JPH03224256A - 電子機器の冷却装置 - Google Patents

電子機器の冷却装置

Info

Publication number
JPH03224256A
JPH03224256A JP6043790A JP6043790A JPH03224256A JP H03224256 A JPH03224256 A JP H03224256A JP 6043790 A JP6043790 A JP 6043790A JP 6043790 A JP6043790 A JP 6043790A JP H03224256 A JPH03224256 A JP H03224256A
Authority
JP
Japan
Prior art keywords
refrigerant
cooled
cooling
high frequency
piezoelectric vibrators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6043790A
Other languages
English (en)
Inventor
Riichi Sawano
理一 澤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6043790A priority Critical patent/JPH03224256A/ja
Publication of JPH03224256A publication Critical patent/JPH03224256A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子機器を電気絶縁性の冷媒中に浸漬して冷却
する冷却装置に関する。
〔従来の技術〕
電子機器の冷却には従来、自然空冷1強制空冷等の方式
が使用されてきた。近年、半導体素子の高集積化、高密
度実装化が進み、単位面積当りの損失熱量の大きい電子
機器が、電気絶縁性の高い冷媒、例えば、フルオロカー
ボンの液中に直接浸漬されて冷却される、所謂、冷媒浸
漬冷却方式が実用化されている。この冷媒浸漬冷却方式
には大別して(1)対流熱伝達により冷却する方式と(
2)沸騰熱伝達により冷却する方式がある。
対流熱伝達により冷却する方式には、静止状態の冷媒液
槽中に電子機器を浸漬させる自然対流冷却方式と、外部
動力によって流動している冷媒中に電子機器を浸漬させ
る強制対流冷却方式とがある。
一方、沸騰熱伝達により冷却する方式には、電子機器の
発熱温度より沸点が低い冷媒を使用して、密閉容器の静
止した冷媒中に電子機器を浸漬し沸騰させるプール沸騰
冷却方式(例えば実開昭60−129195号公報参照
)と、外部動力により流動している冷媒中に浸漬して沸
騰させる強制対流沸騰冷却方式(例えば実開昭61−1
3949号公報参照)とがある、また、これら冷媒が封
しられている容器の圧力を大気圧より減圧して沸騰させ
る場合もあり、この場合、冷媒は低い温度で沸騰するの
で、電子機器の発熱温度に比して沸点の高い 冷媒 も
使用することができる。
ところで、固体−液体間の熱移動では、固体表面に熱的
な境界層 (以下温度境界層と称する)が形成され、こ
の温度境界層の大きな温度勾配によって固体表面から周
囲の液体への熱伝達が妨げられる。従って、固体表面か
ら周囲の液体への熱伝達を向上するためには、この温度
境界層を薄くするか、あるいは除去して固体表面と周囲
の液体が直接に接するようにすることが必要である。そ
こで、外部動力により冷媒を強制的に流動させて温度境
界層を除去し、その熱伝達を向上する方法がある。具体
的には容器内に回転翼を備えた攪拌機を設置して冷媒を
流動させる方式、あるいはポンプ等で加圧して噴流状態
にした冷媒中に電子機器を浸漬する方法等がある。また
、このような装置で、冷却面近傍に乱流促進構造体を置
くことにより流動状態を乱流として熱伝達を更に向上さ
せる方法もある。
(発明が解決しようとする課題〕 冷媒浸漬冷却方式において、冷却効果を高めるために、
前述のように外部動力により冷媒を強制的に流動させる
、更に、冷却面近傍に乱流促進構造体を置き、この流動
状態を乱流として熱伝達を向上させることなどが行われ
るが、熱抵抗の主要因となっている温度境界層は固体表
面に密着しており、前述の方法ではこれを充分に除くこ
とは困難であり、従って熱伝達の向上にはある限界が生
じる。
本発明の課題は冷媒浸漬冷却方式による電子機器の冷却
において、簡単な構成でその冷却効果を飛躍的に高めた
冷却装置を提供することにある。
〔課題を解決するための手段〕
前述の課題を解決するために、本発明の電子機器の冷却
装置においては、 被冷却体の電子機器と、基台に設置され前記電子機器と
対向して配置された1個またはそれ以上の圧電振動子と
が電気絶縁性の冷媒中に浸漬され、これらが容器内に収
納され、前記冷媒を外部の動力で循環し、循環するこの
冷媒に前記圧を振動子により高周波振動を与えながら被
冷却体の電子機器を冷却するようにする。また、被冷却
体の電子機器と、基台に設置され前記電子機器と対向し
て配置された1個またはそれ以上の圧電振動子とが電気
絶縁性の冷媒中に浸漬され、これらが密閉された容器内
に冷媒の液面上部に空間部を残して収納され、この空間
部に熱交換部が設けられ、前記圧電振動子により冷媒に
高周波振動を与えながら被冷却体の電子機器を冷却する
