JPH03225402A - Constant voltage generating circuit - Google Patents

Constant voltage generating circuit

Info

Publication number
JPH03225402A
JPH03225402A JP2018981A JP1898190A JPH03225402A JP H03225402 A JPH03225402 A JP H03225402A JP 2018981 A JP2018981 A JP 2018981A JP 1898190 A JP1898190 A JP 1898190A JP H03225402 A JPH03225402 A JP H03225402A
Authority
JP
Japan
Prior art keywords
power supply
resistor
circuit
voltage
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018981A
Other languages
Japanese (ja)
Inventor
Yasuhisa Sugao
菅生 靖久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2018981A priority Critical patent/JPH03225402A/en
Priority to EP19910300695 priority patent/EP0440434A3/en
Priority to KR1019910001684A priority patent/KR920000022A/en
Priority to US07/648,849 priority patent/US5130637A/en
Publication of JPH03225402A publication Critical patent/JPH03225402A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/22Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/22Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only
    • G05F3/222Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only with compensation for device parameters, e.g. Early effect, gain, manufacturing process, or external variations, e.g. temperature, loading, supply voltage
    • G05F3/227Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only with compensation for device parameters, e.g. Early effect, gain, manufacturing process, or external variations, e.g. temperature, loading, supply voltage producing a current or voltage as a predetermined function of the supply voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Nonlinear Science (AREA)
  • Logic Circuits (AREA)
  • Control Of Electrical Variables (AREA)
  • Static Random-Access Memory (AREA)

Abstract

PURPOSE:To supply a constant voltage at all times and to preclude malfunction by providing a circuit which is connected between a resistor and another power source line and controls a current flowing through the resistor with a specific bias potential. CONSTITUTION:This circuit consists of a level shifting circuit LS, the resistor R12, and the current control circuit CS which controls the current flowing through the resistor R12 with the specific bias potential VB. The level shifting circuit LS has two Darlington-connected transistors(TR) T11 and T12 between negative power source lines VEE1 and VEE2 (VEE2>VEE1) and a resistor R11 connected between the base of the T11 and power source line VEE1. Further, the resistor R12 is connected between the base T12 and power source line VEE2 and the power source line VEE1 is connected to the line for a source voltage which is supplied from outside. Then the current control circuit CS is connected between the resistor R12 and the other power source line VEE1 and the current flowing through the resistor R12 is controlled with the specific bias potential VB. Consequently, the constant voltage can be supplied at all times and malfunction can be precluded.

Description

【発明の詳細な説明】 〔概要〕 定電圧発生回路、特に、複数の電源電圧を使用するバイ
ポーラCMO3回路に定電圧を供給する回路の構成に関
し、 温度や電源電圧等の変化にかかわらず常に定電圧の供給
を可能にし、ひいては誤動作の防止を図ることを目的と
し、 外部電源電圧のラインに接続された第1の電源ラインと
、該第1の電源ラインと異なる電圧を有する少なくとも
1つの第2の電源ラインと、該第1および第2の電源ラ
インの間でダーリントン接続された複数のトランジスタ
を有するレベルシフト回路と、該レベルシフト回路にお
ける最終段のトランジスタのベースと一方の電源ライン
との間に接続された抵抗器と、該抵抗器と他方の電源ラ
インの間に接続され、該抵抗器に流れる電流を所定のバ
イアス電位により制御する回路とを具備するように構成
する。
[Detailed Description of the Invention] [Summary] Regarding the configuration of a constant voltage generation circuit, especially a circuit that supplies a constant voltage to a bipolar CMO3 circuit that uses multiple power supply voltages, it is possible to always maintain a constant voltage regardless of changes in temperature, power supply voltage, etc. A first power supply line connected to an external power supply voltage line and at least one second power supply line having a voltage different from that of the first power supply line are connected to the external power supply voltage line in order to enable voltage supply and prevent malfunctions. a level shift circuit having a plurality of transistors Darlington-connected between a power supply line and the first and second power supply lines, and a base of a final stage transistor in the level shift circuit and one power supply line. and a circuit connected between the resistor and the other power supply line to control the current flowing through the resistor using a predetermined bias potential.

