JPS59143904A - Monitoring method of characteristics of dielectric thin film - Google Patents

Monitoring method of characteristics of dielectric thin film

Info

Publication number
JPS59143904A
JPS59143904A JP58018025A JP1802583A JPS59143904A JP S59143904 A JPS59143904 A JP S59143904A JP 58018025 A JP58018025 A JP 58018025A JP 1802583 A JP1802583 A JP 1802583A JP S59143904 A JPS59143904 A JP S59143904A
Authority
JP
Japan
Prior art keywords
thin film
transmittance
light
refractive index
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58018025A
Other languages
Japanese (ja)
Inventor
Takashi Taguchi
隆志 田口
Yoshiki Ueno
上野 祥樹
Tadashi Hattori
正 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP58018025A priority Critical patent/JPS59143904A/en
Publication of JPS59143904A publication Critical patent/JPS59143904A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/547Controlling the film thickness or evaporation rate using measurement on deposited material using optical methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To monitor the characteristics of a dielectric thin film in a forming process of the dielectric thin film accurately, by measuring the transmittance or reflectivity in a wavelength on the short-wavelength side of two wavelengths, and obtaining the refractive index of the dielectric thin film during the formation based on the extreme value of the transmittance or reflectivity. CONSTITUTION:One light beam L1 is transmitted through a glass substrate 13, wherein a thin film is being formed, and guided to the outside of a vacuum evaporating container 11. The light beam is reflected by a mirror 43 and the direction is changed. The light beam is divided into the light having the equal intensity by a beam splitter 32 for 1/2 splitting. The two light beams passed a filter 51, which transmits a wavelength lambda1, and a filter 52, which transmits a wavelength lambda2(lambda1<lambda2). The light beams are converted into electric signals by light receiving devices 611 and 621. The transmitting wavelengths lambda1 and lambda2 of the filters 51 and 52 are different in correspondence with the desired optical film thicknesses. The signals are amplified by amplifiers 61 and 62 by the same amount, and the difference is obtained by a differential amplifier 72. The output of the diffeential amplifier 72 is monitored by a voltmeter 9. At a point when the output of the differential amplifier 72 becomes zero, the film formation is stopped and the optical film thickness is controlled.

Description

【発明の詳細な説明】 本発明は、誘一体薄膜を基板上に形成する場合において
、膜厚と屈折率を監視する誘電体薄膜特性の監視方法に
関する。本発明の方法は、例えば、特殊な光学特性をも
つガラス、例えば自動車用窓ガラス、カメラレンズ、メ
ガネレンズ、光フィルタ等の製造において、多元真空蒸
着装置や多元スパッタ装置での多情光学薄膜作製に際し
て、各層の光学膜厚を一定に保つとともに、その屈折率
と物理膜厚を飼々に測定可能とすることが必要である場
合等に用いられる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for monitoring dielectric thin film characteristics, which monitors film thickness and refractive index when a dielectric thin film is formed on a substrate. The method of the present invention can be used, for example, in the production of glass with special optical properties, such as automobile window glasses, camera lenses, eyeglass lenses, optical filters, etc., when producing multi-dimensional optical thin films using multi-dimensional vacuum evaporation equipment or multi-dimensional sputtering equipment. This is used when it is necessary to keep the optical thickness of each layer constant and to be able to easily measure its refractive index and physical thickness.

従来、λ/4厚の光学薄膜を精度よく形成しようとする
ためその1関形成の終了点を検出する場合には例えば2
色法が用いられてきた。すなわち、被加工物に光を照射
して、その透過光あるいは反射光を2つに分け、各々波
長の異なるフィルタを通した後に透過率あるいは反射率
を測定し、これが2波長で等しくなる点で膜形成を終了
する方法である。しかし4、この方法は光学膜厚を一定
としているので、屈折率、物理j膜厚を測定していない
ため、もし条件の変動等によ−り屈折率が変化しても検
出できない。従って、その後の層の(栂成変更による特
性の711!正かで牲ないという間゛:五点がある。
Conventionally, in order to form an optical thin film with a thickness of λ/4 with high precision, it is necessary to detect the end point of the formation of 1 point, for example.
Color methods have been used. In other words, the workpiece is irradiated with light, the transmitted light or reflected light is divided into two parts, each passes through a filter with a different wavelength, and then the transmittance or reflectance is measured. This is a method of terminating film formation. However, in this method, the optical film thickness is kept constant, and the refractive index and physical film thickness are not measured. Therefore, even if the refractive index changes due to changes in conditions, it cannot be detected. Therefore, there are 711 points in the characteristics of the subsequent layer (by composition change) that cannot be sacrificed.

