JPH0322465A - Resin-sealed semiconductor device - Google Patents

Resin-sealed semiconductor device

Info

Publication number
JPH0322465A
JPH0322465A JP15567089A JP15567089A JPH0322465A JP H0322465 A JPH0322465 A JP H0322465A JP 15567089 A JP15567089 A JP 15567089A JP 15567089 A JP15567089 A JP 15567089A JP H0322465 A JPH0322465 A JP H0322465A
Authority
JP
Japan
Prior art keywords
resin
semiconductor element
lead frame
island part
polyimide resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15567089A
Other languages
Japanese (ja)
Inventor
Koji Mori
森 恒治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP15567089A priority Critical patent/JPH0322465A/en
Publication of JPH0322465A publication Critical patent/JPH0322465A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To reduce sharply the number of occurrences of resin cracks by forming a polyimide resin film of a specified thickness both on the surface of a semiconductor element and on the reverse surface of an island part of a lead frame. CONSTITUTION:Polyimide resin having excellent adhesion both to sealing resin and a semiconductor element and to the sealing resin and a lead frame is used. It the adhesion is not excellent, peeling occurs on an interface due to a steam pressure, a stress is concentrated thereon and consequently a resin crack occurs. A polyimide resin film is formed by coating both the surface of the semiconductor element and the reverse surface of an island part of the lead frame. If the surface of the semiconductor element alone is coated, peeling occurs on the interface between the reverse surface of the island part and the sealing resin, the stress is concentrated thereon and consequently the resin crack occurs. If the surface of the island part alone is coated, the peeling occurs on the interface between the surface of the peeling semiconductor element and the sealing resin, the stress is concentrated thereon, the resin crack occurs, and thus a sufficient effect can not be obtained. As to the amount of coating, the film having a thickness 5 to 100mum is formed on the surface of the semiconductor element and the reverse surface of the island part of the lead frame. As materials for the polyimide resin, tetracarboxylic-di-anhydride and diamine are used.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体素子の表面及びリードフレームのアイラ
ンド部裏面の両面にポリイミド系樹脂被膜を形成させ、
半田浸漬後の耐樹脂クラック性にすぐれた表面実装用樹
脂封止型半導体装置を製造する方法に関するものである
Detailed Description of the Invention (Industrial Application Field) The present invention forms a polyimide resin coating on both the surface of a semiconductor element and the back surface of an island portion of a lead frame,
The present invention relates to a method for manufacturing a resin-sealed semiconductor device for surface mounting that has excellent resistance to resin cracking after being immersed in solder.

(従来技術) 近年、集積回路の高集積化に伴い、チップがだんだん大
型化し、かつパッケージは従来のDIPタイプから、表
面実装化された小型、薄型の7ラットパッケージ、SO
P,SOJ,PLCCに変わってきている。
(Prior art) In recent years, as integrated circuits have become more highly integrated, chips have become larger and larger, and packages have changed from the conventional DIP type to surface-mounted small, thin 7-rat packages, SO
It is changing to P, SOJ, and PLCC.

即ち、大型チップを小型で薄いパッケージに封入するこ
とになり、応力によるパッケージクラックの発生、これ
らのクラックによる耐湿性の低下等の問題が大きくクロ
ーズアップされて来ている。
That is, a large chip is encapsulated in a small and thin package, and problems such as the occurrence of package cracks due to stress and a decrease in moisture resistance due to these cracks are attracting attention.

特に、半田付けの工程において、急激に200〜300
℃位の高温にさらされることにより、パッケージの割れ
や、樹脂とチップの剥離により耐湿性が劣化してしまう
といった問題点がでてきている。
In particular, during the soldering process, the
Exposure to high temperatures on the order of degrees Celsius has led to problems such as cracking of the package and deterioration of moisture resistance due to peeling of the resin and chip.

従来、半導体素子の表面あるいはリードフレームにシラ
ンカップリング剤を塗布した後、加熱硬化させる方法は
知られている。(例えば特開昭58−148441号公
報) しかし、樹脂とリードフレームの接着性が未だ不十分で
、又応力吸収層がないため、半田浸漬後の−33!’+
− 2 耐クラック性は今一つ不十分であった。
Conventionally, a method is known in which a silane coupling agent is applied to the surface of a semiconductor element or a lead frame and then heated and cured. (For example, Japanese Patent Application Laid-Open No. 58-148441) However, the adhesiveness between the resin and the lead frame is still insufficient, and there is no stress absorbing layer, so -33 after solder immersion! '+
-2 The crack resistance was still insufficient.