[産業上の利用分野] 本発明は、定電圧発生回路に関し、特に、複数の電源電
圧を使用するバイポーラCMO3回路に定電圧を供給す
る回路の構成に関する。
[Industrial Field of Application] The present invention relates to a constant voltage generation circuit, and particularly to the configuration of a circuit that supplies a constant voltage to a bipolar CMO3 circuit that uses a plurality of power supply voltages.

〔従来の技術〕[Conventional technology]

同一チンブ内にバイポーラトランジスタとMOSトラン
ジスタを混在したバイポーラCMOS11造の半導体デ
バイスは、通常、外部から供給される単一の電源電圧に
より動作するよう構成されている。また、複数の電源を
使用する場合も同様に外部端子から電源電圧を供給する
ようになっている。この場合、外部から複数の電源電圧
を与えるため、端子数が増加し、また、各電源電圧相互
間のばらつきは互いに無関係なので、動作マージンを十
分にとる必要がある。
A bipolar CMOS 11 semiconductor device in which bipolar transistors and MOS transistors are mixed in the same chip is usually configured to operate with a single power supply voltage supplied from the outside. Furthermore, when using multiple power supplies, power supply voltages are similarly supplied from external terminals. In this case, since a plurality of power supply voltages are applied from the outside, the number of terminals increases, and variations among the power supply voltages are unrelated to each other, so it is necessary to provide a sufficient operating margin.

第2図にはバイポーラCMO3回路の一構成例が示され
る。同図に示す回路は、エミッタ結合型論理(ECL)
ゲートで直接CMOSゲートを動作させる場合の構成を
示している。
FIG. 2 shows an example of the configuration of a bipolar CMO3 circuit. The circuit shown in the figure is emitter-coupled logic (ECL)
This shows a configuration in which the CMOS gate is directly operated by the gate.

なお、以下の記述において特に規定しない限り、「トラ
ンジスタ」とはnpn型バイポーラトランジスタを指す
ものとする。
Note that in the following description, unless otherwise specified, the term "transistor" refers to an npn-type bipolar transistor.

ECLゲートは、それぞれ入力信号VIN、基準電圧信
号VI?EFに応答する1対のエミッタ結合されたトラ
ンジスタTl、T2と、該トランジスタの各コレクタと
グランドラインGND (OV)の間にそれぞれ接続さ
れた抵抗器R1,R2と、該トランジスタの共通エミッ
タにコレクタが接続され所定のバイアス電圧vC3に応
答するトランジスタT3と、該トランジスタT3のエミ
ッタと負電位の電源ラインVEEIO間に接続された抵
抗器R3と、グランドラインGNDにコレクタが接続さ
れトランジスタT2のコレクタ電位に応答するトランジ
スタT4と、該トランジスタT4のエミッタと電源ライ
ンVEEIO間に接続された抵抗器R4とから構成され
ている。なお、トランジスタT3と抵抗器R3は定電流
源を構成し、その電流値はI = (VC5−VEEI
  V ME)/R3T:表される。ココで、■、はト
ランジスタT3のベース・エミッタ間電圧を表す。
The ECL gate receives an input signal VIN and a reference voltage signal VI?, respectively. A pair of emitter-coupled transistors Tl, T2 responsive to EF, resistors R1, R2 respectively connected between the collectors of the transistors and the ground line GND (OV), and a collector connected to the common emitter of the transistors. A transistor T3 is connected to the transistor T3 and responds to a predetermined bias voltage vC3, a resistor R3 is connected between the emitter of the transistor T3 and a negative potential power line VEEIO, and the collector is connected to the ground line GND and the collector potential of the transistor T2 is , and a resistor R4 connected between the emitter of the transistor T4 and the power supply line VEEIO. Note that the transistor T3 and the resistor R3 constitute a constant current source, and the current value is I = (VC5-VEEI
VME)/R3T: Represented. Here, ■ represents the voltage between the base and emitter of the transistor T3.

