JPH0790583A - Thin film forming method - Google Patents

Thin film forming method

Info

Publication number
JPH0790583A
JPH0790583A JP25943593A JP25943593A JPH0790583A JP H0790583 A JPH0790583 A JP H0790583A JP 25943593 A JP25943593 A JP 25943593A JP 25943593 A JP25943593 A JP 25943593A JP H0790583 A JPH0790583 A JP H0790583A
Authority
JP
Japan
Prior art keywords
thin film
substrate
film thickness
refractive index
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25943593A
Other languages
Japanese (ja)
Inventor
Kazuo Kikuchi
和夫 菊池
Shigeji Matsumoto
繁治 松本
Shinichiro Zaisho
慎一郎 税所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shincron Co Ltd
Original Assignee
Shincron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shincron Co Ltd filed Critical Shincron Co Ltd
Priority to JP25943593A priority Critical patent/JPH0790583A/en
Publication of JPH0790583A publication Critical patent/JPH0790583A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/547Controlling the film thickness or evaporation rate using measurement on deposited material using optical methods

Abstract

PURPOSE:To form a thin film stabilized in refractive index and thickness on a large-sized substrate by measuring the refractive index or film thickness at the intermediate point of a thin film depositing zone and adjusting the refractive index or the thickness by feedback control. CONSTITUTION:A substrate 61 is continuously transferred in a vapor deposition chamber 11, the substrate 61 is irradiated with the lights from light emitting elements 21, 23, 25 and 27 consisting of the tip of an optical fiber, etc., the lights are received by light receiving elements 31, 33, 35 and 37, and the respective transmittances are measured by a transmission type film thickness monitoring device 41. The transmittance varies with an increase in the thickness of film formed on the substrate 61. The refractive index of the substrate 61 is obtained from the relation between the transmittance and film thickness and compared with a reference value, the difference is fed back, and a thin film having a specified thickness is formed at all times. Besides, an optical film thickness is obtained from the transmittance or reflectance and compared with a specified value, and a final film thickness correcting plate 19 is turned in the opening or closing direction in accordance with the difference to adjust the final film thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、連続量産薄膜形成装
置、大型基板への薄膜形成、長尺シートないしはフィル
ムへの薄膜形成等に応用される薄膜形成方法に関し、特
に、形成される薄膜の膜厚制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film forming method applied to a continuous mass production thin film forming apparatus, a thin film forming on a large substrate, a thin film forming on a long sheet or a film, etc. The present invention relates to a film thickness control method.

【0002】[0002]

【従来の技術】真空蒸着、スパッタリング等により基板
上に種々の機能薄膜、例えば反射防止膜、表面保護膜、
透明導電膜等を形成することは従来から幅広い分野で行
われている。従来は、ガラス、プラスチック等の基板を
ホルダーで支持し、ホルダーを回転(公転)させつつ蒸
着ないしはスパッタリングすることにより、基板上に薄
膜を形成しており、この結果、ホルダー上の基板にはほ
ぼ均一の膜厚の薄膜が形成されていた。また、膜厚の均
一化を図るために、ホルダーをドーム状にし蒸発源から
の距離を均等化したり、蒸発源と基板との間に補正板
(じゃま板)を配設し、蒸発源から基板に飛翔・到達す
る蒸着物質の量を制御していた。さらに、多層反射防止
膜のように各層の膜厚の精度が最終特性にシビアな影響
を与えるものについては、光学的膜厚監視装置を用い、
光学的膜厚がλ/4となる毎に透過率または反射率が極
大値あるいは極小値を示すことを利用して、高精度の膜
厚制御が行われていた。
2. Description of the Related Art Various functional thin films such as an antireflection film, a surface protection film, etc. are formed on a substrate by vacuum deposition, sputtering or the like.
Forming a transparent conductive film or the like has been conventionally performed in a wide variety of fields. Conventionally, a substrate such as glass or plastic is supported by a holder, and a thin film is formed on the substrate by vapor-depositing or sputtering while rotating (revolving) the holder. A thin film having a uniform film thickness was formed. In addition, in order to make the film thickness uniform, the holder is made into a dome shape and the distance from the evaporation source is made uniform, or a correction plate (baffle plate) is arranged between the evaporation source and the substrate, and It controlled the amount of vapor deposition material that flew to and reached. Furthermore, for the multi-layer anti-reflection film whose accuracy of the film thickness of each layer severely affects the final characteristics, an optical film thickness monitor is used.
High-precision film thickness control has been performed by utilizing the fact that the transmittance or reflectance exhibits a maximum value or a minimum value each time the optical film thickness becomes λ / 4.