又、他の方法としては樹脂と半導体素子及びリードフレ
ームとの間に生じる応力を吸収することができるポリオ
レフィン膜を形成し、次いで樹脂封止してなることを特
徴とする方法がある。(例えば特開昭61−58242
号公報) しかし、この方法は、最近の薄型パッケージ(例えば5
2pQFP等)には、耐熱性に欠けるため、十分な効果
が得られないことが知られている。
Another method is to form a polyolefin film capable of absorbing the stress generated between the resin and the semiconductor element and lead frame, and then seal them with the resin. (For example, JP-A-61-58242
However, this method is not suitable for recent thin packages (for example, 5
2pQFP, etc.) are known to lack sufficient heat resistance and therefore cannot provide sufficient effects.

更に、リードフレームのアイランド部裏面にのみポリイ
ミド系樹脂被膜を形成し、樹脂封止してなることを特徴
とする方法がある。(例えば特開昭63−179554
号公報) しかし、この方法は最近の大型チップを搭載した薄型パ
ッケージにおいては、アイランド部裏面側に発生するク
ラックは防止できるが、半導体素子表面側に発生するク
ラックは防止できず、十分な効果が得られなかった。
Furthermore, there is a method characterized in that a polyimide resin film is formed only on the back surface of the island portion of the lead frame and the resin is sealed. (For example, JP-A-63-179554
However, although this method can prevent cracks that occur on the back side of the island part in recent thin packages equipped with large chips, it cannot prevent cracks that occur on the front side of the semiconductor element, so it is not sufficiently effective. I couldn't get it.

(発明が解決しようとする課題) 本発明は樹脂封止型半導体装置の半田浸漬時にお3− 止樹脂の界面が剥離し、応力が集中することにより樹脂
クラックが発生する。
(Problems to be Solved by the Invention) According to the present invention, when a resin-sealed semiconductor device is immersed in solder, the interface of the sealing resin peels off and stress concentrates, causing resin cracks.

又、アイランド部裏面だけだと半導体素子の表面と封止
樹脂の界面が剥離し、応力が集中することにより樹脂ク
ラックが発生し、十分な効果が得られないからである。
Further, if only the back surface of the island portion is used, the interface between the surface of the semiconductor element and the sealing resin will peel off, stress will be concentrated, and resin cracks will occur, making it impossible to obtain sufficient effects.

又、コーティング量としては半導体素子の表面及びリー
ドフレームのアイランド部裏面に5μm〜100μmの
厚みの被膜を形成する量が好ましい。
The amount of coating is preferably such that a film with a thickness of 5 μm to 100 μm is formed on the surface of the semiconductor element and the back surface of the island portion of the lead frame.

これ以下の厚みだと封止樹脂と半導体素子及びリードフ
レームとの間に生じる応力を吸収できず、十分な効果が
得られない。
If the thickness is less than this, the stress generated between the sealing resin, the semiconductor element, and the lead frame cannot be absorbed, and a sufficient effect cannot be obtained.

又、これ以上の厚みだとワニス状の樹脂をドロッピング
でコーティングする場合に作業性に問題を生じるからで
ある。
Further, if the thickness is greater than this, there will be a problem in workability when coating with a varnish-like resin by dropping.

本発明で用いるポリイミド系樹脂としては、一般に半導
体素子の表面保護膜として用いられているもので、テト
ラカルポン酸ジ無水物とジアミン類とを原料として用い
たものである。
The polyimide resin used in the present invention is generally used as a surface protective film for semiconductor devices, and is made from tetracarboxylic acid dianhydride and diamines as raw materials.

テトラカルポン酸ジ無水物としてはビロメリットける樹
脂クラックの原因と考えられる素子と樹脂との界面及び
リード7レームと樹脂との界面に侵入した水分の蒸気爆
発を、界面を接着させることにより蒸気爆発の衝撃を和
らげ、樹脂クラック発生数を大幅に減少させることを目
的とする。
Tetracarboxylic acid dianhydride prevents steam explosions caused by water entering the interface between the element and the resin and the interface between the lead 7 frame and the resin, which is thought to be the cause of resin cracks in Viromelli, by bonding the interfaces. The purpose is to soften the impact and significantly reduce the number of resin cracks.

