JPS63212807A - Measuring method of thickness of thin film - Google Patents

Measuring method of thickness of thin film

Info

Publication number
JPS63212807A
JPS63212807A JP4730287A JP4730287A JPS63212807A JP S63212807 A JPS63212807 A JP S63212807A JP 4730287 A JP4730287 A JP 4730287A JP 4730287 A JP4730287 A JP 4730287A JP S63212807 A JPS63212807 A JP S63212807A
Authority
JP
Japan
Prior art keywords
light
thin film
thickness
wavelength
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4730287A
Other languages
Japanese (ja)
Inventor
Hisaharu Yanagawa
柳川 久治
Koichi Hayakawa
早川 弘一
Kazuki Watanabe
万記 渡辺
Yoshiyuki Kamata
鎌田 良行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4730287A priority Critical patent/JPS63212807A/en
Publication of JPS63212807A publication Critical patent/JPS63212807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enable the precise measurement of the thickness of a thin film by a method wherein the peak value of the quantity of light of a wavelength which gives this peak value to a measured film thickness is determined from measured quantities of lights of shorter and longer wavelengths than said wavelength and the thickness of a thin film is measured from said peak value. CONSTITUTION:Above a chamber 11, a light application system 20 and a light reception system 21 are disposed corresponding to a thin film formed on a substrate 14, and these systems are connected to a film thickness measuring system 23. The light application system 20 is provided with a light source 24, a monochromator 25 and a lens system 26, and the light reception system 21 is provided with a detector 27, while the measuring system 23 is provided with CPU 28. A wavelength giving the peak of the quantity of light to the measured film thickness t0 of the thin film 29 is denoted by lambda0, wavelengths shorter and longer than said wavelength by lambda1 and lambda2 respectively, and normalized reflection quantities R1 and R2 of the shorter and longer wavelengths lambda1 and lambda2 are measured. The peak value of the quantity of light for the wavelength lambda0 can be detected from the intersecting point of said reflection quantities R1 and R2, and the thickness t0 of the thin film 29 can be determined from this peak value of the quantity of light.

Description

【発明の詳細な説明】 「産業上の利用分野1 本発明は半導体、光学、通信などの各分野で用いられる
薄膜の厚さ測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Industrial Application Field 1 The present invention relates to a method for measuring the thickness of thin films used in various fields such as semiconductors, optics, and communications.

r従来の技術J 半導体、光学、通信などの分野において、例えば、シリ
コン製の基板上に酸化膜、光学フィルタ等の薄膜を所定
の厚さに形成するとき、その膜厚を測定しながら薄膜形
成するのが一般であり、かかる測定手段として、光学式
膜厚測定法が汎用されている。
rPrior art J In the fields of semiconductors, optics, communications, etc., when forming a thin film such as an oxide film or an optical filter to a predetermined thickness on a silicon substrate, the thin film is formed while measuring the film thickness. It is common to do this, and as such a measuring means, an optical film thickness measuring method is widely used.

上述した光学式膜厚測定法として広く知られているもの
に、第5図の方法がある。
One of the widely known optical film thickness measuring methods described above is the method shown in FIG.

第5図の方法では、基板1上の薄膜2に測定光Pを照射
し、その薄膜2からの反射光量PRを測定する。
In the method shown in FIG. 5, a thin film 2 on a substrate 1 is irradiated with measurement light P, and the amount of reflected light PR from the thin film 2 is measured.

この際の反射光mPRは、薄膜2の厚さtに対して正弦
状に変化し、その周期は、測定光Pの波長を入、薄膜2
の屈折率をnとした場合、入/2nとなる。
The reflected light mPR at this time changes sinusoidally with respect to the thickness t of the thin film 2, and its period is equal to the wavelength of the measurement light P.
When the refractive index of is set to n, it becomes in/2n.