【0003】一方、連続薄膜形成装置の開発も進められ
ており、予備排気加熱室−薄膜形成室(一槽の場合も多
槽の場合もある)−後処理室(徐冷、取出室)を連設
し、各室間にゲートバルブを設け、薄膜形成室の真空雰
囲気を破ることなく連続して多層反射防止膜等の高精度
の機能薄膜を形成している。薄膜形成室の蒸発源として
は、電子銃等の加熱蒸発源、スパッタリングターゲット
等が用いられているが、いずれの場合にも基板は薄膜形
成室内で一旦停止、あるいはホルダーに搭載・回転され
て薄膜が形成されている。したがって、1ロットの基板
上には均一な薄膜が堆積されていくので、基板の任意の
一点あるいは別途のモニター基板上に形成されていく薄
膜の膜厚を光学式膜厚監視装置等により検知することに
よって、膜厚の制御を行うことができた。
On the other hand, a continuous thin film forming apparatus is under development, and a preliminary exhaust heating chamber-thin film forming chamber (may be one tank or multiple tanks) -post-treatment chamber (slow cooling, take-out chamber). Gate valves are provided in series between the chambers, and high-precision functional thin films such as multilayer antireflection films are continuously formed without breaking the vacuum atmosphere in the thin film forming chamber. As the evaporation source in the thin film forming chamber, a heating evaporation source such as an electron gun, a sputtering target, etc. are used.In either case, the substrate is temporarily stopped in the thin film forming chamber, or it is mounted and rotated in a holder to form a thin film. Are formed. Therefore, since a uniform thin film is deposited on one lot of substrates, the film thickness of the thin film formed on any one point of the substrate or a separate monitor substrate is detected by an optical film thickness monitoring device or the like. As a result, the film thickness could be controlled.

【0004】しかしながら、液晶ディスプレイの前面パ
ネルに多層反射防止膜を形成する等、大型基板に対して
高精度に膜厚管理された単層ないし多層薄膜を形成する
要求が近年増大している。これら大型基板を従来のよう
にドーム状のホルダーに搭載し、回転させて薄膜を形成
することは可能であるが、装置の大型化を招き、生産効
率が悪くなる。また、液晶ディスプレイの前面パネルの
ような角形の基板を、回転する円錐形のホルダーに搭載
すると、どうしても無駄になる部分が増加してくる。基
板を連続的に薄膜形成ゾーンに搬送しつつ、基板上に薄
膜を形成することは、連続プラスチックフィルム上にア
ルミニウム薄膜を形成する分野において行われている。
しかしながら、この場合の膜厚管理はラフであり、多層
反射防止膜等の光学薄膜のように高精度な膜厚管理が要
求される分野においては、そのまま適用することができ
ない。
However, in recent years, there has been an increasing demand for forming a single-layer or multi-layer thin film whose thickness is controlled with high precision on a large-sized substrate, such as forming a multi-layer antireflection film on the front panel of a liquid crystal display. It is possible to mount these large-sized substrates on a dome-shaped holder as in the conventional case and rotate them to form a thin film, but this leads to an increase in the size of the apparatus and deteriorates production efficiency. In addition, when a rectangular substrate such as a front panel of a liquid crystal display is mounted on a rotating conical holder, an unnecessary portion is increased. Forming a thin film on a substrate while continuously conveying the substrate to a thin film forming zone is performed in the field of forming an aluminum thin film on a continuous plastic film.
However, the film thickness control in this case is rough, and it cannot be applied as it is to a field in which highly accurate film thickness control is required such as an optical thin film such as a multilayer antireflection film.