本発明の目的は前述の問題点にかんがみ、2色法で光学
膜厚を制i4jするとともに短波長側の透過率あるいは
反射率を単独に測定し、その極小秀過率を知ることによ
り屈折率を求め、光学j膜厚と屈折率より物理膜厚を求
めるという着想にもとづき、誘′(5)体薄膜の形成!
異程における誘電体薄膜特性の監視を正確に行うことに
ある。
In view of the above-mentioned problems, the purpose of the present invention is to control the optical film thickness using a two-color method, measure the transmittance or reflectance on the short wavelength side independently, and determine the refractive index by knowing the minimum transmittance. Based on the idea of finding the physical film thickness from the optical film thickness and refractive index, we formed a dielectric (5) thin film!
The object of this invention is to accurately monitor dielectric thin film characteristics at different temperatures.

本発明においては、形成中の誘電体薄膜に光を投射し、
その透過光あるいは反射光を定められた2つの波長に分
1η)明して、この2つの波長での透過光−叫あるいけ
反射光量が等しくなる時点で薄膜形成を停止することに
より光学膜厚を制御するとともに、前記2つの波長のう
ちの短波長側の波長における透過率または反射率を測定
し、該透過率または反射率の極値より形成中の誘電体薄
膜の屈折率を求めることを特徴とする誘電体薄膜特性の
監視方法、が提供される。
In the present invention, light is projected onto the dielectric thin film being formed,
The transmitted light or reflected light is split into two predetermined wavelengths (1η), and the thin film formation is stopped when the amount of transmitted light or reflected light at these two wavelengths becomes equal, thereby increasing the optical film thickness. At the same time, the transmittance or reflectance at the shorter wavelength of the two wavelengths is measured, and the refractive index of the dielectric thin film being formed is determined from the extreme value of the transmittance or reflectance. A method for monitoring characteristics of a dielectric thin film is provided.

本発明の一実施例としての誘電体薄膜特性の監視方法を
行う装置が第1図に示される。第1図装置において、真
空蒸着装置1の真空蒸着容器11内には蒸発源12とガ
ラス基板13が設置してあり、蒸発源12から蒸発した
物質1dガラス基板13上に析出して誘電体薄膜を形成
する。
An apparatus for carrying out a method for monitoring dielectric thin film characteristics as an embodiment of the present invention is shown in FIG. In the apparatus shown in FIG. 1, an evaporation source 12 and a glass substrate 13 are installed in a vacuum evaporation container 11 of a vacuum evaporation apparatus 1, and a substance 1d evaporated from the evaporation source 12 is deposited on the glass substrate 13 to form a dielectric thin film. form.

真空蒸着容器11の外に置かれた光源部2の白色光源2
1から出た光はビームスプリッタ31によって2つに分
けられた後、各々真空蒸着容器11内へ導かれる。一方
の光L1 は、薄膜形成中のガラス基板13を透過した
後、真空蒸着容器11外へ導かれる。ミラー43で反射
をせて光の方向を変え、1/2分割のビームスプリッタ
32によって等しい強度に分けられる。この2つの光(
rJニー各々波長λ1 を透過するフィルタ51と波長
λ2を透過するフィルタ52(λ1 〉λ2 )を通過
して、受光器611.621で電気信号に変換される。
White light source 2 of the light source section 2 placed outside the vacuum deposition container 11
1 is split into two by a beam splitter 31, and each light is guided into the vacuum evaporation container 11. One light L1 is guided to the outside of the vacuum deposition container 11 after passing through the glass substrate 13 on which a thin film is being formed. The direction of the light is changed by reflection by a mirror 43, and the light is divided into equal intensities by a 1/2 beam splitter 32. These two lights (
The rJ knee passes through a filter 51 that transmits the wavelength λ1 and a filter 52 that transmits the wavelength λ2 (λ1 > λ2), and is converted into an electrical signal by the light receivers 611 and 621.

フィルタ51.52の透過波長λ1.λ2は、希望光学
膜厚により異なり、後に詳しく述べる。各々、増幅器6
1.62で同じだけ増幅され、差動増幅器72で差をと
る。電圧計9で差動増幅器72の出力を監視し、差動増
幅−器72の出力がDになる点で膜形成をストップする
ことにより光学膜厚の制御を行なう。
The transmission wavelength λ1 of the filters 51 and 52. λ2 varies depending on the desired optical film thickness, and will be described in detail later. each, amplifier 6
1.62, and a differential amplifier 72 takes the difference. The optical film thickness is controlled by monitoring the output of the differential amplifier 72 with the voltmeter 9 and stopping film formation when the output of the differential amplifier 72 reaches D.

他方の光L2は、蒸発物質の付着しない位置におかれた
、ガラス基板13と同−質の参照ガラス14を透過した
後、真空蒸着容器11外へ導かれ波長λ2 を透過する
フィルタ53を通過して受光器631で電気信号に変換
される。この信号は増幅器63で増幅される。この増幅
器63の出力は膜が付着する以前のカラス基板13を透
過した光を増幅する増幅器62の出力と同じになるよう
に調整しである。成膜中において増幅器62.63の出
力を除算器71を用いて除算することにより1つの信号
とする。この信号を計算装置8に取り込んで透過率を計
算し、この透過率より成膜中の薄膜の屈折率を求める。
The other light L2 passes through a reference glass 14 of the same quality as the glass substrate 13, which is placed in a position where evaporated substances do not adhere, and then is guided outside the vacuum evaporation container 11 and passes through a filter 53 that transmits the wavelength λ2. The light is then converted into an electrical signal by the light receiver 631. This signal is amplified by an amplifier 63. The output of this amplifier 63 is adjusted to be the same as the output of the amplifier 62 which amplifies the light transmitted through the glass substrate 13 before the film is attached. During film formation, the outputs of the amplifiers 62 and 63 are divided using a divider 71 to form one signal. This signal is taken into the calculation device 8 to calculate the transmittance, and from this transmittance, the refractive index of the thin film being formed is determined.