また、CMOSゲートは、グランドラインGNDと負電
位の電源ラインVEE2(>VEE1)の間に直列に接
続され、それぞれECLゲートの出力(トランジスタT
4のエミッタ電位VA)に応答するpチャネルMO3)
ランジスタQpおよびnチャネルMOSトランジスタg
nから構成されている。
Further, the CMOS gates are connected in series between the ground line GND and the negative potential power line VEE2 (>VEE1), and the outputs of the ECL gates (transistors T
p-channel MO3) responsive to emitter potential VA) of 4)
Transistor Qp and n-channel MOS transistor g
It is composed of n.

ECLとCMO3の論理レベルは互いに異なるため、双
方のゲートを接続する場合にはレベル変換回路を間に挿
入する必要があるが、上記構成において、ECLゲート
の電源電圧VEEIが通常の5.2vである時にCMO
Sゲートの電源電圧VEE2を−3,OVで動作させれ
ば、レベル変化回路は不要となる。
Since the logic levels of ECL and CMO3 are different from each other, it is necessary to insert a level conversion circuit between them when connecting both gates. However, in the above configuration, the power supply voltage VEEI of the ECL gate is the normal 5.2V. CMO at one time
If the power supply voltage VEE2 of the S gate is operated at -3.OV, the level change circuit becomes unnecessary.

この場合、ECLゲートの電源電圧VEEIは外部から
供給され、CMOSゲートの電源電圧VEE2は、例え
ば第3図に示される定電圧発生回路により供給される。
In this case, the power supply voltage VEEI of the ECL gate is supplied from the outside, and the power supply voltage VEE2 of the CMOS gate is supplied, for example, by a constant voltage generation circuit shown in FIG.

図示の回路は、グランドラインGNDと1を源ラインV
EEIO間に直列に接続された抵抗器R5、ダイオード
DI、D2および抵抗器R6から構成され、ta電圧V
EE2はダイオードDIのアノード端子から取り出され
る。
The illustrated circuit connects the ground line GND and 1 to the source line V
It consists of a resistor R5, diodes DI, D2, and a resistor R6 connected in series between EEIO, and the ta voltage V
EE2 is taken out from the anode terminal of diode DI.

〔発明が解決しようとする課題] 第2図の構成において、ECLゲートの出力VAはグラ
ンドレベルGNDから決定され、その“L”レベルの電
位VA (L)は、 VA(L) =(R2・I + VIE)で表される。
[Problems to be Solved by the Invention] In the configuration shown in FIG. 2, the output VA of the ECL gate is determined from the ground level GND, and its "L" level potential VA (L) is expressed as VA (L) = (R2 · I + VIE).

ただし、■1はトランジスタT4のベース・エミッタ間
電圧を表す。ECLゲートの出力VAカその“L″レベ
ルある時、次段のCMOSゲートではpチャネルMO3
)ランジスタQpがオンし、nチャネルMO3I−ラン
ジスタQnはカットオフ状態となっていなければならな
い。従って、CMOSゲートを上記“ビレベルの電位V
A (L)で安定に動作させるためには、該電位VA 
(L)と電源電圧VEE2の電位差がnチャネルMO3
)ランジスタQnのスレッショルド電圧vthよりも小
さいという条件が必須である。この条件は温度や電源電
圧VEEIが変化した場合でも満足されなければならな
い。
However, ■1 represents the voltage between the base and emitter of the transistor T4. When the output VA of the ECL gate is at “L” level, the next stage CMOS gate outputs p-channel MO3.
) The transistor Qp must be turned on and the n-channel MO3I-transistor Qn must be in the cut-off state. Therefore, the CMOS gate is connected to the above-mentioned “bi-level potential V”.
In order to operate stably at A (L), the potential VA
(L) and power supply voltage VEE2 is the n-channel MO3
) It is essential that the voltage is smaller than the threshold voltage vth of the transistor Qn. This condition must be satisfied even when the temperature or power supply voltage VEEI changes.