【0005】[0005]

【発明が解決しようとする課題】本発明は、薄膜堆積ゾ
ーン内で基板に対して薄膜を形成するに際し、その屈折
率および膜厚を制御・調整することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to control and adjust the refractive index and film thickness of a thin film formed on a substrate in a thin film deposition zone.

【0006】[0006]

【課題を解決するための手段】本発明の薄膜形成方法
は、薄膜堆積ゾーン内で基板を該ゾーンの出発点から終
点に向けて移送しつつ、蒸発源から薄膜形成物質を基板
上に飛翔せしめて、基板上に薄膜を堆積させ、該出発点
と終点との間に、移送方向での位置が異なる複数の中間
測定点を設け、薄膜が形成された基板の透過率または反
動率をそれぞれの中間測定点で同一波長で測定して、形
成された薄膜の屈折率を算出し、屈折率が所定値となる
ように薄膜の堆積条件を制御することを特徴とする。
According to the thin film forming method of the present invention, a thin film forming material is made to fly from an evaporation source onto a substrate while transferring the substrate from a starting point to an end point of the zone in the thin film deposition zone. Then, a thin film is deposited on the substrate, a plurality of intermediate measurement points having different positions in the transfer direction are provided between the starting point and the end point, and the transmittance or the recoil coefficient of the substrate on which the thin film is formed is set to It is characterized in that the measurement is performed at the same wavelength at an intermediate measurement point, the refractive index of the formed thin film is calculated, and the thin film deposition conditions are controlled so that the refractive index becomes a predetermined value.

【0007】また、移送方向で位置の異なる複数の中間
測定点で測定する代りに、同一地点で複数の波長での透
過率または反射率を測定することによっても、同様に薄
膜の屈折率および光学的膜厚を制御できる。
Also, instead of measuring at a plurality of intermediate measurement points having different positions in the transfer direction, the transmittance or reflectance at a plurality of wavelengths at the same point may be measured to similarly obtain the refractive index and optical properties of the thin film. Film thickness can be controlled.

【0008】[0008]

【実施例】図1は、本発明の実施例を示す説明図であ
り、真空蒸着法により薄膜を形成する場合を示してい
る。真空排気された蒸着室11内には、基板ホルダ(図
示せず)に支持された大型で角形の基板61が連続的に
移送され、蒸着室11内で停止することなく、蒸着室1
1内を左から右方向に所定速度で移動する。基板61
は、次々と順次蒸着室11に送り込まれ、大量の基板6
1に連続的に薄膜を形成する。
EXAMPLE FIG. 1 is an explanatory view showing an example of the present invention, showing a case of forming a thin film by a vacuum vapor deposition method. A large, rectangular substrate 61 supported by a substrate holder (not shown) is continuously transferred into the vacuum-deposited deposition chamber 11, and the deposition chamber 1 does not stop in the deposition chamber 1 without being stopped.
The inside of 1 moves from left to right at a predetermined speed. Board 61
Are successively sent into the vapor deposition chamber 11 one after another, and a large amount of substrates 6
1 to continuously form a thin film.

【0009】基板61としては、ガラス、プラスチック
等の透明基板が用いられる。なお、図1では基板61を
1枚毎に移送する場合を想定して示しているが、多数の
基板を1つのホルダーに搭載し、ホルダー単位で移送し
てもよく、また。プラスチックシートないしはフィルム
の場合は、ホルダーを用いることなくそれ自体を搬送し
てもよい。
As the substrate 61, a transparent substrate such as glass or plastic is used. Although FIG. 1 illustrates the case where the substrates 61 are transferred one by one, a large number of substrates may be mounted in one holder and transferred in holder units. In the case of a plastic sheet or film, it may be transported itself without using a holder.

【0010】蒸着室11内には、蒸発源13、水晶発振
子15、固定膜厚規制板17、最終膜厚補正板19が設
けられ、また、発光素子21,23,25,27、受光
素子31,33,35,37および透過型膜厚検出装置
41が設けられている。なお、これに替え、反射型膜厚
検出装置およびそのための発光・受光素子、あるいは他
の原理の膜厚検出装置を用いることもできる。
An evaporation source 13, a crystal oscillator 15, a fixed film thickness regulating plate 17, and a final film thickness correcting plate 19 are provided in the vapor deposition chamber 11, and light emitting elements 21, 23, 25, 27 and a light receiving element are provided. 31, 33, 35, 37 and a transmission type film thickness detection device 41 are provided. Instead of this, it is also possible to use a reflection type film thickness detection device and a light emitting / light receiving element therefor, or a film thickness detection device of another principle.

