JPS58140605A - Controlling method of thickness of optical thin film - Google Patents

Controlling method of thickness of optical thin film

Info

Publication number
JPS58140605A
JPS58140605A JP553282A JP553282A JPS58140605A JP S58140605 A JPS58140605 A JP S58140605A JP 553282 A JP553282 A JP 553282A JP 553282 A JP553282 A JP 553282A JP S58140605 A JPS58140605 A JP S58140605A
Authority
JP
Japan
Prior art keywords
film thickness
light
thin films
optical film
monochromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP553282A
Other languages
Japanese (ja)
Inventor
Haruo Takahashi
晴夫 高橋
Junichiro Minowa
箕輪 純一郎
Nobuhide Miyamoto
宮本 信英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOSHIN KOGAKU KK
Nippon Telegraph and Telephone Corp
Original Assignee
KOSHIN KOGAKU KK
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOSHIN KOGAKU KK, Nippon Telegraph and Telephone Corp filed Critical KOSHIN KOGAKU KK
Priority to JP553282A priority Critical patent/JPS58140605A/en
Publication of JPS58140605A publication Critical patent/JPS58140605A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain prescribed film thickness with high accuracy in controlling of the optical film thickness of vapor deposited thin films by passing monochromatic light through the thin films during vapor deposition of the thin films and measuring the inverse proportional value of transmittance. CONSTITUTION:An evaporating source material 3 placed on the inner side of an opening/closing device 2 is heated in a vacuum vessel 1. Monochromatic light is projected from a light projector 6 to the substrate 5 to be deposited in a circular cover 4 and the light passed through the substrate 5 is fed to a measuring mechanism 7. The incident light in the mechanism 7 is passed through a photodetecting part 8 and is intensified with an amplifier 9. The ratio between the amplitude which is the inverse number of the transmittance of the monochromatic incident light and the constant amplitude determined by the refractive index of the evaporating source material is determined with constant power sources 10, 10' and calculators 11, 11', then the outputs which are equal to the square of the sine of optical phase angles and change periodically with an increase in optical film thickness are drawn by a recorder 12. The vapor deposition is suspended by the device 2 upon attaining of the required optical film thickness, whereby the thin films are formed to the prescribed film thickness with high accuracy.

Description

【発明の詳細な説明】 本発明は、蒸着薄膜の光学膜厚制御に於いて、単色入射
透過光の逆比例値を測定することKより、所定の膜厚を
得ることを特徴とする方法である0 レンズやプリズムなどの受光器材[1111を付は透過
性、分光性などの受光効果を高めるために行われてきた
真空蒸着は、薄膜形成が微妙で安定を欠きやすいため、
これまでのところ、極〈限られた熟練技術者に任されて
きた結果、近時高まってきた受光器材の進展に伴う薄膜
の需要を満たし切れなくなってきている。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for controlling the optical thickness of a deposited thin film, which is characterized in that a predetermined film thickness is obtained by measuring the inverse proportional value of monochromatic incident transmitted light. 0 Light-receiving equipment such as lenses and prisms [1111 attached] Vacuum deposition, which has been carried out to improve light-receiving effects such as transparency and spectral properties, is difficult because the thin film formation is delicate and tends to lack stability.
Until now, this work has been left to a very limited number of skilled engineers, and as a result, it has become impossible to meet the demand for thin films that has accompanied the recent advances in light-receiving equipment.

薄膜形成を適正なものにするために現在まで採られてき
た膜厚測定法についてみれば、薄膜に当てた単色光の干
渉を利用し透過光或は反射光に比例した強さを示す信号
を用いて行うものであった。
The film thickness measurement method that has been used to date to ensure proper thin film formation utilizes the interference of monochromatic light that hits the thin film to generate a signal that shows an intensity proportional to the transmitted or reflected light. It was done using