なち・、ここでは、蒸発源から発せられる光の影響を除
くために、チョッパ22で光をチョッピングし、その交
流成分のみを増幅している。
Here, in order to eliminate the influence of light emitted from the evaporation source, the chopper 22 chops the light and amplifies only the alternating current component.

第1図装置dを用いての成膜中の誘一体薄膜の光学膜厚
および屈折率を独立忙監視する過程が以下に述べられる
The process of independently monitoring the optical thickness and refractive index of a dielectric thin film during deposition using apparatus d in FIG. 1 will be described below.

まず、光学膜厚の監視原理が以下に述べられる。First, the principle of monitoring optical film thickness will be described below.

第1図装置においては、光学膜厚がλ/4になる点を検
出して成膜をストップする方法が用いられる。ここでは
λは設計波長である。光学膜厚すなわち、膜厚X屈折率
がλ/4である薄膜の場合、その分光透過率は設計波長
λで極値をとり、波長λのときの波数1/λ(以後これ
をkとする)を中心として、彼奴に対して左右対称とな
る。第2図に、屈折率nが2.4テ膜厚りが60.80
゜100 nmのときの波数に対透過率Tの特性が示さ
れるつここで、屈折率2.4の物質を膜厚1100n形
成しだい場合を考えてみる。光学膜厚は1摸厚X屈折率
で表されるので、この場合希望光学膜厚は240 nm
であり、これがλ/4である。従って設計波長λ=96
0nmであり、k−10417crn−1である。
In the apparatus shown in FIG. 1, a method is used in which film formation is stopped by detecting a point where the optical film thickness becomes λ/4. Here, λ is the design wavelength. In the case of a thin film whose optical film thickness (film thickness x refractive index) is λ/4, its spectral transmittance takes an extreme value at the design wavelength λ, and the wave number at wavelength λ is 1/λ (hereinafter this will be referred to as k). ) and is symmetrical with respect to him. Figure 2 shows that the refractive index n is 2.4 and the film thickness is 60.80.
Now, let us consider the case where a material with a refractive index of 2.4 is formed to a thickness of 1100 nm, while the wave number at 100 nm shows the characteristic of transmittance T. The optical film thickness is expressed as 1 sample thickness x refractive index, so in this case the desired optical film thickness is 240 nm.
This is λ/4. Therefore, the design wavelength λ=96
0 nm and k-10417crn-1.

第2図の100 nrnの曲線(実線)をみると、波数
kを中心として左右対称となっており、波数に″?1’
透過率Tが極値をとっていることが認められる。またそ
れ以外の膜厚では波数kを中心として左右対称になって
いないことがわかる。従って、波数1(を中心として反
対方向に同犠たけずれた波数に1すなわち、波数(k−
Δk)と(k+Δk)(ここではΔk = 2000 
cm’−1)の光の透過率を見ていると、光学膜厚24
0 nmのときのみ(k−Δk)と(k+Δk)での透
過率が等しくなり、光学膜厚240 nm以外では(k
−Δk)と(k十ムk)でのづ杆昂率にL等[7くなら
々い。このことは第2図/)1らもわかるっすなわち、
これらの波数に相当する7皮長λ1 :1/(k−へk
)とλ2=1/(k十ζ・k)での透過率が等しくなる
時点で膜形成を停止すればブC学膜厚は24 [1nm
となる。
Looking at the 100 nrn curve (solid line) in Figure 2, it is symmetrical with the wave number k as the center, and the wave number is ``?1''.
It is recognized that the transmittance T takes an extreme value. Furthermore, it can be seen that for other film thicknesses, the film is not symmetrical about the wave number k. Therefore, the wave number 1 (centered on the wave number 1) and the wave number shifted in the opposite direction is 1, that is, the wave number (k-
Δk) and (k+Δk) (here Δk = 2000
cm'-1), the optical film thickness is 24
Only when the optical film thickness is 0 nm, the transmittance at (k - Δk) and (k + Δk) is equal, and when the optical film thickness is other than 240 nm, the transmittance is equal to (k
-Δk) and (k 0 m k), the expansion rate is L, etc. [7 k]. This can also be seen in Figure 2/)1, that is,
7 skin length λ1 corresponding to these wave numbers: 1/(k− to k
) and λ2=1/(k0ζ・k), if the film formation is stopped at the point when the transmittance becomes equal, the film thickness will be 24 [1 nm].
becomes.