ようにする。更に、圧電振動子が設置される基台が容器
の一部を形成するようにする。更にまた、圧電振動子に
その振動周波数に共振し指向性を有する共振子を付加す
るようにする。
〔作用〕
本発明によれば圧電振動子で冷媒に高周波振動を与え、
この振動は冷媒中を伝搬して電子機器の伝熱面に到達す
る。この高周波振動の場には定常的に2次元波が存在し
、これにより伝熱面の冷媒の状態に乱れが生じ、温度境
界層が効果的に除去され、その熱伝達が向上する。また
、伝熱面に沸騰が起きている状態では、伝熱面に付着し
ている蒐泡に高周波振動が加わり、伝熱面からの気泡層
成が促進されるため、その熱伝達が非常に向上する。更
に、圧電振動子を基台に設置して、電子機器の伝熱面の
近くに取り付けるようにしたので、高周波振動のエネル
ギーは効率よく伝熱面に到着する。更にまた、圧電振動
子に、その振動周波数に共振し指向性を有する共振子を
付加したので、高周波振動のエネルギーはより効率よく
伝熱面に到達し熱伝達が著しく向上する。
〔実施例〕
第1図は本発明の一実施例の冷却装置の断面図である。
この実施例では被冷却体の電子機器として半導体装!の
場合を示している。2は被冷却体の半導体装置で基板2
2に半導体素子21が取り付けられている。圧電振動子
11は基台12に設置され、被冷却体の半導体素子21
に対向して配置される。
これらは容器4に収納され、この容器内を冷媒3が外部
動力、例えばポンプにより循環する。二の冷媒は図示し
ていない外部の熱交換器により冷1される。冷媒3は電
気絶縁性の高い冷媒、例えば、フルオロカーボンが用い
られる。半導体素子21の損失熱量は流動する冷媒3に
伝えられる。勿論このままでもある程度の冷却が行われ
るが、高周波電流を圧電振動子11に印加すると、圧電
振動子11は高周波振動を生じ、この振動は冷媒二に与
えられ、冷媒中を伝搬して半導体素子に達する。この高
周波振動によって半導体素子の伝熱面の表面の冷媒の状
態に乱れが生じ、その熱伝達が向上する。
第1図の構造では各半導体素子21ごとに1個の圧電振
動子11を対応させて設置しているが、1個の圧電振動
子11を複数個の半導体素子21に対応させてもよいし
、またこの逆でもよい、第2図は異なる実施例を示し、
圧電振動子が設置された基台が容器4の一部を形成して
いる。これによって冷却装置が小型化される。冷却の動
作原理は第1図と同様である。
第3図は更に異なる実施例を示す、第1図および第2図
の実施例は冷媒循環のために外部の動力を必要としたが
、この実施例では冷媒循環のための外部の動力は全く不
要である。第3図は、第1図、第2図と同様に、被冷却
体が半導体!J買の場合の冷却装置の断面図である。2
は被冷却体の半導体装置で基板22に半導体素子21が
取り付けられている。圧T4振動子11は基台12に設
置され、被冷却体の半導体素子21に対向して配置され
ている。
これらは冷媒液31に浸漬され、これらが密閉された容
器4内に冷媒の液面上部に空間部41を残して収納され
ている。この空間部41には熱交換部5が設けられる。
熱交換部5は第3図のように熱交換器を取り付けてもよ
いし、その交換熱量の大きさによっては容器4の放熱作
用のみで充分な場合もある。冷媒3は電気絶縁性の高い
冷媒、例えば、フルオロカーボンが用いられる。この冷
媒3は容器4内では冷媒液31と冷媒環気32の2相に
なって存在する。
半導体素子21の損失熱量は冷媒液31に伝えられ、冷
媒液31は沸騰を生じ冷媒環気31となり容器4の空間
部41に集まる。この冷媒環気32は熱交換部5によっ
て冷却され再び冷媒液31になって容器4の底部にもど
る。二のようにして半導体素子の冷却が行われる。
高周波電流を圧電振動子11に印加すると、圧電振動子
11は高周波振動を生じ、この振動は冷媒31に与えら
れ、冷媒中を伝搬して半導体素子に達する。この高周波
振動によって、半導体素子の伝熱面の表面の冷媒の状態
に乱れが生じ、その熱伝達が同上する。
第4図は異なる実施例を示し、圧電振動子11が設置さ
れた基台が密閉容器4の一部を形成している。これによ
って、冷却装置が小型化される。冷却の動作原理は第3
図と同様である。
第5図は更に異なる実施例を示し、圧電振動子11に共
振子13が付加されている。この共振子13は圧電振動
子の振動周波数に共振し、かつ指向性を有しており、振
動のエネルギーを被冷却体の半導体素子21に集中させ
、半導体素子21から冷媒液31への熱伝達がさらに向
上する。第5図は第3図の実施例に共振子13を付加し
た場合を示しているが、他の第1図、第2図および第4
図の実施例にも適用できる。
〔発明の効果〕
本発明の冷媒浸漬冷却方式の電子機器の冷却装置では、
被冷却体の電子機器に対向して圧電振動子をおき、冷媒
に高周波振動を与えることで、その熱伝達を同上したの
で、圧電振動子励磁用のごく小さいエネルギーで熱伝達
を向上でき、実験の結果では熱伝達率として50〜10
0%向上することができた。また、それに応じて装置の
小型化が可能となった。
【図面の簡単な説明】
第1図は本発明の一実施例の電子機器の冷却装置の断面
図、第2図、第3図、第4図および第5図はそれぞれ本
発明の異なる実施例の電子機器の冷却装置の断面図であ
る。 11:圧電振動子、12:基台、13:共振子、2:半
導体装置(被冷却体の電子機器)、21:半導体素子、
22:基板、3:冷媒、4:容器、41:空間≦y 第1肥 °第2図 〕 22暮張 第3図 第4胆 第デ図