(課題を解決するための手段) 本発明は半導体素子の表面及びリードフレームのアイ゛
ランド部裏面の両面にポリイミド系樹脂被膜を形成した
ことを特徴とする樹脂封止型半導体装置である。
(Means for Solving the Problems) The present invention is a resin-sealed semiconductor device characterized in that a polyimide resin film is formed on both the front surface of a semiconductor element and the back surface of an island portion of a lead frame.

本発明で用いるポリイミド系樹脂としては、封止樹脂と
半導体素子及び封止樹脂とリードフレームの両方と良好
な接着性を有するものである。
The polyimide resin used in the present invention has good adhesion to both the sealing resin and the semiconductor element, and the sealing resin and the lead frame.

接着性が悪いと水蒸気圧により界面が剥離し応力が集中
することにより樹脂クラックを発生するからである。
This is because if the adhesion is poor, the interface will peel due to water vapor pressure and stress will concentrate, causing resin cracks.

又、ポリイミド系樹脂被膜は半導体素子の表面及びリー
ドフレームのアイランド部裏面の両面にコーティングす
る必要がある。
Furthermore, it is necessary to coat both the surface of the semiconductor element and the back surface of the island portion of the lead frame with the polyimide resin film.

半導体素子の表面だけだとアイランド部裏面と封4 酸ジ無水物、ペンゾフェノンテトラカルポン酸ジ無水物
、2,3.6.7一ナ7タレンテトラカルボン酸ジ無水
物、3.3’.4.4’−ジフェニルテトラカルボン酸
ジ無水物等が挙げられ、これらは単独もしくは2種以上
混合して使用しても差し支えがない。
If only the surface of the semiconductor element is used, the back surface of the island part and the seal 4 Acid dianhydride, penzophenonetetracarboxylic dianhydride, 2, 3.6.7 Mono-7talentetracarboxylic dianhydride, 3.3 '. Examples include 4,4'-diphenyltetracarboxylic dianhydride, and these may be used alone or in combination of two or more without any problem.

又、ジアミンとしてはm−フェニレンジアミン、p−フ
二二レンジアミン、4.4’−ジアミノジ7エニルプロ
パン、4.4’−ジアミノジフエニルエーテル、4.4
′−ジアミノジ7エニルメタン、4.4’−ジアミノジ
7エニルスルフィド、4.4’−ジアミノジフェニルス
ルホン等が挙げられ、これらは単独もしくは2種以上混
合して使用しても差し支えがない。
In addition, the diamines include m-phenylene diamine, p-phenylene diamine, 4.4'-diaminodi7enylpropane, 4.4'-diaminodiphenyl ether, 4.4
Examples include '-diaminodi7enylmethane, 4,4'-diaminodi7enyl sulfide, and 4,4'-diaminodiphenylsulfone, and these may be used alone or in combination of two or more without any problem.

これらの中でも、特にテトラカルボン酸ジ無水物として
、ピロメリット酸ジ無水物とペンゾフェノンテトラカル
ボン酸ジ無水物、又ジアミンとしてはp−7エニレンジ
アミンと4,4′−ジアミノジフェニルエーテルの使用
が好ましい。
Among these, use of pyromellitic dianhydride and penzophenone tetracarboxylic dianhydride as the tetracarboxylic dianhydride, and use of p-7 enylene diamine and 4,4'-diaminodiphenyl ether as the diamine is preferred.

又、本発明で用いる封止樹脂は、一般に使用されている
封止用エポキシ樹脂組成物であり、エポキシ樹脂、硬化
剤、硬化促進剤及び充填材、顔料等を用いて得られるも
のであって、通常粉末状もしくは液状のものである。
Furthermore, the sealing resin used in the present invention is a commonly used epoxy resin composition for sealing, which is obtained using an epoxy resin, a curing agent, a curing accelerator, a filler, a pigment, etc. , usually in powder or liquid form.