したがって、波長入、屈折率nが既知である薄膜2を厚
さtOに形成するとき、その薄膜形成と同期して連続的
に反射光fiP++を測定すれば、時間の経過とともに
変化する薄膜2の厚さtが、第6図の関係により求まり
、かつ、t−toの時点で薄膜形成を止めれば、当該S
膜2の厚さが所定(aに仕上がる。
Therefore, when forming a thin film 2 with a known wavelength and refractive index n to a thickness tO, if the reflected light fiP++ is continuously measured in synchronization with the thin film formation, it is possible to measure the change in the thin film 2 over time. If the thickness t is determined from the relationship shown in FIG. 6, and the thin film formation is stopped at the time t-to, the S
The thickness of the film 2 is finished to a predetermined value (a).

上述した膜厚測定方法において、測定光Pの波長λが4
ntoである場合、その4ntoでの光量ピークを検出
することにより、薄膜2の厚さtoが判明するが、実際
の測定では、上記測定波投入を4ntoよりもわずかに
小さい4nto−Δλに設定し、かかるん= 4nt(
1−Δ入において、最初の光量ピークをわずかに越えた
点(第6図のA)を検出して薄膜2の厚さtoを求める
In the film thickness measurement method described above, the wavelength λ of the measurement light P is 4
nto, the thickness to of the thin film 2 can be determined by detecting the light intensity peak at 4nto. However, in actual measurement, the measurement wave input is set to 4nto - Δλ, which is slightly smaller than 4nto. , it takes = 4nt (
At 1-Δ, a point slightly exceeding the first light amount peak (A in FIG. 6) is detected to determine the thickness to of the thin film 2.

その理由は、一般的なピーク検出で指摘されているよう
に、反射光量PRの絶対値が測定系中の光損失により影
響されるので、これを回避して測定精度を高めねばなら
いからであり、さらに、光量ピークそのものが、そのピ
ークを越えないかぎり判明しないからである。
The reason for this is that, as pointed out in general peak detection, the absolute value of the amount of reflected light PR is affected by optical loss in the measurement system, so this must be avoided to improve measurement accuracy. Furthermore, the peak of the amount of light itself cannot be determined until it exceeds the peak.

「発明が解決しようとする問題点」 しかし、上述した測定方法では、光量ピーク付近におけ
る膜厚の変化に対し、反射光量PRの変化がきわめて小
さく、実際上は雑音等の影響を受けるので、光量ピーク
の正確な標定かむずかしい。
"Problems to be Solved by the Invention" However, in the measurement method described above, the change in the amount of reflected light PR is extremely small with respect to the change in film thickness near the peak of the light amount, and in practice it is affected by noise, etc. It is difficult to accurately locate peaks.

その結果、薄膜2の厚さを測定しながら、これを形成す
るとき、当該薄膜2を所定の膜厚に仕上げるのが困難な
事態が生じる。
As a result, when forming the thin film 2 while measuring its thickness, it may be difficult to finish the thin film 2 to a predetermined thickness.

もちろん、このような事態は、薄膜2の透過光を測定光
とする場合にも生じる。
Of course, such a situation also occurs when the light transmitted through the thin film 2 is used as the measurement light.

本発明は上記の問題点に鑑み、光学的な手段により薄膜
の厚さを測定するとき、当該薄膜の厚さが正確に測定で
きる方法を提供しようとするものである。
In view of the above-mentioned problems, the present invention aims to provide a method that can accurately measure the thickness of a thin film when the thickness of the thin film is measured by optical means.

r問題点を解決するための手段j 本発明は所期の目的を達成するため、膜厚測定すべき薄
膜に光照射して、当該光照射により生じた薄膜からの光
を測定光とし、その測定光の光量を測定して、薄膜の厚
さを測定する方法において、上記測定光のうち、薄膜の
測定膜厚に対して光量ピークを与える波長をλ0、その
波長入0よりも短い波長を入1、その波長λ0よりも長
い波長を入2とした場合、上記長短二波長λ1、λ2の
光量を測定するとともに、これら長短二波長λ1、入2
の測定光量から、上記波長λ0の光量ピークを求めて、
上記薄膜の厚さを測定することを特徴とする。
Means for Solving Problems j In order to achieve the intended purpose of the present invention, the thin film whose thickness is to be measured is irradiated with light, the light from the thin film generated by the light irradiation is used as measurement light, and the In the method of measuring the thickness of a thin film by measuring the light intensity of the measurement light, the wavelength of the measurement light that gives the light intensity peak with respect to the measured thickness of the thin film is λ0, and the wavelength shorter than the wavelength input 0 is used. When input 1 is a wavelength longer than the wavelength λ0, input 2 is measured, the light intensity of the two long and short wavelengths λ1 and λ2 is measured, and the two long and short wavelengths λ1 and input 2 are measured.
From the measured light amount, find the light amount peak at the wavelength λ0,
The method is characterized in that the thickness of the thin film is measured.