ところが第3図に示されるような回路で電源電圧VEE
I、VEE2を供給した場合、温度や電源電圧の変化に
対してダイオードDI 、 D2のV−1特性が変化し
、そのために上記条件を常に満足できないという可能性
がある。つまり、ECLゲートの出力V八がその”ビレ
ヘルにある時、nチャネルMOSトランジスタQnもオ
ン状態となり(誤動作)、グランドラインGNDからト
ランジスタQpおよびQnを介して電源ラインVEE2
に多大な電流が流れ(DCバス)、場合によってはチッ
プが劣化あるいは破壊するという可能性がある。
However, in the circuit shown in Figure 3, the power supply voltage VEE
When I and VEE2 are supplied, the V-1 characteristics of the diodes DI and D2 change with changes in temperature and power supply voltage, and therefore there is a possibility that the above conditions cannot always be satisfied. In other words, when the output V8 of the ECL gate is at that level, the n-channel MOS transistor Qn is also turned on (malfunction), and the power supply line VEE2 is connected from the ground line GND through the transistors Qp and Qn.
A large amount of current flows through the chip (DC bus), and depending on the case, there is a possibility that the chip may deteriorate or be destroyed.

本発明は、かかる従来技術における課題に鑑み創作され
たもので、温度や電源電圧等の変化にかかわらず常に定
電圧の供給を可能にし、ひいては誤動作の防止を図るこ
とができる定電圧発生回路を提供することを目的として
いる。
The present invention was created in view of the problems in the prior art, and provides a constant voltage generation circuit that can always supply a constant voltage regardless of changes in temperature, power supply voltage, etc., and can further prevent malfunctions. is intended to provide.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため、本発明によれば、複数の電源
電圧を使用するバイポーラCMO3回路に定電圧を供給
する回路であって、外部電源電圧のラインに接続された
第1の電源ラインと、該第1の電源ラインと異なる電圧
を有する少なくとも1つの第2の電源ラインと、該第1
および第2の電源ラインの間でダーリントン接続された
複数のトランジスタを有するレベルシフト回路と、該レ
ベルシフト回路における最終段のトランジスタのベース
と一方の電源ラインとの間に接続された抵抗器と、該抵
抗器と他方の電源ラインの間に接続され、該抵抗器に流
れる電流を所定のバイアス電位により制御する回路とを
具備することを特徴とする定電圧発生回路が提供される
In order to solve the above problems, the present invention provides a circuit that supplies a constant voltage to a bipolar CMO3 circuit using a plurality of power supply voltages, the first power supply line being connected to an external power supply voltage line; at least one second power line having a different voltage than the first power line;
and a level shift circuit having a plurality of transistors Darlington-connected between second power supply lines, and a resistor connected between the base of the final stage transistor in the level shift circuit and one power supply line; There is provided a constant voltage generation circuit characterized by comprising a circuit connected between the resistor and the other power supply line and controlling the current flowing through the resistor with a predetermined bias potential.