丑た、5層膜の場合の例を鎮3図に示す。これは第4,
1〜以下(はすでに成膜されており、膜形成中の第5層
の光学膜厚を監視する場合を想定t7ている。基;1ノ
ス側よりej’; 1 、3層はカバ折率2.4で膜厚
100層m、、第2.4〕昏IJ: Jirl折率1,
5で膜厚160n円であり、各々光学膜厚2.40 n
mとなっている。でして第5層を、q((折率2.4の
+y厚D == 80層m 。
An example of a five-layer film is shown in Figure 3. This is the fourth
1 to less than (t7) assumes the case where the optical film thickness of the fifth layer that has already been formed and is being formed is monitored.Group; ej' from the 1 nos side; 2.4, film thickness 100 m, 2.4] Coma IJ: Jirl refractive index 1,
5 has a film thickness of 160n, and each has an optical film thickness of 2.40n.
m. Then, the fifth layer is q((+y thickness D with refractive index 2.4 == 80 layers m.

100 nm とした時の波数に対透過率Tの特性を示
しまたものである。第2図単層の場合と同様に膜厚が8
0 nmのとき、すなわち、光学膜厚がλ/4でないと
きは波数(k十Δk)と(k−Δk)の透過率が具なる
が希望膜厚である1100n。
It also shows the characteristic of transmittance T at the wave number when the wavelength is 100 nm. Figure 2: Same as the single layer case, the film thickness is 8
When it is 0 nm, that is, when the optical film thickness is not λ/4, the desired film thickness is 1100 nm, which has a transmittance of wave number (k + Δk) and (k - Δk).

すなわち光学膜厚がλ/4となると、この2点での透過
率が等しくなる。すなわち、多r1★の場合でも2波長
の透過率の差を監視する方法で光学膜厚を監視すること
ができる。
That is, when the optical film thickness becomes λ/4, the transmittance at these two points becomes equal. That is, even in the case of multi-r1★, the optical film thickness can be monitored by monitoring the difference in transmittance of two wavelengths.

第2図における横軸波数を波長λに変換した分光透過率
が第4図に示される。λ1 は1/(k−Δk)であ、
す、ことでは1188.1 nm )  λ2は1/(
k+Δk)であシ、ここでは805.4層mである。第
4図に示すように、屈折率2.4、膜厚D= 100 
nm、  すなわち光学膜厚がλ/4の場合に1叶、そ
の両波長での透過率が等しくなっていることが確認され
る。
The spectral transmittance obtained by converting the horizontal axis wave number in FIG. 2 to the wavelength λ is shown in FIG. λ1 is 1/(k-Δk),
In other words, 1188.1 nm) λ2 is 1/(
k+Δk), which is 805.4 layers m here. As shown in Figure 4, refractive index 2.4, film thickness D = 100
nm, that is, when the optical film thickness is λ/4, it is confirmed that the transmittance at both wavelengths is equal.

以上の方法によ−り光学膜厚は監視し得るが、前述した
ように、これは屈折率と膜厚の積であり、その各々の値
は不明である。しかし光学的に薄膜を用いる場合、その
屈折率は非常に重要な値であシ、光学特性を推定するた
めには、その値を知る必要がある。
Although the optical film thickness can be monitored by the above method, as described above, this is the product of the refractive index and the film thickness, and the values of each are unknown. However, when using a thin film optically, its refractive index is a very important value, and it is necessary to know this value in order to estimate its optical properties.

第1図装置においては、上記方法で光学膜厚を監視する
とともに、下に示す方法によh ノY’fi折率も測定
が可能である。すなわち、短波長側フィルタ520波長
(λ2 )での透過率の極小値を測定し、その値より屈
折率を独立に求めるものである。この方法について以下
に説明する。
In the apparatus shown in FIG. 1, it is possible to monitor the optical film thickness using the method described above, and also measure the h-Y'fi refractive index using the method shown below. That is, the minimum value of the transmittance at the short wavelength side filter 520 wavelength (λ2) is measured, and the refractive index is determined independently from that value. This method will be explained below.

屈折率”+I摸厚り、7j過率Tの関係は理論上次の式
で与えられる。
The relationship between refractive index "+I thickness" and 7j transmissivity T is theoretically given by the following equation.

ここで、T:透過率 R(n):第n層のエネルギ反射率 n (n):第n層の屈折率 Dll:第n層の膜厚 λ :光の波長 θ(ロ):第n層の出射角 r(n):第n層上面の振幅反射率 r(n−+):第n層下面の振幅反射率である。これを
、λ=λ1 −805.’ 4 nff1 、  すな
わち、短波長側フィルタ52の透過波長で学層膜の場合
について計算すると第5図のようになる。
Here, T: transmittance R(n): energy reflectance of the n-th layer n (n): refractive index of the n-th layer Dll: film thickness of the n-th layer λ: wavelength of light θ (b): n-th layer Output angle of layer r(n): Amplitude reflectance of the upper surface of the n-th layer r(n-+): Amplitude reflectance of the lower surface of the n-th layer. This is expressed as λ=λ1 −805. 4 nff1 , that is, the transmission wavelength of the short wavelength side filter 52 is calculated for the case of a layered film as shown in FIG.