「実 施 例1 以下1本発明に係るg膜の厚さ測定方法の実施例につき
、図面を参照して説明する。
``Example 1'' An example of the method for measuring the thickness of a g-film according to the present invention will be described below with reference to the drawings.

第1図は本発明方法を適用するための薄膜形成装置であ
る。
FIG. 1 shows a thin film forming apparatus for applying the method of the present invention.

第1図の装置において、チャンバ11には回転系12、
排気系13が設けられている。
In the apparatus shown in FIG. 1, the chamber 11 includes a rotating system 12,
An exhaust system 13 is provided.

チャンバll内の上部には、薄膜蒸着用の基板14が内
装され、チャンバll内の下部には、シャッタ15、タ
ーゲット(薄膜用材料)10、電子ビーム熱源17.イ
オンガン18などが備えつけられている。
A substrate 14 for thin film deposition is installed in the upper part of the chamber 11, and a shutter 15, a target (thin film material) 10, an electron beam heat source 17. It is equipped with ion guns 18, etc.

回転系12.排気系13、シャッタ15、ターゲット1
6、電子ビーム熱源17、イオンガン18などは、それ
ぞれ装置制御系19に接続され、当該装を制御系13を
介して制御されるようになっている。
Rotating system 12. Exhaust system 13, shutter 15, target 1
6, the electron beam heat source 17, the ion gun 18, etc. are each connected to a device control system 19, and the devices are controlled via the control system 13.

第1図において、チャンバ11の上位には、基板14上
に形成される薄膜と対応して、光照射系20、受光系2
1が配置され、これら光照射系20、受光系21が膜厚
測定系23に接続されている。
In FIG. 1, a light irradiation system 20 and a light receiving system 2 are located above the chamber 11, corresponding to the thin film formed on the substrate 14.
1 is arranged, and these light irradiation system 20 and light reception system 21 are connected to a film thickness measurement system 23.

さらに膜厚測定系23は、その測定信号を上記装置制御
系18へ入力するため、当該装置制御系18に接続され
ている。
Furthermore, the film thickness measurement system 23 is connected to the device control system 18 in order to input the measurement signal thereto.

第2図に示すごとく、上述した光照射系20はハロゲン
ランプなどの光源24、モノクロメータ25、レンズ系
2Bを備えてなり、受光系21はディテクタ27を備え
てなり、膜厚測定系23はCPU28を備えてなる。
As shown in FIG. 2, the light irradiation system 20 described above includes a light source 24 such as a halogen lamp, a monochromator 25, and a lens system 2B, the light receiving system 21 includes a detector 27, and the film thickness measurement system 23 includes a It is equipped with a CPU 28.

第1図の薄膜形成装置において、基板14上に所望のI
IJ膜を電子ビーム蒸着により形成するとき、チャンバ
11内の不活性ガス雰囲気(Ar)が、排気系13を介
して適当な真空度に保持され、ターゲット16が、電子
ビーム熱源17により所定温度に保持される。
In the thin film forming apparatus shown in FIG.
When forming an IJ film by electron beam evaporation, the inert gas atmosphere (Ar) in the chamber 11 is maintained at an appropriate degree of vacuum via the exhaust system 13, and the target 16 is heated to a predetermined temperature by the electron beam heat source 17. Retained.