〔作用〕[Effect]

上述した構成によれば、抵抗器が接続されている方の電
源ライン(第2の電源ラインとする)の電位は、他方の
電源ライン(第1の電源ライン)の電位から、ダーリン
トン接続された複数のトランジスタの各ベース・エミッ
タ間電圧と、所定のバイアス電位に基づき電流を制御さ
れた該抵抗器における電圧降下により決定される。その
ため、仮に温度が上昇して各トランジスタのベース・エ
ミッタ間電圧が小さくなったり、あるいは外部電源電圧
(第1の電源ラインの電位)が変動しても、抵抗器に流
れる電流が制御されることにより、第2の電源ラインの
電位は安定化される。
According to the above-described configuration, the potential of the power supply line to which the resistor is connected (referred to as the second power supply line) is connected to the potential of the other power supply line (the first power supply line) through a Darlington connection. It is determined by the base-emitter voltage of each of the plurality of transistors and the voltage drop across the resistor whose current is controlled based on a predetermined bias potential. Therefore, even if the temperature rises and the voltage between the base and emitter of each transistor decreases, or the external power supply voltage (potential of the first power supply line) fluctuates, the current flowing through the resistor will be controlled. As a result, the potential of the second power supply line is stabilized.

つまり、ECLゲートと同等の対温度・電源電圧特性を
実現しているため、温度や電源電圧の変化にかかわらず
常に定電圧を供給することが可能となる。そのため、バ
イポーラCMO3回路における誤動作の可能性を排除す
ることができる。
In other words, since it has achieved the same temperature versus power supply voltage characteristics as an ECL gate, it is possible to always supply a constant voltage regardless of changes in temperature or power supply voltage. Therefore, the possibility of malfunction in the bipolar CMO3 circuit can be eliminated.

なお、本発明の他の構成上の特徴および作用の詳細につ
いては、添付図面を参照しつつ以下に記述される実施例
を用いて説明する。
Note that other structural features and details of the operation of the present invention will be explained using the embodiments described below with reference to the accompanying drawings.

〔実施例〕〔Example〕

第1図には本発明の一実施例としての定電圧発生回路の
構成が示される。
FIG. 1 shows the configuration of a constant voltage generating circuit as an embodiment of the present invention.

図示の回路は大別して、レベルシフト回路LSと、抵抗
器R12と、該抵抗器に流れる電流を所定のバイアス電
位(図中VBで示される)により制御する電流制御回路
CSとから構成されている。
The illustrated circuit is roughly divided into a level shift circuit LS, a resistor R12, and a current control circuit CS that controls the current flowing through the resistor using a predetermined bias potential (indicated by VB in the figure). .

レベルシフト回路LSは、負の電源ラインVEEIとV
EE2 (νEE2 > VEEI ) (7)間でダ
ーリントン接続すした2つのトランジスタT11、T1
2と、トランジスタT11のベース(トランジスタT1
2のエミッタ)と電源ラインVEEIO間に接続された
抵抗器R11とを有している。また、抵抗器R12は、
トランジスタT12のベースと電源ラインVEEIO間
に接続されている。なお、電源ラインVEEIは外部か
ら供給される電源電圧のラインに接続されている。
The level shift circuit LS connects the negative power supply lines VEEI and V
EE2 (νEE2 > VEEI) (7) Two transistors T11 and T1 connected by Darlington between
2 and the base of transistor T11 (transistor T1
2 emitter) and a resistor R11 connected between the power supply line VEEIO and the power supply line VEEIO. Moreover, the resistor R12 is
It is connected between the base of transistor T12 and power supply line VEEIO. Note that the power supply line VEEI is connected to a power supply voltage line supplied from the outside.