【0011】蒸発源13としては、電子銃による加熱の
ものを図1では想定して示しているが、抵抗加熱型蒸発
源、誘導加熱型蒸発源、スパッタリング用ターゲット等
いずれでもよい。水晶発振子15は、蒸発源13からの
薄膜形成物質の蒸発速度を検知するものであり、制御装
置51によりこの速度を制御する。蒸発源13からは、
MgF2,SiO2,TiO2,ZrO2等の薄膜形成物質
が間断なく連続的に蒸発され、固定補正板17と最終膜
厚補正板19との間を移送される時に、基板61上に薄
膜が堆積される。すなわち、固定補正板17の右端と、
最終膜厚補正板19の左端との間が薄膜堆積ゾーンを形
成し、基板41上の薄膜の薄膜の厚さは、徐々に増大し
てくる。
The evaporation source 13 is assumed to be heated by an electron gun in FIG. 1, but may be a resistance heating type evaporation source, an induction heating type evaporation source, a sputtering target or the like. The crystal oscillator 15 detects the evaporation rate of the thin film forming substance from the evaporation source 13, and the controller 51 controls this rate. From the evaporation source 13,
When a thin film forming material such as MgF 2 , SiO 2 , TiO 2 , ZrO 2 is continuously vaporized without interruption and is transferred between the fixed correction plate 17 and the final film thickness correction plate 19, a thin film is formed on the substrate 61. Are deposited. That is, the right end of the fixed correction plate 17,
A thin film deposition zone is formed between the final film thickness correction plate 19 and the left end thereof, and the thickness of the thin film on the substrate 41 gradually increases.

【0012】光ファイバーの先端部位等からなる発光素
子21,23,25,27から、特定の同じ波長の光
を、薄膜が形成された基板61に照射し、これをそれぞ
れ受光素子31,33,35,37で受光し、透過型膜
厚監視装置41でそれぞれの透過率を測定する。基板6
1が右方に移動するにつれて、基板61上に形成される
薄膜の光学的膜厚n・dは増加する。これに伴なって透
過率は増加ないしは減少し、測定波長λの1/4の光学
的膜厚の薄膜が形成されると透過率は極大値または極小
値を取る。いま、ガラスにMgF2 を蒸着する場合を考
えると、図2に示したように受光素子31,33,3
5,37による透過率の検出値がn・dの増加に伴なっ
て変化し、これを結ぶことにより透過率/光学的膜厚の
グラフを描くことができる。基板61の屈折率は既知で
あるので、λ/4における透過率の値から、形成された
薄膜の屈折率nを求めることができる。なお、図2では
λ/4の両側で測定点が取れるようにし、これは精度の
良い測定を可能とするが必ずしもその必要はない。また
実際には、形成される薄膜の屈折率はほぼ判っているの
で、少ない測定点でも図2に示したカーブを得ることが
できる。
Light from the light emitting elements 21, 23, 25, and 27, which are composed of the tip portions of the optical fibers, irradiate the substrate 61 on which the thin film is formed with light of the same specific wavelength, and the light is received by the light receiving elements 31, 33, and 35, respectively. , 37, and the transmission type film thickness monitoring device 41 measures the respective transmittances. Board 6
As 1 moves to the right, the optical film thickness n · d of the thin film formed on the substrate 61 increases. Along with this, the transmittance increases or decreases, and when a thin film having an optical film thickness of ¼ of the measurement wavelength λ is formed, the transmittance takes a maximum value or a minimum value. Now, considering the case of depositing MgF 2 on glass, as shown in FIG.
The detected value of the transmittance by 5, 37 changes with the increase of n · d, and the graph of the transmittance / optical film thickness can be drawn by connecting them. Since the refractive index of the substrate 61 is known, the refractive index n of the formed thin film can be obtained from the transmittance value at λ / 4. In FIG. 2, measurement points are set on both sides of λ / 4, which enables accurate measurement, but it is not always necessary. In fact, since the refractive index of the thin film to be formed is almost known, the curve shown in FIG. 2 can be obtained even at a small number of measurement points.