エボキシ樹脂としては、その分子中にエポキシ基を少な
くとも2個以上有する化合物であれば、分子構造、分子
量などは特に制限はなく、一般に封止用材料として使用
されているものであり、例えばノポラック系エポキシ樹
脂、ビスフェノール型の芳香族系、シクロヘキサン誘導
体の脂環式系、更には多官能系、シリコーン変性樹脂系
が挙げられ、これらのエポキシ樹脂は単独もしくは2種
以上混合して使用しても差し支えがない。
As long as the epoxy resin is a compound having at least two epoxy groups in its molecule, there are no particular restrictions on its molecular structure or molecular weight.Epoxy resins are generally used as sealing materials, such as Nopolac resins. Examples include epoxy resins, aromatic bisphenol types, alicyclic resins such as cyclohexane derivatives, polyfunctional resins, and silicone-modified resins. These epoxy resins may be used alone or in a mixture of two or more. There is no.

又、硬化剤としてはノポラック型フェノール樹脂系およ
びこれらの変性樹脂であり、例えばフェノールノポラッ
ク、0−クレゾールノポラックの他アルキル変性したフ
ェノールノポラック樹脂等が挙げられ、これらは単独も
しくは2種以上混合して使用しても差し支えがない。
In addition, curing agents include nopolac type phenolic resins and modified resins thereof, such as phenol nopolak, 0-cresol nopolak, and alkyl-modified phenol nopolak resins, which may be used alone or in combination of two or more. There is no problem in using them in combination.

硬化促進剤はエポキシ基と7ェノール性水酸基との反応
を促進するものであればよく、一般に封止用材料に使用
されいいるものを広く使用すること−7− これをエポキシ樹脂威形材料(住友ベークライト製「ス
ミコンJ EME−6300 )で封止し、模擬半導体
装置2種を作威し、半田クラック評価を行った。
The curing accelerator may be one that promotes the reaction between the epoxy group and the 7-phenolic hydroxyl group, and those commonly used in sealing materials should be widely used. Two types of simulated semiconductor devices were made by sealing with Sumitomo Bakelite's "Sumicon J EME-6300" and evaluated for solder cracks.

又、半田クラック評価後の半導体装置の半導体素子と樹
脂との界面及びリードフレームのアイランド部裏面と樹
脂との界面の剥離状況を超音波深傷装置で調べ、その結
果を第1表に示す。
In addition, the peeling conditions at the interface between the semiconductor element and the resin of the semiconductor device and the interface between the back surface of the island portion of the lead frame and the resin after the solder crack evaluation were examined using an ultrasonic deep damage device, and the results are shown in Table 1.

比較例1.2 ポリイミド樹脂被膜の厚みを比較例lは2μm1比較例
2は120μmに変えた以外は実施例lと同様にして模
擬半導体装置を作り評価した。
Comparative Example 1.2 A simulated semiconductor device was made and evaluated in the same manner as in Example 1, except that the thickness of the polyimide resin coating was changed to 2 μm in Comparative Example 1 and 120 μm in Comparative Example 2.

比較例3 模擬半導体素子の表面にのみポリイミド樹脂被膜を形成
した以外は実施例2と同様にして模擬半導体装置を作り
被膜した。
Comparative Example 3 A simulated semiconductor device was made and coated in the same manner as in Example 2, except that a polyimide resin film was formed only on the surface of the simulated semiconductor element.

比較例4 リードフレームのアイランド部裏面にのみポリイ、ミド
樹脂被膜を形成した以外は実施例2と同様にして模擬半
導体装置を作り評価した。
Comparative Example 4 A simulated semiconductor device was made and evaluated in the same manner as in Example 2, except that a poly-imide resin film was formed only on the back surface of the island portion of the lead frame.

比較例5.6 ができ、例えばジアザビシクロウンデセン(DBU)、
トリフェニルホス7イン(TPP) 、ジメチルベンジ
ルアミン(BDMA)や2−メチルイミダゾール(2M
Z)等が単独もしくは2種以上混合して使用される。
Comparative Example 5.6 is obtained, for example diazabicycloundecene (DBU),
Triphenylphos-7yne (TPP), dimethylbenzylamine (BDMA) and 2-methylimidazole (2M
Z) etc. may be used alone or in combination of two or more.