その方法に於ては光学膜厚が単色光の波長の四半外近い
ときに光学膜厚の変化に対する単色透過光或いは反射光
の変化が著しく小さくなるために測定に精度を欠き、そ
れ以外の膜厚に対しては測定ができず、現時強く求めら
れる受光器材の複雑多様化についてゆけない憾があるr
方Pラスティス、Gサラアプリ−らによって明らか圧さ
れている、水晶振動子板によって行うものでは、質量膜
厚は測れても光学上定義されている光学膜厚を直ちに測
定することができず、JOOCからJ z o cS度
の高温下に行う蒸着では測定値の補正を要するなど不安
定性が強かったO 本発明は、薄膜への単色入射光の透過率に反比例した量
を欄ることにより、従来の膜厚制御法にみられた弊を避
け、高精度受光器材の経費が余り嵩まない量産化を画す
るものである・先ず、本発明の成立原理を述べる〇 被蒸着物質、蒸着源物質の屈折率をそれぞれn。
In this method, when the optical film thickness is near the outer quadrant of the wavelength of monochromatic light, the change in monochromatic transmitted light or reflected light due to the change in optical film thickness becomes significantly small, resulting in a lack of accuracy in measurement; It is not possible to measure the thickness, and there is a regret that it is not possible to keep up with the increasing complexity and variety of light receiving equipment that is strongly required at present.
Although it is possible to measure the mass film thickness using a crystal resonator plate, which is clearly emphasized by P. Rastis and G. Sarapuri et al., it is not possible to immediately measure the optical film thickness, which is optically defined, and the JOOC Vapor deposition carried out at high temperatures from J zocS to This method avoids the drawbacks seen in the film thickness control method of 2005 and enables mass production of high-precision light receiving equipment without increasing the cost. First, the principle behind the invention will be described. the refractive index of n, respectively.

N、蒸着源物質で生じる薄膜の厚さをd、光学膜厚をN
d、それを光学位相角にしたものをθ=(2に/λ)N
a、薄膜を通る単色光の真空中での波長を人、透過率を
T、Tの逆数なA、 a=(1+n)”、b−n/N 
s c=(b+n)”−a  とすると、干渉の原理よ
り ム■(a+c81n’θ)/4n・−・・・・・・・・
・・・・・・・・・・・・・+11と表わされる・ 蒸着源物質が付着していない時のAをAoと書くと、θ
=rとおいて (1)よF)  Ao=a/4n λ 1(x o、 1.2.3.・−・・・・・・・・; 
Nd =7(2に+ 1 )の場合)、=A1とすると
θ=90°×(2に+1)とおいて(1)より   A
=(a十c)/4nよっテAo−ム= −c sin’
θ/4n・・・・・・・・・・・・・・・・・・・・−
・・・・・+I+Ao−^=  c/4n・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・(i)八 (ムo   A)/(ムo−A)=si
n”#  ・・・・・・・・・・・・・・・・・・・・
・・・・・・・・  (厘)+1)式は蒸発源物質が付
着していない時の透過率の逆数を原点にした時の任意の
膜厚時の透過率の逆数を示しており、(1)式は、光学
膜厚がλ ■(2に+1)の時の透貞光の逆数の定振巾値を示して
いる。(璽)式は単色入射光の透過率の逆数の振巾と被
蒸着物質と蒸発源物質の屈折率によって決まる定振巾と
の比が光学位相角θのみの関数で、正弦の平方に郷しく
、光学膜厚N(lの増加と共に周期的に変化することを
示している。従って(璽)式で表わされる出力を観測す
ることKよって・ (1)単一波長の測定光で、任意の光学膜厚が簡単に制
御できる。
N, the thickness of the thin film formed by the evaporation source material is d, and the optical film thickness is N.
d, and its optical phase angle is θ=(2/λ)N
a, the wavelength in vacuum of monochromatic light passing through a thin film is T, the transmittance is T, the reciprocal of T is A, a=(1+n)'', b-n/N
If s c=(b+n)"-a, then according to the principle of interference, m (a+c81n'θ)/4n・-・・・・・・・・・・
It is expressed as +11. If A when no vapor deposition source substance is attached is written as Ao, then θ
= r (1) F) Ao=a/4n λ 1(x o, 1.2.3.・-・・・・・・・・・・・・;
If Nd = 7 (+1 to 2)), = A1, then θ = 90° x (+1 to 2), and from (1), A
=(a0c)/4nyotteAo-mu=-c sin'
θ/4n・・・・・・・・・・・・・・・・・・−
・・・・・・+I+Ao−^= c/4n・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
...(i) 8 (Muo A)/(Muo-A)=si
n”#・・・・・・・・・・・・・・・・・・
・・・・・・・・・ The formula (rin) + 1) shows the reciprocal of the transmittance at any film thickness when the origin is the reciprocal of the transmittance when no evaporation source substance is attached, Equation (1) shows the constant amplitude value of the reciprocal of transmitted light when the optical film thickness is λ 2 (2+1). Equation (1) shows that the ratio of the amplitude of the reciprocal of the transmittance of monochromatic incident light to the constant amplitude determined by the refractive index of the material to be evaporated and the evaporation source material is a function only of the optical phase angle θ, and the ratio is expressed by the square of the sine. This shows that the optical film thickness N(l) changes periodically as the optical film thickness N(l) increases. Therefore, by observing the output expressed by the formula (1),... The optical film thickness can be easily controlled.