【0013】真空蒸着においては、蒸着条件が変動して
も形成される薄膜の屈折率が変動しにくいMgF2,S
iO2などと、変動しやすいTiO2,ZrO2などがあ
り、TiO2 とLa25との混合物のように混合物を蒸
着しようとすると更に変動が大きい。そこで本発明では
上述のように屈折率を測定し、予め決められた設定値か
ら変動した場合は、これを検知してフィードバック補正
をし、常に所定値の屈折率を有する薄膜を形成する。
[0013] In vacuum deposition, MgF 2, the refractive index hardly fluctuation of film deposition conditions are also formed fluctuates S
There are TiO 2 , ZrO 2 and the like, which tend to fluctuate, such as iO 2 , and when the mixture is vapor-deposited like a mixture of TiO 2 and La 2 O 5 , the fluctuation is further large. Therefore, in the present invention, the refractive index is measured as described above, and when it changes from a predetermined set value, this is detected and feedback correction is performed to always form a thin film having a predetermined refractive index.

【0014】屈折率は、蒸発源13からの蒸着速度を変
更することにより、あるいは蒸着室11内に導入される
酸素分圧を変更することなどにより調整できる。具体的
には、例えばTiO2 であれば、蒸着速度を大きくする
ことにより、あるいは酸素分圧を高くすることにより形
成される薄膜の屈折率を大きくすることができる。ま
た、屈折率が判れば、測定した透過率または反射率か
ら、基板61上に形成された薄膜の光学的膜厚を求める
ことができる。求めた光学的膜厚と基準値とを比較し、
基準値よりも小さければその差分に応じて最終膜厚補正
板19を開き、薄膜形成ゾーンの距離を大きくする。逆
に、形成された薄膜の膜厚が基準値よりも小さい場合
は、最終膜厚補正板19を閉じる方向に回動させる。な
お、最終膜厚補正板19の機構は、図1に示した回動タ
イプに限定されず、例えば図1で左右方向に伸長←→短
縮するスライドタイプのものでもよい。
The refractive index can be adjusted by changing the vapor deposition rate from the evaporation source 13 or by changing the partial pressure of oxygen introduced into the vapor deposition chamber 11. Specifically, for example, in the case of TiO 2, it is possible to increase the refractive index of the thin film formed by increasing the vapor deposition rate or increasing the oxygen partial pressure. Further, if the refractive index is known, the optical film thickness of the thin film formed on the substrate 61 can be obtained from the measured transmittance or reflectance. Compare the calculated optical film thickness with the reference value,
If it is smaller than the reference value, the final film thickness correction plate 19 is opened according to the difference, and the distance of the thin film forming zone is increased. On the contrary, when the film thickness of the formed thin film is smaller than the reference value, the final film thickness correction plate 19 is rotated in the closing direction. The mechanism of the final film thickness correction plate 19 is not limited to the rotation type shown in FIG. 1, and may be a slide type that extends in the left-right direction in FIG.

【0015】また、薄膜形成ゾーンの距離を変更する以
外に、以下の方法によっても最終膜厚を調整することも
できる。 基板の移送速度を調整して、基板が薄膜堆積ゾーン
に滞留する時間を制御する。 蒸発源からの薄膜形成物質の蒸発速度を制御する。
In addition to changing the distance of the thin film forming zone, the final film thickness can be adjusted by the following method. The substrate transfer rate is adjusted to control the time the substrate dwells in the thin film deposition zone. Control the evaporation rate of the thin film forming material from the evaporation source.

【0016】図3は、本発明の他の実施例を示す説明図
であり、透過率の測定点が1ケ所である点を除いて図1
と同様である。但し、図3の実施例では、この測定点
で、複数の波長により透過率を測定する。
FIG. 3 is an explanatory view showing another embodiment of the present invention, except that there is only one transmittance measuring point.
Is the same as. However, in the embodiment of FIG. 3, the transmittance is measured at a plurality of wavelengths at this measurement point.