この際、回転系12はチャンバ11の内部の均一性を高
めるべく当該チャンバ11を回転させ、イオンガン18
は、基板14への低温蒸着を可能にすべく、その基板1
4に向けて陽イオンを出射する。
At this time, the rotation system 12 rotates the chamber 11 in order to improve the uniformity inside the chamber 11, and the ion gun 18
substrate 14 to enable low-temperature deposition on the substrate 14.
Emit positive ions towards 4.

かかる状態において、ターゲット16から蒸発した粒子
が基板14上に付着し、第2図のごとき薄膜29が形成
される。
In this state, particles evaporated from the target 16 adhere to the substrate 14, forming a thin film 29 as shown in FIG.

なお、上記蒸発手段を介して基板14上に9膜29を形
成する前、シャッタ15を閉じた状態でのターゲット予
熱が行なわれる。
Note that before forming the nine films 29 on the substrate 14 through the evaporation means, the target is preheated with the shutter 15 closed.

本発明方法は、こうして基板14上に薄膜29を形成す
るとき、第2図のごとく、光[t24、モノクロメータ
25、レンズ系26を備えた光学系20から薄膜29に
光照射して、その薄膜29からの反射光を測定光とし、
当該測定光をディテクタ27のある受光系21より膜厚
測定系23へ入射させて、薄膜29の厚さを測定する。
In the method of the present invention, when forming the thin film 29 on the substrate 14, as shown in FIG. The reflected light from the thin film 29 is used as measurement light,
The measurement light is made to enter the film thickness measurement system 23 from the light receiving system 21 with the detector 27, and the thickness of the thin film 29 is measured.

この場合、モノクロメータ25は後述する二波長入l、
入2を交互に選択し、ディテクタ27はこれら二波長λ
1、λ2の反射光量をそれぞれ測定し、ざらにCPU2
8は、その測定値に基づいて所定の光量ピークを検出し
、上記成膜手段を停止させる。
In this case, the monochromator 25 includes a dual wavelength input l, which will be described later.
input 2 is selected alternately, and the detector 27 selects these two wavelengths λ
1. Measure the amount of reflected light of λ2, and roughly measure the amount of reflected light of λ2.
8 detects a predetermined light intensity peak based on the measured value and stops the film forming means.

本発明方法をさらに詳述すると、上記測定光のうち、薄
膜29の測定膜厚toに対して光量ピークを与える波長
をλ0、その波長入0よりも短い波長を入]=入0−Δ
λI、その波長入。よりも長い波長を入2=1入G+Δ
入2とし、長短二波長λ1、λ2の光量(正規化反射量
)を測定する。
To explain the method of the present invention in more detail, among the above measurement lights, the wavelength that gives a light intensity peak with respect to the measured film thickness to of the thin film 29 is λ0, and the wavelength shorter than 0 is input] = input0 - Δ
λI, its wavelength input. Input a wavelength longer than 2 = 1 input G + Δ
2, and measure the amount of light (normalized reflection amount) at two long and short wavelengths λ1 and λ2.

ここで、波長の正規化反射量Rは、測定光(反射光)の
光量をPRとした場合、下記の式(1)により表わされ
、上記長短二波長λ1、λ2の正規化反射量R1,R2
は第3図のようになる。
Here, the normalized reflection amount R of the wavelength is expressed by the following formula (1), when the light amount of the measurement light (reflected light) is PR, and the normalized reflection amount R1 of the above two long and short wavelengths λ1 and λ2. ,R2
is as shown in Figure 3.

R(PR−PR−sin)/(PR,ax−PR1i 
n)・・・・(1)したがって、第3図のごとく、長短
二波長入1、入2に対する正規化反射量R1、R2の交
点より、波長入0の光量ピークを検出することができる
R(PR-PR-sin)/(PR,ax-PR1i
(1) Therefore, as shown in FIG. 3, the peak of the light intensity at wavelength 0 can be detected from the intersection of the normalized reflection amounts R1 and R2 for the long and short wavelengths 1 and 2.