すなわち、屈折率の値によって、透過率の極値(単7層
で膜の屈折率がガラス基板よ〃大きい時は極小値、小さ
い時は極大値)が変化していることがわかる。従って、
透過率の極値を知るととができれば、逆算により屈折率
を求めることができる。
That is, it can be seen that the extreme value of the transmittance changes depending on the value of the refractive index (minimum value when the refractive index of the single 7-layer film is larger than that of the glass substrate, and maximum value when it is small). Therefore,
If we know the extreme value of the transmittance, we can calculate the refractive index by back calculation.

測定値より、透過率を計算するには、ガラス基板の吸収
・反射分をキャンセルするために基板と同−質のガラス
(リファレンスガラス)の透過光量を測定する必要があ
る。
In order to calculate the transmittance from the measured value, it is necessary to measure the amount of transmitted light through glass of the same quality as the substrate (reference glass) in order to cancel the absorption and reflection of the glass substrate.

ここでザンプル透過光量をI(S)、リファレンスガラ
ス透過光量を1(め、基板表面での反射率をrとすると
透過率Tは次式で表わされる。
Here, if the amount of light transmitted through the sample is I(S), the amount of light transmitted through the reference glass is 1(S), and the reflectance on the substrate surface is r, the transmittance T is expressed by the following equation.

実際には除算器71の出力は1向/I(F)である。Actually, the output of the divider 71 is one direction/I(F).

これを5(71)とすると、(3)式は、1 十r(1
−11)(/IJ J となる。
If this is 5(71), then equation (3) becomes 1 r(1
-11) (/IJ J.

光学膜厚制御に用いるうちの短波長側の波長(ここでは
805.4nm)での透過率を、この(3)式を用いて
逐次計算してゆき、計算装置によりそれの極値T (M
 1) (単層で膜の屈折率がガラス基板よシ大きい時
は極小値)を判定する。極値T (M)がわかった時点
より、計算装置に」:す、即時、屈折率を計算する。こ
の計算は、弐(1) 、 (2)においてn (n)を
各々変化させて、各々の場合の7L過率の極値T(M2
)を求め、このうち実測によって求められた透過率の極
値T(Ml)に最も近い透過率の極値T(M2)を選び
出し、この時のn (n)をもってその層の屈折率とす
る。この時の計算装置の演算手順を第6図の流れ図にお
・けるステップ81〜S9で示す。第5図においてId
、単層の場合の例を示したが、多層になった場合にかい
ても下層の屈折率と膜厚さえわかっていれば、全く同様
に屈折率が測定できる。
The transmittance at the shorter wavelength (here, 805.4 nm) used for optical film thickness control is calculated one by one using equation (3), and the calculation device calculates its extreme value T (M
1) Determine (minimum value when the refractive index of the single layer film is higher than that of the glass substrate). From the moment the extreme value T (M) is known, the refractive index is immediately calculated by the calculation device. This calculation is performed by changing n (n) in 2(1) and (2), and calculating the extreme value T(M2) of the 7L pass rate in each case.
), select the extreme value T (M2) of transmittance that is closest to the extreme value T (Ml) of transmittance found by actual measurement, and use n (n) at this time as the refractive index of that layer. . The calculation procedure of the calculation device at this time is shown in steps 81 to S9 in the flowchart of FIG. In Figure 5, Id
Although the example of a single layer is shown, the refractive index can be measured in exactly the same way even in the case of a multilayer, as long as the refractive index and film thickness of the lower layer are known.

第1図装置においては、光学膜厚制御に用いる2つの波
長のうち、短波長側の波長に対する透過率を測定してい
るため、希望光学膜厚に達するまでに、必ず1つの極値
を通過する。従って、いかなる場合においても屈折率が
求められ、もし必侠であれば、設定光学膜厚と屈折率か
ら物理膜厚を知ることが可能である。
The device shown in Figure 1 measures the transmittance for the shorter wavelength of the two wavelengths used for optical film thickness control, so it always passes through one extreme value before reaching the desired optical film thickness. do. Therefore, the refractive index can be determined in any case, and if necessary, it is possible to know the physical film thickness from the set optical film thickness and the refractive index.

なお、前述においては、希望光学膜厚を24011 n
lとしたが、とれに限らず、設計波長λを変えることに
より、任意の光学膜厚についても制御可能である。また
前述においてはt\に=2000ゴー1としたが、これ
に限らず、膜厚、屈折率1層数等によって適切に選ぶこ
とができる。
In addition, in the above, the desired optical film thickness is 24011 n
Although the thickness is not limited to 1, it is possible to control any optical film thickness by changing the design wavelength λ. Further, in the above description, t\=2000 go 1, but the value is not limited to this, and can be appropriately selected depending on the film thickness, the number of refractive index layers, etc.