充填材としては通常のシリカ粉末やアルミナ等が挙げら
れる。
Examples of the filler include ordinary silica powder and alumina.

(実施例) 実施例1.2 リードフレームのアイランド上にマウントされた模擬素
子(6X6mm)の表面及びリードフレームのアイラン
ド部裏面の両面に半導体コート用ポリイミド樹脂(フラ
スコにN2雰囲気中でジアミノジフェニルエーテル96
 . 6gをN−メチル−2−ピロリドンlll4gに
溶かし、その後ピロメリット酸ジ無水物longを滴下
し(反応温度20゜C)、その後室温で4時間反応させ
て得られたポリイミド樹脂)を実施例lはlOμm1実
施例2では50μmの厚みでコーティングし、硬化させ
ポリイミド樹脂被膜を形成した。
(Example) Example 1.2 Polyimide resin for semiconductor coating (diaminodiphenyl ether 96 in a flask in N2 atmosphere) was applied to both the surface of the simulated element (6 x 6 mm) mounted on the island of the lead frame and the back surface of the island part of the lead frame.
.. 6g of N-methyl-2-pyrrolidone was dissolved in 114g of N-methyl-2-pyrrolidone, and then pyromellitic dianhydride long was added dropwise (reaction temperature 20°C), and the resulting polyimide resin was reacted at room temperature for 4 hours. In Example 2, it was coated to a thickness of 50 μm and cured to form a polyimide resin film.

8 ポリイミド樹脂の代わりにエポキシ樹脂(油化シエルエ
ポキシ製「エピコート828/エポメートB−002 
)、シリコーン樹脂(東レ製rJcR−6110J )
を使用した以外は実施例2と同様にして模擬半導体装置
を作り評価した。
8 Instead of polyimide resin, use epoxy resin (“Epicoat 828/Epomate B-002” manufactured by Yuka Ciel Epoxy)
), silicone resin (Toray rJcR-6110J)
A simulated semiconductor device was made and evaluated in the same manner as in Example 2 except that .

比較例7 ポリイミド樹脂被膜を形成しないこと以外は実施例lと
同様にして模擬半導体装置を作り評価した。
Comparative Example 7 A simulated semiconductor device was made and evaluated in the same manner as in Example 1 except that the polyimide resin film was not formed.

(以下余白) (発明の効果) 本発明に従うと半田浸漬といった厳しい実装条件でも樹
脂クラックの発生を防止でき、従来同等以上の信頼性を
保持する表面実装用樹脂封止型半導体装置が得られる。
(Hereinafter in the margin) (Effects of the Invention) According to the present invention, it is possible to prevent the occurrence of resin cracks even under severe mounting conditions such as solder immersion, and it is possible to obtain a resin-sealed semiconductor device for surface mounting that maintains reliability equal to or higher than conventional semiconductor devices.

即ち、大量生産、低コストを目的とした合理化実装法一
半田浸漬一が可能となり、更に半導体装置を汎用のもの
にすることができる。
That is, it becomes possible to use a rational mounting method and solder dipping for the purpose of mass production and low cost, and it is also possible to make the semiconductor device general-purpose.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体素子を樹脂で封止した半導体装置において
半導体素子の表面及びリードフレームのアイランド部裏
面の両面に封止樹脂と半導体素子及びリードフレームの
双方に良好な接着性を有し、又封止樹脂と半導体素子及
びリードフレームとの間に生じる応力を吸収するための
厚さ5〜100μmのポリイミド系樹脂被膜を形成した
ことを特徴とする樹脂封止型半導体装置。
(1) In a semiconductor device in which a semiconductor element is sealed with resin, the sealing resin has good adhesion to both the semiconductor element and the lead frame on both the surface of the semiconductor element and the back surface of the island part of the lead frame, and A resin-sealed semiconductor device comprising a polyimide resin coating having a thickness of 5 to 100 μm for absorbing stress generated between the sealing resin and the semiconductor element and lead frame.
JP15567089A 1989-06-20 1989-06-20 Resin-sealed semiconductor device Pending JPH0322465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15567089A JPH0322465A (en) 1989-06-20 1989-06-20 Resin-sealed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15567089A JPH0322465A (en) 1989-06-20 1989-06-20 Resin-sealed semiconductor device