この場合、下記の関係式(2)が成立要件となるが、こ
れにつし)ては、Δ入2クク入0 とすることによりΔ
入1−Δ入2 となり、Δ入−Δ入2−Δ入1 として
も誤差は(Δ入/入o)2 ときわめて小さい。
In this case, the following relational expression (2) is required to hold, but in this case, by setting Δ input 2 kuku input 0, Δ
Input 1 - ∆ Input 2, and even if ∆ Input - ∆ Input 2 - ∆ Input 1, the error is (∆ Input / Input o) 2, which is extremely small.

Δ入1−(λ0・Δλ2)バ入0÷Δ入2)・・・・(
2)ゆえに、第3図を参照して述べたように、長短二波
長λ1、λ2に対する正規化反射量R1、R2の交点よ
り、波長λ0に対する光量ピークを検出することができ
、かかる光量ピークから、薄H29の厚さtoが求まる
ΔInput 1-(λ0・Δλ2)Ba Input 0÷ΔInput 2)・・・(
2) Therefore, as described with reference to FIG. 3, the light intensity peak for the wavelength λ0 can be detected from the intersection of the normalized reflection amounts R1 and R2 for the long and short wavelengths λ1 and λ2, and from this light intensity peak , the thickness to of thin H29 is found.

第4図は上記6M膜29の代表的な材質である5i02
の屈折率nを示したものであり、一般に、5i02の屈
折率nは波長の関数となる。
FIG. 4 shows 5i02, which is a typical material of the 6M film 29.
Generally, the refractive index n of 5i02 is a function of wavelength.

ここで、Δ入くく入0 とすれば、波長に関する屈折率
nの依存性は無視することができ、これにより、上述し
た事項が技術的に確立する。
Here, if Δ is set to 0, the dependence of the refractive index n on the wavelength can be ignored, and thereby the above-mentioned matter is technically established.

より高精度の膜厚測定を期するときは、これらの効果を
含め、式(2)の校正手段をとればよい。
When aiming for more accurate film thickness measurement, it is sufficient to use the calibration method of equation (2), which takes into account these effects.

かくて、薄膜28の厚さtoが求められると、その測定
信号が膜厚測定系23から装置制御系19へ入力され、
薄膜形成装置(第1図)の運転状態が制御される。
Thus, when the thickness to of the thin film 28 is determined, the measurement signal is input from the film thickness measurement system 23 to the device control system 19,
The operating state of the thin film forming apparatus (FIG. 1) is controlled.

第1図の薄膜形成装置において、例えば、サブミクロン
の厚さのTiO2膜、S 1021)51!を数十層、
交互に積層して基板1に光学フィルタ(薄膜)を形成す
るとき、高品質の光学フィルタを得るには、各層の膜厚
を±1z以下の誤差に抑えなければならないが、上述し
た測定手段を介して当該FIJ膜形成装置を適時停止制
御した場合、各層の膜厚をその許容誤差の範囲内で仕上
げることができた。
In the thin film forming apparatus of FIG. 1, for example, a submicron-thick TiO2 film, S1021)51! dozens of layers,
When forming an optical filter (thin film) on the substrate 1 by alternately laminating layers, in order to obtain a high quality optical filter, the film thickness of each layer must be kept within an error of ±1z. When the FIJ film forming apparatus was controlled to be stopped in a timely manner through the method, the film thickness of each layer could be finished within the allowable error range.

この場合、 Ti02M、 Si0?膜の成膜時間は、
膜厚1000n層あたり、それぞれ約2分、4分とした
が。
In this case, Ti02M, Si0? The film formation time is
The test times were approximately 2 minutes and 4 minutes, respectively, per 1000 nm thick layer.

光量ピーク付近では、蒸着速度を遅くした。The deposition rate was slowed near the peak of the light intensity.

膜厚測定系23によるデータ処理速度は、16ビツトの
パーソナルコンピュータを用いたとき。
The data processing speed of the film thickness measurement system 23 is when a 16-bit personal computer is used.

約0.2秒であった。The time was approximately 0.2 seconds.

