal treatment on the characteristics of interference Fabry-Perot filters
JPS5646404A (en) Measuring device of optical film thickness
JP2970020B2 (en) Method of forming coating thin film
JP2000171630A (en) Formation of multilayered optical thin film
SU429399A1 (en) METHOD OF CONTROL OF LAYER THICKNESS IN THE MANUFACTURE OF AN OPTICAL COATING
JPS58162805A (en) Method for monitoring vapor deposited film optically
RU2025828C1 (en) Method of measurement of thickness of layers in process of their deposition on heated substrate
JPS63212807A (en) Measuring method of thickness of thin film