電流制御回路CSは、抵抗器R12の一端(トランジス
タT12のベース)にコレクタが接続され上記バイアス
電位VBに応答するトランジスタT13と、該トランジ
スタのエミッタおよびベースと電源ラインVEEIO間
にそれぞれ接続された抵抗器R13およびR14と、グ
ランドラインGND (OV) とトランジスタT13
のベースの間に直列に接続されたトランジスタT14.
 T15.T16と、トランジスタT15のコレクタ・
ベース間およびベース・エミッタ間にそれぞれ接続され
た抵抗器R15,R16と、グランドラインGNDとト
ランジスタT14のベースの間に接続された抵抗器R1
7と、トランジスタT14のベースにコレクタが接続さ
れ所定のバイアス電圧νC3に応答するトランジスタT
17 と、該トランジスタのエミッタと電源ラインVE
EIO間に接続された抵抗器R18とから構成されてい
る。
The current control circuit CS includes a transistor T13 whose collector is connected to one end of the resistor R12 (base of the transistor T12) and which responds to the bias potential VB, and a resistor connected between the emitter and base of the transistor and the power supply line VEEIO. transistors R13 and R14, ground line GND (OV) and transistor T13
A transistor T14. connected in series between the bases of T14.
T15. T16 and the collector of transistor T15.
Resistors R15 and R16 are connected between the bases and between the base and emitter, respectively, and resistor R1 is connected between the ground line GND and the base of the transistor T14.
7 and a transistor T whose collector is connected to the base of the transistor T14 and which responds to a predetermined bias voltage νC3.
17, the emitter of the transistor and the power supply line VE
It consists of a resistor R18 connected between EIO and EIO.

なお、抵抗器R15,R16の抵抗比は、電源ラインV
EEIの電位が変動して上昇した時にトランジスタT1
3がカントオフするのを防止できるような値に選定され
ている。
Note that the resistance ratio of resistors R15 and R16 is
When the potential of EEI fluctuates and rises, transistor T1
The value is selected to prevent the number 3 from canting off.

上記構成において電源ラインνEE2の電位は、電源ラ
インVEEIの電位から、トランジスタT11、TI2
の各ベース・エミンタ間電圧■、と、トランジスタT1
3により電流を制御された抵抗器R12における電圧降
下により決定される。
In the above configuration, the potential of the power supply line νEE2 varies from the potential of the power supply line VEEI to the transistors T11 and TI2.
Each base-eminter voltage ■, and the transistor T1
The current is determined by the voltage drop across resistor R12, whose current is controlled by R12.

温度が上昇した場合、トランジスタT11、T12のV
IIEは小さくなるが、それに応じてトランジスタT1
3のベース電位VBも上昇するため、該トランジスタT
I3を流れる電流が増加する。その結果、抵抗器R1に
おける電圧降下が大きくなり、電源ラインVEE2の電
位は安定する。
When the temperature rises, the V of transistors T11 and T12
IIE becomes smaller, but transistor T1 accordingly
Since the base potential VB of the transistor T3 also rises, the base potential VB of the transistor T
The current flowing through I3 increases. As a result, the voltage drop across resistor R1 increases, and the potential of power supply line VEE2 becomes stable.

電源ラインVERIの電位が変動(低下)した場合、ト
ランジスタT13のベース電位VBは該グランドライン
の電位に対してほとんど一定であるので、該電位VEE
Iが低下した分だけトランジスタT13を流れる電流が
増加し、やはり、電源ラインνEE2の電位は安定する
。一方、電源ラインVEEIの電位が変動(上昇)した
場合には、上記温度が上昇した場合と同様の状態(トラ
ンジスタT11、T12の■1が小さくなった状態)と
なるため、やはり、電源ラインVEE2の電位は安定す
る。
When the potential of the power supply line VERI fluctuates (decreases), the base potential VB of the transistor T13 is almost constant with respect to the potential of the ground line, so the potential VEE
The current flowing through the transistor T13 increases by the amount that I decreases, and the potential of the power supply line νEE2 becomes stable. On the other hand, when the potential of the power supply line VEEI fluctuates (increases), the same state as when the temperature rises (the state in which ■1 of the transistors T11 and T12 becomes smaller) occurs, so the power supply line VEE2 The potential of becomes stable.