第1図装置による誘電体薄膜特性の監視方法においては
下記の利点が生ずる。すなわち、従来の光学膜厚の監視
のみでも光学膜厚は常にλ/4に保たれるので、多層膜
としてもλ/4多層膜は・潜られる。
The method of monitoring dielectric thin film characteristics using the apparatus shown in FIG. 1 has the following advantages. That is, since the optical film thickness is always maintained at λ/4 only by conventional monitoring of the optical film thickness, the λ/4 multilayer film can also be used as a multilayer film.

しかし、何らかの理由、例えは、温度、圧力。However, for some reason, for example, temperature, pressure.

成膜速度等の変化等により、形成した膜の屈折率が、当
初予想した屈折率と異なったとしても、そのことを知る
ことはできない。従って、その後の層を設計どおりに作
製することになシ、これでは設ff1− Q’i性よ1
ノ省っ/こlト性しか得られない。この例を第7図に示
す。紀7図は3層熱線反射膜の例を示したものである。
Even if the refractive index of the formed film differs from the initially expected refractive index due to changes in the film formation rate, etc., it is impossible to know this fact. Therefore, it is necessary to fabricate the subsequent layers as designed, and the design ff1-Q'i property is 1.
The only thing you can get is a lot of savings. An example of this is shown in FIG. Figure 7 shows an example of a three-layer heat ray reflective film.

aが設計特性であり第1.第6層にノ「;折A’S 2
.4 ノ膜を膜厚100 nm 、 第2Mに屈折率1
.5の膜を膜厚160 nm形成したときの特性である
。もし、第1層の/iT!折率が何らかの理由で2.2
となっていたとする。そのことを知らず、その捷ま2;
 2 、 第5層全形成するとbのような特性となり、
熱紡域の最大透過率がaと比較して約5010稈上昇す
るごとになる。すなわち、特性が劣化する。
a is the design characteristic and the first. Fold A'S 2 on the 6th layer.
.. 4 films with a thickness of 100 nm and a refractive index of 1 in the second M.
.. These are the characteristics when the film No. 5 was formed to a thickness of 160 nm. If the first layer /iT! For some reason, the refractive index is 2.2.
Suppose that I didn't know that, and I didn't know that.
2. When the fifth layer is completely formed, the characteristics are as shown in b,
The maximum transmittance of the thermal spinning zone increases by about 5010 culms compared to a. In other words, the characteristics deteriorate.

ここで、第1図装置トイを用いての方法により、屈折率
を監視していれば、形成1−だ膜の屈折率が変化しても
その後の層の屈折率を適切な値に変化させることにより
、所望の特性r得ることかできる。
Here, if the refractive index is monitored by the method using the device shown in Figure 1, even if the refractive index of the formed film changes, the refractive index of the subsequent layer will change to an appropriate value. By doing so, desired characteristics can be obtained.

第7図C11−11、bと同じく第1層の屈折率が2.
2であるが第2j月全屈折率1.38の物質に置換した
ものであり、設i[特性aとほぼ同じ特性が旬られる。
The refractive index of the first layer is 2.2.
2 is replaced with a substance having a total refractive index of 1.38 in the 2nd month, and almost the same characteristics as characteristic a are obtained.

このように、第1図装置を用いて形成した膜の屈折率を
監視することによシ、最終的に所望の特性が得られるよ
うに、膜構成を制御することができる。
As described above, by monitoring the refractive index of the film formed using the apparatus shown in FIG. 1, the film configuration can be controlled so that desired characteristics are finally obtained.

本発明の実施にあたって1−L、前述の実施例の1丑か
にイ・重々の変形形態ン一とることが可能であるい変形
形態の1例としての誘電体薄膜特性の聴視方法を行う装
置が第8図に示される。、第11閃斐置においては透過
光を測定することで光学j膜厚と屈折率を監視したが、
第8図装置で(、づ二反射光を測定することで光学膜厚
と屈折率を監視する。
In carrying out the present invention, 1-L, it is possible to take various modifications of the above-mentioned embodiments, and perform an audio-visual method of dielectric thin film characteristics as an example of the modification. The apparatus is shown in FIG. At the 11th flash station, the optical film thickness and refractive index were monitored by measuring the transmitted light.
The optical film thickness and refractive index are monitored by measuring the reflected light using the device shown in FIG.

第8図装置に、b−いては、筆11ネト畏置に訃けるリ
ファレンスガラス14の代りに、ガラス基板16と同−
質のガラスの下面に反射率100%の金属ミラーを設け
たミラー15を用いている点でイ5る。
In the device shown in FIG.
5. It uses a mirror 15 that has a metal mirror with a reflectance of 100% on the lower surface of high-quality glass.