【0017】具体的には、図4に示すように光源71か
らの光を光ファイバー73に導き、発光素子29(光フ
ァイバーの先端)から基板61に照射し、これを受光素
子39(光ファイバーの先端)で受ける。光ファイバー
75は、微細なファイバーが束ねられたバンドルからな
るので、これを4つのバンドル群77a〜77dに分割
し、分光フィルタ79a〜79dを介して4つの波長
(例えば400nm,500nm,600nm,700
nm)の光を透過式膜厚監視装置41に導き、各々の透
過率を測定する。この透過率をプロットすると、図5に
示したように分光波長曲線が得られる。これから前述と
同様に、基板に形成されている薄膜の屈折率および光学
的膜厚を求めることができるので、これらを基準値と比
較してフィードバック制御し、所定屈折率で所定膜厚の
薄膜を連続して製造することができる。また、図3では
中間での膜厚測定を1点で行なう場合を示したが、複数
の点で薄膜の膜厚を検知してもよい。
Specifically, as shown in FIG. 4, the light from the light source 71 is guided to the optical fiber 73, the light emitting element 29 (the tip of the optical fiber) irradiates the substrate 61, and this is received by the light receiving element 39 (the tip of the optical fiber). Receive at. Since the optical fiber 75 is composed of a bundle of fine fibers, the optical fiber 75 is divided into four bundle groups 77a to 77d, and four wavelengths (for example, 400 nm, 500 nm, 600 nm, 700) are passed through the spectral filters 79a to 79d.
(nm) light is guided to the transmission type film thickness monitoring device 41, and each transmittance is measured. When this transmittance is plotted, a spectral wavelength curve is obtained as shown in FIG. From this, similarly to the above, the refractive index and the optical film thickness of the thin film formed on the substrate can be obtained. Therefore, these are compared with a reference value and feedback-controlled to obtain a thin film of a predetermined film thickness with a predetermined refractive index. It can be manufactured continuously. Further, although FIG. 3 shows the case where the film thickness measurement in the middle is performed at one point, the film thickness of the thin film may be detected at a plurality of points.

【0018】[0018]

【発明の効果】本発明によれば、薄膜堆積ゾーン内で基
板を連続的に移送しつつ、中間点で屈折率あるいは更に
膜厚を測定してフィードバック制御することにより、安
定して薄膜形成することができ、特に、大型パネル、フ
ラットパネル等への薄膜形成に好適である。また、酸化
チタン、酸化ジルコニウムのように、蒸着条件の変動に
より形成される薄膜の屈折率が変動しやすい薄膜の形成
に好適である。
According to the present invention, while the substrate is continuously transferred in the thin film deposition zone, the refractive index or the film thickness is measured at the midpoint and feedback control is performed to form a stable thin film. In particular, it is suitable for forming a thin film on a large panel, a flat panel or the like. Further, it is suitable for forming a thin film such as titanium oxide or zirconium oxide in which the refractive index of the thin film formed is easily changed due to changes in the vapor deposition conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の薄膜形成方法の実施例を示す説明図で
ある。
FIG. 1 is an explanatory view showing an embodiment of a thin film forming method of the present invention.

【図2】光学的膜厚と透過率との関係を示すグラフであ
る。
FIG. 2 is a graph showing the relationship between optical film thickness and transmittance.

【図3】本発明の薄膜形成方法における他の実施例を示
す説明図である。
FIG. 3 is an explanatory view showing another embodiment of the thin film forming method of the present invention.

【図4】図3の実施例における、膜厚の監視システムの
説明図である。
4 is an explanatory view of a film thickness monitoring system in the embodiment of FIG.

【図5】波長と透過率との関係を示すグラフである。FIG. 5 is a graph showing the relationship between wavelength and transmittance.