なお、以上に述べた実施例では、測定光として薄膜から
の反射光を測定するようにしたが、薄膜の透過光を測定
光として採用した場合も、上記と同様に膜厚測定できる
In the embodiments described above, the light reflected from the thin film is measured as the measurement light, but the film thickness can be measured in the same manner as described above even when the light transmitted through the thin film is used as the measurement light.

その他、本発明における光量ピークは、図示例において
、正弦波の最大プラス値を採用しているがかかる光量ピ
ークは、正弦波の最大マイナス値を採用してもよい。
In addition, in the illustrated example, the maximum positive value of the sine wave is used as the light amount peak in the present invention, but the maximum negative value of the sine wave may be used as the light amount peak.

「発明の効果」 以上説明した通り1本発明方法によるときは、光学手段
を介して薄膜の厚さを測定するとき、薄膜の測定膜厚に
対して光量ピークを与える波長入0を直接測定するので
なく、該波長入0よりも短い波長λlと、該波長λ0よ
りも長い波長入2との光量を測定し、これら長短二波長
λ!、λ2の測定光量から、上記波長入0の光量ピーク
を求めて、上記薄膜の厚さを測定するから、光量ピーク
の標定が正確かつ容易となり、薄膜形成時の精密な膜厚
制御が行なえ、歩留りが向上する。
"Effects of the Invention" As explained above, 1. When using the method of the present invention, when measuring the thickness of a thin film through optical means, the wavelength incidence 0 that gives the light intensity peak for the measured thickness of the thin film is directly measured. Instead, the amount of light at a wavelength λl shorter than the wavelength 0 and a wavelength 2 longer than the wavelength λ0 is measured, and these two wavelengths λ! Since the thickness of the thin film is measured by determining the light intensity peak at wavelength 0 from the measured light intensity of , λ2, the light intensity peak can be accurately and easily oriented, and precise film thickness control can be performed during thin film formation. Yield is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を適用した薄膜形成装置の概略図、
第2図は本発明方法における測定系の要部を略示した説
明図、第3図は本発明方法における正規化反射量と測定
波長との関係を示した説明図、第4図は5i02におけ
る屈折率と波長との関係を示した説明図、第5図は従来
法の略示図、第6図は従来法における反射光量と測定膜
厚との関係を示した説明図である。 20・・・・・・光照射系 21・・・・・・受光系 23・・・・・・膜厚測定系 23・・・・・・薄膜
FIG. 1 is a schematic diagram of a thin film forming apparatus to which the method of the present invention is applied;
Fig. 2 is an explanatory diagram schematically showing the main parts of the measurement system in the method of the present invention, Fig. 3 is an explanatory diagram showing the relationship between the normalized reflection amount and the measurement wavelength in the method of the present invention, and Fig. 4 is an explanatory diagram showing the relationship between the normalized reflection amount and the measurement wavelength in the method of the present invention. FIG. 5 is an explanatory diagram showing the relationship between the refractive index and wavelength, FIG. 5 is a schematic diagram of the conventional method, and FIG. 6 is an explanatory diagram showing the relationship between the amount of reflected light and the measured film thickness in the conventional method. 20... Light irradiation system 21... Light receiving system 23... Film thickness measurement system 23... Thin film

Claims (3)