これは反射率をγL11]定する/とめで、ミラー15
i>らの反射光ト士をJ (M) 、サンプル13から
の反射光量をJ(S)、基板表面での振幅反射率をrと
してエネルギ反射率几を求めると次式で表わされる。
This determines the reflectance γL11] and the mirror 15
The energy reflectance is determined by the following equation, where J(M) is the amount of reflected light from the sample 13, J(S) is the amount of reflected light from the sample 13, and r is the amplitude reflectance on the substrate surface.

(i−2r)J(M)+reJ(S) また、理論反射率は次の式で示される。(i-2r)J(M)+reJ(S) Further, the theoretical reflectance is expressed by the following formula.

第1図装置における式(1) ’+ (2) 、 f3
)を式(5)、 (61、(7)で置換することによ一
す、第1図装fiにおけると同様な方法で光学膜厚、屈
折率の監視が可能となる。
Equation (1) '+ (2), f3 in the device shown in Figure 1
) by replacing equations (5), (61, and (7)), it becomes possible to monitor the optical film thickness and refractive index in the same manner as in the first illustration fi.

なお、第8図の16は、蒸発物質がミラーに付着するこ
とを防ぐためのスクリーンでちる。
Note that 16 in FIG. 8 is a screen for preventing evaporated substances from adhering to the mirror.

また、前述の実力毎例においては誘成体薄膜の形成は真
空蒸着によるものとして記述されたが、これに限らず、
スパッタリングVこよる成膜の場合においても同様に監
視を行うことができる。
In addition, in each of the above-mentioned practical examples, the formation of the dielectric thin film was described as being by vacuum evaporation, but it is not limited to this.
Monitoring can be performed in the same manner even in the case of film formation by sputtering V.

本発明によれ(〆ま、誘′一体薄膜の形成過程における
誘゛d体博膜脣性の監視に行わtLる。
According to the present invention, the flexibility of the dielectric material during the formation process of the dielectric thin film is monitored.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例としての誘′東体薄j莫特性
の監視方法を行う装置を示す図、 炉、2IシI、ど(3図は波数対透過率の特性を示す図
、第4図は波長対透過率の特性を示す図、第5図は膜厚
対透過率の特性を・トず図、第6図は、第1図装置にお
ける計算装置の演算の流れ図、 第7図は波長対透過率の慣−性を示す図、第8図は本発
明の他の実施例を説明する図である。 (符号の説明) 1・・・真窒蒸着装置、  11・・・A突蒸着客器、
12・・・蒸発源、  13・・・カラス基板、14・
・・参照ガラス、  2・・・光源部、21・・・光源
、   22・・・チョッパ、31 、32・・・ビー
ムスプリッタ、41.42,46.44・・・ミラー、
51.52.53・・・フィルタ、 /+1.62.63・・・増Ii昭器、611.621
,631・・・受光器、71・・・除算器、  72・
・・差動増幅器、8・・・計算装置、  9・・・電圧
計。 特許出願人 株式会社日本目勅軍部品総合研究所 特許出願代理人 弁理士 青 木   朗 弁理士 西 舘 和 之 弁理士 松 下   操 弁理士 山 口 昭 之 第1図 内−21 第2図 一一一十に 第3図 −〉k 第4図 +o7.+l −シ ^ 第 5図 0   100  200  300  400  5
00(nml−−一−)[) 第6図 第7図 一一一一=〉)。 第8図 −
Fig. 1 is a diagram showing an apparatus for monitoring the characteristics of a dielectric thin body as an embodiment of the present invention; , Figure 4 is a diagram showing the characteristics of wavelength vs. transmittance, Figure 5 is a diagram showing the characteristics of film thickness vs. transmittance, and Figure 6 is a flowchart of the calculation of the calculation device in the device shown in Figure 1. Fig. 7 is a diagram showing the inertia of wavelength versus transmittance, and Fig. 8 is a diagram explaining another embodiment of the present invention. (Explanation of symbols) 1... True nitrogen evaporation device, 11...・A vapor deposition passenger equipment,
12... Evaporation source, 13... Crow substrate, 14.
...Reference glass, 2...Light source section, 21...Light source, 22...Chopper, 31, 32...Beam splitter, 41.42, 46.44...Mirror,
51.52.53... Filter, /+1.62.63... Masu Ii Shoki, 611.621
, 631... Light receiver, 71... Divider, 72.
...Differential amplifier, 8...Calculating device, 9...Voltmeter. Patent Applicant Nippon Mekoku Parts Research Institute Patent Application Representative Patent Attorney Akira Aoki Patent Attorney Kazuyuki Nishidate Patent Attorney Matsushita Akira Akira Yamaguchi Figure 1-21 Figure 2-11 Fig. 3-〉k Fig. 4+o7. +l -shi ^ Figure 5 0 100 200 300 400 5
00 (nml--1-) [) Fig. 6 Fig. 7 1111 =>). Figure 8-

Claims (1)