このように本実施例の回路構成によれば、レベルシフト
回路LSおよび抵抗器R12はECLゲートと同等の対
温度・電源電圧特性を実現しているため、温度や電源電
圧の変化にかかわらず常に定電圧(VEH2)を供給す
ることができる。従って、本実施の定電圧発生回路を例
えば第2図に示されるようなバイポー50M03回路に
適用した場合、従来形に見られたような誤動作の可能性
を排除することができる。
In this way, according to the circuit configuration of this embodiment, the level shift circuit LS and resistor R12 realize the same temperature and power supply voltage characteristics as the ECL gate, so they can always be used regardless of changes in temperature or power supply voltage. A constant voltage (VEH2) can be supplied. Therefore, when the constant voltage generating circuit of this embodiment is applied to, for example, a bipolar 50M03 circuit as shown in FIG. 2, the possibility of malfunctions seen in the conventional type can be eliminated.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、複数の電源電圧を
使用するバイポー50M03回路に対し、温度や電源電
圧等の変化にかかわらず常に定電圧を供給することがで
きる。これは、バイポー50M03回路における誤動作
の防止に寄与するものである。
As described above, according to the present invention, a constant voltage can always be supplied to a bipolar 50M03 circuit that uses a plurality of power supply voltages, regardless of changes in temperature, power supply voltage, etc. This contributes to preventing malfunctions in the bipolar 50M03 circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例としての定電圧発生回路の構
成を示す回路図、 第2図はバイポー50M03回路の一構成例を示す回路
図、 第3図は典型的な定電圧発生回路の構成を示す回路図、 である。 (符号の説明) CS・・・電流制御回路、LS・・・レベルシフト回路
、T11、T12・・・npn型バイポーラトランジス
タ、1?12・・・抵抗器、VEEI、VEE2・・・
電源電圧(ライン)VB・・・所定のバイアス電位。
Fig. 1 is a circuit diagram showing the configuration of a constant voltage generation circuit as an embodiment of the present invention, Fig. 2 is a circuit diagram showing an example of the configuration of a bipolar 50M03 circuit, and Fig. 3 is a typical constant voltage generation circuit. This is a circuit diagram showing the configuration of . (Explanation of symbols) CS...Current control circuit, LS...Level shift circuit, T11, T12...npn type bipolar transistor, 1?12...Resistor, VEEI, VEE2...
Power supply voltage (line) VB...predetermined bias potential.

Claims (1)

【特許請求の範囲】 複数の電源電圧を使用するバイポーラCMOS回路に定
電圧を供給する回路であって、 外部電源電圧のラインに接続された第1の電源ライン(
VEE1)と、 該第1の電源ラインと異なる電圧を有する少なくとも1
つの第2の電源ライン(VEE2)と、該第1および第
2の電源ラインの間でダーリントン接続された複数のト
ランジスタ(T11、T12)を有するレベルシフト回
路(LS)と、 該レベルシフト回路における最終段のトランジスタ(T
12)のベースと一方の電源ラインとの間に接続された
抵抗器(R12)と、 該抵抗器と他方の電源ラインの間に接続され、該抵抗器
に流れる電流を所定のバイアス電位(VB)により制御
する回路(CS)とを具備することを特徴とする定電圧
発生回路。
[Claims] A circuit that supplies a constant voltage to a bipolar CMOS circuit that uses a plurality of power supply voltages, the circuit comprising: a first power supply line connected to an external power supply voltage line (
VEE1) and at least one line having a different voltage than the first power supply line.
a level shift circuit (LS) having a second power supply line (VEE2) and a plurality of transistors (T11, T12) connected in Darlington between the first and second power supply lines; The final stage transistor (T
A resistor (R12) is connected between the base of 12) and one power supply line, and a resistor (R12) is connected between the resistor and the other power supply line, and the current flowing through the resistor is set to a predetermined bias potential (VB ) A constant voltage generation circuit characterized by comprising a circuit (CS) controlled by.
JP2018981A 1990-01-31 1990-01-31 Constant voltage generating circuit Pending JPH03225402A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018981A JPH03225402A (en) 1990-01-31 1990-01-31 Constant voltage generating circuit
EP19910300695 EP0440434A3 (en) 1990-01-31 1991-01-30 Constant voltage generating circuit
KR1019910001684A KR920000022A (en) 1990-01-31 1991-01-31 Constant voltage generator
US07/648,849 US5130637A (en) 1990-01-31 1991-01-31 Constant voltage generating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018981A JPH03225402A (en) 1990-01-31 1990-01-31 Constant voltage generating circuit