121 (m1式は被蒸着物質と蒸発源物質の屈折率に
無関係であるので、屈折率が不明であるそれに対しても
、任意の光学膜厚が簡単かつ正確に制御できる。
121 (Since the m1 formula is unrelated to the refractive index of the evaporation target material and the evaporation source material, any optical film thickness can be easily and accurately controlled even when the refractive index is unknown.

(3)任意の膜厚が簡単に制御できるためにθを任意の
値に設定でき、それによp従来の λ 、(2に+1)x?のθで制御する方法に比べて精度が
飛躍的に増大する。つまプ最大の精度が得られるのは、
θ=45°+906Xkの時でTol)、在来の方法に
くらべて数十倍の精度が得られるO 次に本発明を実施例図について説明すれば、既述の原理
に基き、真空槽il+の中で開閉器(2)の内[に置い
た蒸着源物質(3)を加熱し円蓋(4)の中/にある被
蒸着物質(5)K投光器(6)から単色光を当て、被蒸
着物質(5)を通った光を測定機構(7)に送9、測定
機構(7)では入射光を受光部(8)に通し増巾一部(
9)で強め、定電源傾aiと計算器uajKより+11
の左辺に示される組成値、従って右辺の正弦平方値に比
例した値を記録器(2)に信号として描かせ、所要の光
学膜厚になったとき開閉器にて蒸着を打ち切るものであ
る。
(3) Since the arbitrary film thickness can be easily controlled, θ can be set to an arbitrary value, thereby making p the conventional λ, (2 + 1) x? The accuracy is dramatically increased compared to the method of controlling using θ. The maximum accuracy can be obtained by
Tol) when θ = 45° + 906 The evaporation source material (3) placed inside the switch (2) is heated, and the material to be evaporated (5) located inside/in the dome (4) is exposed to monochromatic light from the K projector (6). The light that has passed through the material to be deposited (5) is sent to the measuring mechanism (7).In the measuring mechanism (7), the incident light is passed through the light receiving part (8) and the amplified part (
9), and +11 from the constant voltage gradient ai and the calculator uajK.
The composition value shown on the left side, and therefore the value proportional to the squared sine value on the right side, is drawn as a signal on the recorder (2), and when the required optical film thickness is reached, the vapor deposition is stopped by a switch.

次に1具体的数値で実測済みの本発明の実施例を列挙す
る。
Next, examples of the present invention that have been actually measured using one specific numerical value will be listed.

(イ)光学膜厚を単色入射光の波長の1.2574 (
位相角112.5°)に定めた制御例 集束電子線を用い第1図に略本する装置を用い、/気圧
の1/760をlトルとする単位で表わしてlトルの1
/10’の高真空、被蒸着物質源[j j OCで、蒸
着源物質(3)の二酸化チタンTL()aを被蒸着物質
(5)のガラスに毎秒仏3オングストロームの割合で蒸
着した、第2図に略本する機構によって波長1000オ
ングストロームの光を通しく組より、第3図に示される
ごとく出力が0.Ij41(sinリーsin’ (1
115°)1α854)のときに開閉器により蒸着を打
ち切った。蒸着終了後、被蒸着物質(5)を取り出し分
光器にて測定した結果、光学膜厚を/2jλ/4に制御
できたことを確認した・ (ロ)膜厚を特に高精[に定めて多層膜を形成した制御
例 主として波長の四半分をそれぞれの膜厚とする硫化亜鉛
Zn8 、氷晶石の交互に重なり合う23層の薄膜から
なるキャビティー型のバンドパスフィルターを、高真空
中の抵抗加熱によりて形成した・入射光の波長i;1j
44コOオングストローム、光学膜厚(位相角)をキャ
ビティ一層で2230、交互層で//2.Joとし、フ
ィルターの中心波長を1,770オンゲストワームに設
定した。この結果第μ図に示す分光特性のフィルターを
、この種のものに必要な膜厚誤差0. j 4以内の条
件下に製作できた。
(b) The optical film thickness is 1.2574 of the wavelength of monochromatic incident light (
Example of control using a focused electron beam with a phase angle of 112.5°) Using the apparatus shown schematically in FIG.
/10' high vacuum, the source material to be evaporated [j The mechanism schematically shown in FIG. 2 allows light with a wavelength of 1000 angstroms to pass through the set, resulting in an output of 0.05 nm as shown in FIG. 3. Ij41 (sin Lee sin' (1
115°) 1α854), the vapor deposition was stopped by a switch. After the deposition was completed, the material to be deposited (5) was taken out and measured with a spectrometer, and it was confirmed that the optical film thickness could be controlled to /2jλ/4. Control example of forming a multilayer film A cavity-type band-pass filter consisting of 23 thin films of zinc sulfide, Zn8, and cryolite, each of which has a film thickness equal to a quarter of the wavelength, is made of a resistor in a high vacuum. Wavelength i of incident light formed by heating; 1j
44 CoO angstroms, optical film thickness (phase angle): 2230 for a single cavity layer, //2 for alternate layers. Jo, and the center wavelength of the filter was set to 1,770 on guest worm. As a result, a filter with the spectral characteristics shown in Fig. μ can be fabricated with a film thickness error of 0. j It was possible to manufacture it under the conditions of 4 or less.