Publications (1)

Publication Number Publication Date
JPH0322465A true JPH0322465A (en) 1991-01-30

Family

ID=15611022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15567089A Pending JPH0322465A (en) 1989-06-20 1989-06-20 Resin-sealed semiconductor device

Country Status (1)

Country Link
JP (1) JPH0322465A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536970A (en) * 1992-09-29 1996-07-16 Kabushiki Kaisha Toshiba Resin-encapsulated semiconductor device
US5834830A (en) * 1995-12-18 1998-11-10 Lg Semicon Co., Ltd. LOC (lead on chip) package and fabricating method thereof
US7247576B2 (en) 1998-03-20 2007-07-24 Renesas Technology Corp. Method of manufacturing a semiconductor device
US7705437B2 (en) 2007-10-16 2010-04-27 Nec Electronics Corporation Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179554A (en) * 1987-01-21 1988-07-23 Sharp Corp Resin seal type semiconductor device
JPH01128552A (en) * 1987-11-13 1989-05-22 Asahi Glass Co Ltd Semiconductor device
JPH01261853A (en) * 1988-04-13 1989-10-18 Tomoegawa Paper Co Ltd Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179554A (en) * 1987-01-21 1988-07-23 Sharp Corp Resin seal type semiconductor device
JPH01128552A (en) * 1987-11-13 1989-05-22 Asahi Glass Co Ltd Semiconductor device
JPH01261853A (en) * 1988-04-13 1989-10-18 Tomoegawa Paper Co Ltd Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536970A (en) * 1992-09-29 1996-07-16 Kabushiki Kaisha Toshiba Resin-encapsulated semiconductor device
US5834830A (en) * 1995-12-18 1998-11-10 Lg Semicon Co., Ltd. LOC (lead on chip) package and fabricating method thereof
US7247576B2 (en) 1998-03-20 2007-07-24 Renesas Technology Corp. Method of manufacturing a semiconductor device
US7678706B2 (en) 1998-03-20 2010-03-16 Renesas Technology Corp. Method of manufacturing a semiconductor device
US7705437B2 (en) 2007-10-16 2010-04-27 Nec Electronics Corporation Semiconductor device

Similar Documents

Publication Publication Date Title
KR970008355B1 (en) Resin sealed type semiconductor device
KR101036728B1 (en) Semiconductor device, resin composition for buffer coating, resin composition for die bonding, and resin composition for encapsulating
US6046072A (en) Process for fabricating a crack resistant resin encapsulated semiconductor chip package
JP2000109709A (en) Material for thermosetting resin and its production
US6621154B1 (en) Semiconductor apparatus having stress cushioning layer
US6744133B2 (en) Adhesive film for semiconductor, lead frame and semiconductor device using the same
JP2004266137A (en) Die bonding material for semiconductor device and semiconductor device using it
JPH0322465A (en) Resin-sealed semiconductor device
US6372080B1 (en) Process for fabricating a crack resistant resin encapsulated semiconductor chip package
JPH03105932A (en) Sheet-shaped adhesive and semiconductor device using same adhesive
TW540131B (en) Mask sheet for assembly of semiconductor device and assembling method of semiconductor device
JP3406073B2 (en) Resin-sealed semiconductor device
JP4888479B2 (en) Semiconductor device and manufacturing method thereof
JP2001291804A (en) Semiconductor element and semiconductor device and semiconductor mounting structure
JPH1171444A (en) Epoxy resin composition and semiconductor device sealed therewith
JPH08162573A (en) Semiconductor device
JP3765331B2 (en) Low stress film adhesive, lead frame and semiconductor device using the same
JP3620156B2 (en) Low temperature adhesive film adhesive, lead frame and semiconductor device using the same
JP2587074B2 (en) Semiconductor device
JP2008095063A (en) Adhesive film for semiconductor, lead frame with adhesive film for semiconductor and, semiconductor device with adhesive film for semiconductor, and semiconductor device
JP2001270932A (en) Epoxy resin composition and semiconductor device
JP2000239355A (en) Epoxy resin composition and semiconductor device
JPS58166748A (en) Semiconductor device
JP4491884B2 (en) Epoxy resin composition and semiconductor device
JPH04107957A (en) Resin sealing type semiconductor device