Publications (1)

Publication Number Publication Date
JPH03225402A true JPH03225402A (en) 1991-10-04

Family

ID=11986786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018981A Pending JPH03225402A (en) 1990-01-31 1990-01-31 Constant voltage generating circuit

Country Status (4)

Country Link
US (1) US5130637A (en)
EP (1) EP0440434A3 (en)
JP (1) JPH03225402A (en)
KR (1) KR920000022A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057962A (en) * 2014-09-11 2016-04-21 株式会社デンソー Reference voltage circuit and power supply circuit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2806489B1 (en) 2000-03-15 2002-06-28 St Microelectronics Sa REFERENCE VOLTAGE SUPPLY CIRCUIT
US20150349554A1 (en) 2014-06-03 2015-12-03 Traxxas Lp Battery connection method and apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3781648A (en) * 1973-01-10 1973-12-25 Fairchild Camera Instr Co Temperature compensated voltage regulator having beta compensating means
US4339707A (en) * 1980-12-24 1982-07-13 Honeywell Inc. Band gap voltage regulator
US4453121A (en) * 1981-12-21 1984-06-05 Motorola, Inc. Reference voltage generator
US4446383A (en) * 1982-10-29 1984-05-01 International Business Machines Reference voltage generating circuit
JPS6269719A (en) * 1985-09-24 1987-03-31 Toshiba Corp Level conversion logic circuit
JPS62191907A (en) * 1986-02-19 1987-08-22 Hitachi Ltd Semiconductor circuit
US4794317A (en) * 1987-12-18 1988-12-27 Texas Instruments Incorporated ECL-to-CMOS level conversion for use in ECL-BiCMOS circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057962A (en) * 2014-09-11 2016-04-21 株式会社デンソー Reference voltage circuit and power supply circuit

Also Published As

Publication number Publication date
US5130637A (en) 1992-07-14
EP0440434A3 (en) 1992-01-15
KR920000022A (en) 1992-01-10
EP0440434A2 (en) 1991-08-07

Similar Documents

Publication Publication Date Title
US4853560A (en) Logic circuit and semiconductor integrated circuit device capable of operating by different power supplies
JP2647014B2 (en) BiCMOS logic circuit
US4804868A (en) BiMOS logical circuit
JPH0693615B2 (en) Driver circuit
US5656952A (en) All-MOS differential high speed output driver for providing positive-ECL levels into a variable load impedance
JP3556482B2 (en) Constant voltage generator
JPH0399516A (en) Level converting circuit
EP0768762B1 (en) Output circuit
US7218169B2 (en) Reference compensation circuit
US5485110A (en) ECL differential multiplexing circuit
US5198704A (en) Bi-CMOS output circuit with limited output voltage
US4883975A (en) Schmitt trigger circuit
JPH03225402A (en) Constant voltage generating circuit
US4501974A (en) Pulse stretching and level shifting circuit
JPS6175618A (en) Complementary bimis tri-state gate circuit
JP3507621B2 (en) Semiconductor integrated circuit
US10644699B2 (en) Lower voltage switching of current mode logic circuits
JP2865010B2 (en) Comparator circuit
JPH0686458A (en) Power-supply selector circuit
KR100577552B1 (en) Internal voltage converter of a semiconductor memory device
JPH0766709A (en) Ecl/cmos level conversion circuit and semiconductor integrated circuit including the circuit
JP2636558B2 (en) Logical decision circuit
EP0880229A1 (en) Logic interface circuit
JPH07104874A (en) Reference voltage generating circuit
JP2000082942A (en) Voltage comparator