【符号の説明】[Explanation of symbols]

11 蒸着室 13 蒸発源 15 水晶発振子 17 固定補正板 19 最終膜厚補正板 21,23,25,27,29 発光素子 31,33,35,37,39 受光素子 41 透過型膜厚監視装置 51 制御装置 61 基板 71 光源 73,75 光ファイバー 77a,77b,77c,77d バンドル 79a,79b,79c,79d 分光フィルター 11 vapor deposition chamber 13 evaporation source 15 crystal oscillator 17 fixed correction plate 19 final film thickness correction plate 21, 23, 25, 27, 29 light emitting device 31, 33, 35, 37, 39 light receiving device 41 transmissive film thickness monitoring device 51 Control device 61 Substrate 71 Light source 73,75 Optical fiber 77a, 77b, 77c, 77d Bundle 79a, 79b, 79c, 79d Spectral filter

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 薄膜堆積ゾーン内で基板を該ゾーンの出
発点から終点に向けて移送しつつ、蒸発源から薄膜形成
物質を基板上に飛翔せしめて、基板上に薄膜を堆積さ
せ、 該出発点と終点との間に、移送方向での位置が異なる複
数の中間測定点を設け、薄膜が形成された基板の透過率
または反射率をそれぞれの中間測定点で同一波長で測定
して、形成された薄膜の屈折率を算出し、屈折率が所定
値となるように薄膜の堆積条件を制御することを特徴と
する薄膜形成方法。
1. A thin film forming material is jetted onto a substrate from an evaporation source while transferring the substrate from a starting point to an end point of the zone in the thin film deposition zone to deposit a thin film on the substrate. A plurality of intermediate measurement points with different positions in the transfer direction are provided between the point and the end point, and the transmittance or reflectance of the substrate on which the thin film is formed is measured at each intermediate measurement point at the same wavelength to form A method of forming a thin film, comprising: calculating a refractive index of the thin film thus formed, and controlling deposition conditions of the thin film so that the refractive index becomes a predetermined value.
【請求項2】 さらに、屈折率および透過率または反射
率から形成された薄膜の光学的膜厚を求めて、基板に形
成される薄膜の光学的膜厚が所定値となるように堆積条
件を制御する請求項1に記載の薄膜形成方法。
2. Further, the optical film thickness of the thin film formed from the refractive index and the transmittance or the reflectance is calculated, and the deposition condition is set so that the optical film thickness of the thin film formed on the substrate becomes a predetermined value. The method for forming a thin film according to claim 1, which is controlled.
【請求項3】 薄膜堆積ゾーン内で基板を該ゾーンの出
発点から終点に向けて移送しつつ、蒸発源から薄膜形成
物質を基板上に飛翔せしめて、基板上に薄膜を堆積さ
せ、 該出発点と終点との間に、中間測定点を設け、薄膜が形
成された基板の透過率または反射率を同一地点で複数の
波長で測定して、形成された薄膜の屈折率を算出し、屈
折率が所定値となるように薄膜の堆積条件を制御するこ
とを特徴とする薄膜形成方法。
3. A thin film forming substance is jetted onto the substrate from an evaporation source while transferring the substrate from a starting point to an end point of the zone in the thin film deposition zone to deposit a thin film on the substrate. An intermediate measurement point is provided between the point and the end point, the transmittance or reflectance of the substrate on which the thin film is formed is measured at multiple wavelengths at the same point, and the refractive index of the formed thin film is calculated. A method of forming a thin film, which comprises controlling deposition conditions of the thin film so that the rate becomes a predetermined value.
【請求項4】 さらに、屈折率および透過率または反射
率から形成された薄膜の光学的膜厚を求めて、基板に形
成される薄膜の光学的膜厚が所定値となるように堆積条
件を制御する請求項3に記載の薄膜形成方法。
4. Further, the optical film thickness of the thin film formed from the refractive index and the transmittance or the reflectance is obtained, and the deposition condition is set so that the optical film thickness of the thin film formed on the substrate becomes a predetermined value. The thin film forming method according to claim 3, which is controlled.
JP25943593A 1993-09-22 1993-09-22 Thin film forming method Pending JPH0790583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25943593A JPH0790583A (en) 1993-09-22 1993-09-22 Thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25943593A JPH0790583A (en) 1993-09-22 1993-09-22 Thin film forming method

Publications (1)