(ハ)KH2−jの超被覆の制御例 1トルの1/10″′の高真空で/jOcK加熱したK
H2−sK、il化亜鉛Zn8 、弗化バリウムBaF
1mの光学膜厚(位相角)をそれぞれりOo、+120
としてZnS s BaFsから成るj層対称轡価膜を
被機し、第5図に示す透過率の反射防止膜を形成した。
(c) Control example of supercoating of KH2-j K heated at /jOcK in a high vacuum of 1/10'' of 1 torr
H2-sK, zinc ilide Zn8, barium fluoride BaF
The optical film thickness (phase angle) of 1m is Oo, +120, respectively.
A J-layer symmetrical anti-reflection film made of ZnS s BaFs was coated on the substrate to form an anti-reflection film having a transmittance shown in FIG.

本発明は、膜厚について、イ1(ロ)(ハ)K典型が示
される再現性共に高性能の特性を確保し、込み入った構
成の複機、緻密な多層膜などさまざまな権類の薄膜の製
作を、既に広用の受光器材の分野ばかりでなく、最近盛
んになった医療−械、光通信などの分野で行う場合、計
算値と夷m1llとが一致するか非常圧近い状態で高精
度の膜厚を任意値で設定できるものとして、薄膜の広範
囲な用途に叶い、顕著な効力を発揮する。
The present invention secures high-performance characteristics as well as reproducibility that shows typical A1 (B), (C), and K types in terms of film thickness. When manufacturing is not only in the field of widely used light receiving equipment, but also in fields such as medical equipment and optical communication, which have recently become popular, it is necessary to check whether the calculated value and m1ll match, or if the As the film thickness can be set accurately to any value, it is suitable for a wide range of thin film applications and exhibits remarkable effectiveness.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例(イ)(ロ)(ハ)を示すもので
、第1図、第2図、第3図は(イ)のそれぞれ加工装置
、測定機構、信号特性であり、第弘図、第5図はそれぞ
れ10)、(/→の分光特性である。 尚、図中(1)け真空槽、(2)は開閉器、+31 F
ii着源物質、(4)は回転円蓋、(5) Fi被薫蒸
7IIN41!J質(6)は投光器、(7)は測定機構
、(8)は受光部、(9)は増中部、閥aiけ定電源、
a])Qltlは計算器、(2)は記録器、LFi光、
Pは記録器出力、Sは起点、Tは透過率、λは波長、θ
は光学位相角、μは7ミリの十分の−を意味するマイク
ロである。 特許出願人 m社光伸光学 (他/名)
The drawings show embodiments (a), (b), and (c) of the present invention, and FIGS. 1, 2, and 3 show the processing device, measuring mechanism, and signal characteristics of (a), respectively. Figure 5 shows the spectral characteristics of 10) and (/→, respectively. In the figure, (1) is the vacuum chamber, (2) is the switch, and +31 F.
ii source substance, (4) rotating fornix, (5) Fi fumigation 7IIN41! J quality (6) is the emitter, (7) is the measurement mechanism, (8) is the light receiving part, (9) is the intensifier part, the constant power supply for AI,
a]) Qltl is a calculator, (2) is a recorder, LFi light,
P is the recorder output, S is the starting point, T is the transmittance, λ is the wavelength, θ
is the optical phase angle, and μ is micro, which means -10th of 7 millimeters. Patent applicant: M Koshin Kogaku (and others)