【特許請求の範囲】[Claims] 形成中の誘電体薄膜に光を投射し、その透過光あるいは
反射光に定められた2つの波長に分離し、この2つの波
長での透過光量あるいは反射光量が等しくなる時点で薄
膜形成を停止することにより光学膜厚を制御するととも
に、前記2つの波長のうちの短波長側の波長における透
過率または反射率を測定し、該透過率または反射率の極
値より形成中の誘Ii体薄膜の屈折率を求めることを特
徴とする誘電体薄膜特性の監視方法。
Light is projected onto the dielectric thin film being formed, the transmitted light or reflected light is separated into two determined wavelengths, and thin film formation is stopped when the amount of transmitted light or reflected light at these two wavelengths becomes equal. In addition to controlling the optical film thickness, the transmittance or reflectance at the shorter wavelength of the two wavelengths is measured, and the extreme value of the transmittance or reflectance is used to determine the dielectric thin film being formed. A method for monitoring dielectric thin film properties characterized by determining the refractive index.
JP58018025A 1983-02-08 1983-02-08 Monitoring method of characteristics of dielectric thin film Pending JPS59143904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58018025A JPS59143904A (en) 1983-02-08 1983-02-08 Monitoring method of characteristics of dielectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58018025A JPS59143904A (en) 1983-02-08 1983-02-08 Monitoring method of characteristics of dielectric thin film

Publications (1)

Publication Number Publication Date
JPS59143904A true JPS59143904A (en) 1984-08-17

Family

ID=11960123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58018025A Pending JPS59143904A (en) 1983-02-08 1983-02-08 Monitoring method of characteristics of dielectric thin film

Country Status (1)

Country Link
JP (1) JPS59143904A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243601A (en) * 1985-08-22 1987-02-25 Kyowa Gas Chem Ind Co Ltd Formation of multilayered reflection preventive film of optical parts made of synthetic resin
WO2004025219A1 (en) * 2002-09-10 2004-03-25 Honeywell International Inc. System and method for monitoring thin film deposition on optical substrates
JP2006016666A (en) * 2004-07-01 2006-01-19 Shibaura Mechatronics Corp Vacuum treatment apparatus
CN113008833A (en) * 2021-02-02 2021-06-22 中国人民解放军国防科技大学 High-precision method and device for measuring transmissivity or reflectivity of optical film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243601A (en) * 1985-08-22 1987-02-25 Kyowa Gas Chem Ind Co Ltd Formation of multilayered reflection preventive film of optical parts made of synthetic resin
WO2004025219A1 (en) * 2002-09-10 2004-03-25 Honeywell International Inc. System and method for monitoring thin film deposition on optical substrates
JP2006016666A (en) * 2004-07-01 2006-01-19 Shibaura Mechatronics Corp Vacuum treatment apparatus
CN113008833A (en) * 2021-02-02 2021-06-22 中国人民解放军国防科技大学 High-precision method and device for measuring transmissivity or reflectivity of optical film
CN113008833B (en) * 2021-02-02 2023-09-29 中国人民解放军国防科技大学 High-precision optical film transmissivity/reflectivity measurement method and device

Similar Documents

Publication Publication Date Title
US3737237A (en) Monitoring deposition of films
US5166080A (en) Techniques for measuring the thickness of a film formed on a substrate
KR102444466B1 (en) Optical polarizing filter
EP1005634B1 (en) Near normal incidence optical assaying method having wavelength and angle sensitivity
US4808824A (en) Compositional state detection system and method
US4906844A (en) Phase sensitive optical monitor for thin film deposition
US7182976B2 (en) Process for forming a thin film and apparatus therefor
US4320967A (en) Apparatus for measuring a radiation affecting parameter of a film or coating
JPS6189542A (en) Method of simultaneously measuring thickness and orientationof polymerized film
JPH02263105A (en) Film thickness measuring apparatus
CA2015920A1 (en) Examination of the physical properties of thin films
US5059026A (en) Interferometric device having a controllable Fabry-Perot
US6940595B1 (en) Application of spectroscopic ellipsometry to in-situ real time fabrication of multiple layer alternating high/low refractive index filters
JPS59143904A (en) Monitoring method of characteristics of dielectric thin film
US7295313B1 (en) Application of intermediate wavelength band spectroscopic ellipsometry to in-situ real time fabrication of multiple layer alternating high/low refractive index filters
JP2937004B2 (en) Method and apparatus for measuring thin film thickness, method for producing optical filter, and method for producing polymer film
CN111076668B (en) Differential reflection spectrum measurement method for nano-thickness SiO2 thickness
US7283234B1 (en) Use of ellipsometry and surface plasmon resonance in monitoring thin film deposition or removal from a substrate surface
JP2002022936A (en) Method and apparatus for forming film of optical multilayered film filter, and optical thickness gage
JPS6338579A (en) Thin film forming method
EP1178281A1 (en) Method for the determination of the optical thickness of coatings
JPH031615B2 (en)
JPS6217166B2 (en)
Huang et al. Surface plasmon study of monolayer-bilayer transition in poly-4-BCMU and poly-3-BCMU polydiacetylene Langmuir-Blodgett films
JPS61296305A (en) Production of interference filter made of multi-layered film