Publication Number Publication Date
JPH0790583A true JPH0790583A (en) 1995-04-04

Family

ID=17334053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25943593A Pending JPH0790583A (en) 1993-09-22 1993-09-22 Thin film forming method

Country Status (1)

Country Link
JP (1) JPH0790583A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315432A (en) * 1995-05-15 1996-11-29 Nippondenso Co Ltd Apparatus for producing optical information recording medium and production method therefor
EP1094344A2 (en) * 1999-10-14 2001-04-25 Hoya Corporation Thin film forming method and apparatus
JP2001305337A (en) * 2000-04-27 2001-10-31 Furukawa Electric Co Ltd:The Optical filter and method for manufacturing the optical filter
JP2007107071A (en) * 2005-10-17 2007-04-26 Showa Shinku:Kk Vacuum film formation apparatus and method
EP3102716A4 (en) * 2014-05-08 2017-08-16 Halliburton Energy Services, Inc. Optical transmission/reflection mode in-situ deposition rate control for ice fabrication
JP2018031031A (en) * 2016-08-22 2018-03-01 株式会社アルバック Film deposition method
WO2020131216A1 (en) * 2018-12-17 2020-06-25 Applied Materials, Inc. Backside coating for transparent substrate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315432A (en) * 1995-05-15 1996-11-29 Nippondenso Co Ltd Apparatus for producing optical information recording medium and production method therefor
EP1094344A2 (en) * 1999-10-14 2001-04-25 Hoya Corporation Thin film forming method and apparatus
EP1094344A3 (en) * 1999-10-14 2002-04-17 Hoya Corporation Thin film forming method and apparatus
US6481369B1 (en) 1999-10-14 2002-11-19 Hoya Corporation Thin film forming method and apparatus
JP2001305337A (en) * 2000-04-27 2001-10-31 Furukawa Electric Co Ltd:The Optical filter and method for manufacturing the optical filter
JP2007107071A (en) * 2005-10-17 2007-04-26 Showa Shinku:Kk Vacuum film formation apparatus and method
EP3102716A4 (en) * 2014-05-08 2017-08-16 Halliburton Energy Services, Inc. Optical transmission/reflection mode in-situ deposition rate control for ice fabrication
JP2018031031A (en) * 2016-08-22 2018-03-01 株式会社アルバック Film deposition method
WO2020131216A1 (en) * 2018-12-17 2020-06-25 Applied Materials, Inc. Backside coating for transparent substrate

Similar Documents

Publication Publication Date Title
US5872655A (en) Monolithic linear variable filter and method of manufacture
EP0505547B1 (en) D.c. reactively sputtered antireflection coatings
JP6704343B2 (en) In-line deposition control device and in-line deposition control method
Ouellette et al. Experimental studies of inhomogeneous coatings for optical applications
JP2016527397A5 (en)
KR20030057338A (en) Process for forming a thin film and apparatus therefor
EP0585883B1 (en) Method of measuring refractive index of thin film
JPH0790583A (en) Thin film forming method
WO1995033081A1 (en) Filmed substrate, and method and apparatus for producing the same
US20010007715A1 (en) Method of coating substrate and coated article
Kienel Optical layers produced by sputtering
JP2004176081A (en) Method of producing optical multilayer film by atomic layer deposition method
US20220213591A1 (en) Device and method for coating substrates having planar or shaped surfaces by means of magnetron sputtering
JPH07109569A (en) Formation of thin film
JPH0790584A (en) Thin film forming method
WO2021131316A1 (en) Method for manufacturing optical lens provided with anti-reflection film
CN106066498B (en) A kind of membrane system for correcting the high low-index material relative thickness proportioning of film
JPH09189801A (en) Optical parts with heat resistant antireflection film
Pulker Coatings on glass substrates
JPH0553001A (en) Multilayered antireflection film of optical parts made of synthetic resin
CN107561614A (en) A kind of heavy caliber uniformity optical filter and preparation method thereof
List et al. On-line control of the deposition of optical coatings by magnetron sputtering
Honkanen Optical monitoring in fabrication of optical coatings
JP2006139102A (en) Apparatus and method of manufacturing optical wavelength variable filter
RU1793406C (en) Method of application of antireflection coating

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040113