Claims (1)

【特許請求の範囲】[Claims] 薄膜の蒸着中、単色光を薄膜に通し、その透過率の逆比
例値を測定しつつ、所定の光学膜厚を制御する方法。・
A method of controlling a predetermined optical film thickness by passing monochromatic light through the thin film and measuring the inversely proportional value of its transmittance during thin film deposition.・
JP553282A 1982-01-18 1982-01-18 Controlling method of thickness of optical thin film Pending JPS58140605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP553282A JPS58140605A (en) 1982-01-18 1982-01-18 Controlling method of thickness of optical thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP553282A JPS58140605A (en) 1982-01-18 1982-01-18 Controlling method of thickness of optical thin film

Publications (1)

Publication Number Publication Date
JPS58140605A true JPS58140605A (en) 1983-08-20

Family

ID=11613794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP553282A Pending JPS58140605A (en) 1982-01-18 1982-01-18 Controlling method of thickness of optical thin film

Country Status (1)

Country Link
JP (1) JPS58140605A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952226A (en) * 1989-02-27 1990-08-28 American Telephone And Telegraph Company Lightguide coating control
US7247345B2 (en) 2002-03-25 2007-07-24 Ulvac, Inc. Optical film thickness controlling method and apparatus, dielectric multilayer film and manufacturing apparatus thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365276A (en) * 1976-11-25 1978-06-10 Toshiba Corp Rotary chemical evaporation apparatus for forming thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365276A (en) * 1976-11-25 1978-06-10 Toshiba Corp Rotary chemical evaporation apparatus for forming thin film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952226A (en) * 1989-02-27 1990-08-28 American Telephone And Telegraph Company Lightguide coating control
US7247345B2 (en) 2002-03-25 2007-07-24 Ulvac, Inc. Optical film thickness controlling method and apparatus, dielectric multilayer film and manufacturing apparatus thereof
CN100398694C (en) * 2002-03-25 2008-07-02 爱发科股份有限公司 Method and device for controlling thickness of optical film, insulation multilayer film and making device
KR100972769B1 (en) * 2002-03-25 2010-07-28 가부시키가이샤 알박 Optical film thickness controlling method, optical film thickness controlling apparatus, dielectric multilayer film manufacturing apparatus, and dielectric multilayer film manufactured using the same controlling apparatus or manufacturing apparatus
US7927472B2 (en) 2002-03-25 2011-04-19 Ulvac, Inc. Optical film thickness controlling method, optical film thickness controlling apparatus, dielectric multilayer film manufacturing apparatus, and dielectric multilayer film manufactured using the same controlling apparatus or manufacturing apparatus

Similar Documents

Publication Publication Date Title
US4837044A (en) Rugate optical filter systems
JPS5844961B2 (en) Film thickness control or monitoring equipment
US7182976B2 (en) Process for forming a thin film and apparatus therefor
US3620814A (en) Continuous measurement of the thickness of hot thin films
US5410411A (en) Method of and apparatus for forming multi-layer film
JPS58140605A (en) Controlling method of thickness of optical thin film
WO2015004755A1 (en) Optical film thickness measurement device, thin film forming device, and method for measuring film thickness
JPH0341399A (en) Manufacture of multilayered film reflecting mirror
Kuhn et al. Reflectivity of thin silver films and their use in interferometry
US5028136A (en) Rugate optical filter systems
JPS6338579A (en) Thin film forming method
JP2005154804A (en) Apparatus and method for forming optical thin film
JPS58162805A (en) Method for monitoring vapor deposited film optically
JPH02118069A (en) Device for optically measuring characteristic
RU2694167C1 (en) Device for measuring thickness and dielectric permeability of thin films
JPS61253408A (en) Film thickness control of optical thin film
Greenland et al. The Construction of Interference Filters for the Transmission of Light of Specified Wavelengths
Kuwabara et al. Optical Constants of ZnS Films
JPS6144153B2 (en)
JPH03221854A (en) Instrument for measuring thermal expansion
CN116676582A (en) Direct light control system and method of coating equipment
SU742400A1 (en) Method of manufacturing multilayer interference mirrors
Gale et al. A simple optical thin film deposition monitor using LED’s and fiber optics
JPS61296305A (en) Production of interference filter made of multi-layered film
JPH05249312A (en) Production of optical multilayered film