【特許請求の範囲】[Claims] (1)膜厚測定すべき薄膜に光照射して、当該光照射に
より生じた薄膜からの光を測定光とし、その測定光の光
量を測定して、薄膜の厚さを測定する方法において、上
記測定光のうち、薄膜の測定膜厚に対して光量ピークを
与える波長をλ_0、その波長λ_0よりも短い波長を
λ_1、その波長λ_0よりも長い波長をλ_2とした
場合、上記長短二波長λ_1、λ_2の光量を測定する
とともに、これら長短二波長λ_1、λ_2の測定光量
から、上記波長λ_0の光量ピークを求めて、上記薄膜
の厚さを測定することを特徴とする薄膜の厚さ測定方法
(1) In a method of measuring the thickness of a thin film by irradiating light onto a thin film whose thickness is to be measured, using the light from the thin film generated by the light irradiation as measurement light, and measuring the light intensity of the measurement light, Among the measurement lights mentioned above, if the wavelength that gives the light intensity peak with respect to the measured thickness of the thin film is λ_0, the wavelength shorter than the wavelength λ_0 is λ_1, and the wavelength longer than the wavelength λ_0 is λ_2, then the two wavelengths λ_1 are the long and short wavelengths. , λ_2, and from the measured light intensities of these two long and short wavelengths λ_1 and λ_2, determine the light intensity peak of the wavelength λ_0 to measure the thickness of the thin film. .
(2)測定光が、薄膜からの反射光である特許請求の範
囲第1項記載の薄膜の厚さ測定方法。
(2) The method for measuring the thickness of a thin film according to claim 1, wherein the measurement light is reflected light from the thin film.
(3)測定光が、薄膜の透過光である特許請求の範囲第
1項記載の薄膜の厚さ測定方法。
(3) The method for measuring the thickness of a thin film according to claim 1, wherein the measurement light is light transmitted through the thin film.
JP4730287A 1987-03-02 1987-03-02 Measuring method of thickness of thin film Pending JPS63212807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4730287A JPS63212807A (en) 1987-03-02 1987-03-02 Measuring method of thickness of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4730287A JPS63212807A (en) 1987-03-02 1987-03-02 Measuring method of thickness of thin film

Publications (1)

Publication Number Publication Date
JPS63212807A true JPS63212807A (en) 1988-09-05

Family

ID=12771488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4730287A Pending JPS63212807A (en) 1987-03-02 1987-03-02 Measuring method of thickness of thin film

Country Status (1)

Country Link
JP (1) JPS63212807A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134303A (en) * 1990-08-14 1992-07-28 Flexus, Inc. Laser apparatus and method for measuring stress in a thin film using multiple wavelengths

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134303A (en) * 1990-08-14 1992-07-28 Flexus, Inc. Laser apparatus and method for measuring stress in a thin film using multiple wavelengths

Similar Documents

Publication Publication Date Title
US7008518B2 (en) Method and apparatus for monitoring optical characteristics of thin films in a deposition process
JPS5844961B2 (en) Film thickness control or monitoring equipment
US7182976B2 (en) Process for forming a thin film and apparatus therefor
US20030176000A1 (en) Measuring apparatus and film formation method
EP0585883B1 (en) Method of measuring refractive index of thin film
JPH04116433A (en) Radiation thermometer and temperature measuring method by the thermometer
JP7303701B2 (en) Optical film thickness control device, thin film forming device, optical film thickness control method, and thin film forming method
JPS63212807A (en) Measuring method of thickness of thin film
JPH0341399A (en) Manufacture of multilayered film reflecting mirror
JP7171092B1 (en) Film formation control device, film formation device and film formation method
JP3866933B2 (en) Film thickness measuring device
JPS6328862A (en) Method for controlling film thickness
JP2001165628A (en) Film thickness measuring device
JPH11162954A (en) Method and equipment for measuring thin film by optical means and film formation equipment
US20070019204A1 (en) Spectrometer based multiband optical monitoring of thin films
Bauer et al. In situ optical multichannel spectrometer system
SU326535A1 (en) METHOD OF CONTROL OF THICKNESS OF CONSTANTLY METHODS OF METAL DIELECTRICALLY SUBSTITUTED ON A SUBSTRATE
TWI839900B (en) Film forming control device, film forming device and film forming method
JPH07159132A (en) Device for measuring temperature of semiconductor surface and thickness of film formed on the surface
US20040263867A1 (en) Method and apparatus for the determination of characteristic layer parameters at high temperatures
RU2694167C1 (en) Device for measuring thickness and dielectric permeability of thin films
JPS61253408A (en) Film thickness control of optical thin film
Spousta et al. In situ measurements of surface homogeneity of optical parameters of weakly absorbing thin films
CN116676582A (en) Direct light control system and method of coating equipment
JPH03221821A (en) Method for controlling temperature of surface of object