Claims (1)

  1. 【特許請求の範囲】 1)被冷却体の電子機器と、基台に設置され前記電子機
    器と対向して配置された1個またはそれ以上の圧電振動
    子とが電気絶縁性の冷媒中に浸漬され、これらが容器内
    に収納され、前記冷媒を外部の動力で循環し、循環する
    この冷媒に前記圧電振動子により高周波振動を与えなが
    ら被冷却体の電子機器を冷却することを特徴とする電子
    機器の冷却装置。 2)請求項1)記載の電子機器の冷却装置において、1
    個またはそれ以上の圧電振動子が設置、された基台が容
    器の一部を形成していることを特徴とする電子機器の冷
    却装置。 3)被冷却体の電子機器と、基台に設置され前記電子機
    器と対向して配置された1個またはそれ以上の圧電振動
    子とが電気絶縁性の冷媒中に浸漬され、これらが密閉さ
    れた容器内に冷媒の液面上部に空間部を残して収納され
    、この空間部に熱交換部が設けられ、前記圧電振動子に
    より冷媒に高周波振動を与えながら被冷却体の電子機器
    を冷却することを特徴とする電子機器の冷却装置。 4)請求項3)記載の電子機器の冷却装置において、1
    個またはそれ以上の圧電振動子が設置された基台が密閉
    された容器の一部を形成していることを特徴とする電子
    機器の冷却装置。 5)請求項1)、2)、3)または4)記載の電子機器
    の冷却装置において、基台に設置された1個またはそれ
    以上の圧電振動子にその振動周波数に共振し指向性を有
    する共振子が付加されたことを特徴とする電子機器の冷
    却装置。
JP6043790A 1989-12-05 1990-03-12 電子機器の冷却装置 Pending JPH03224256A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6043790A JPH03224256A (ja) 1989-12-05 1990-03-12 電子機器の冷却装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-315655 1989-12-05
JP31565589 1989-12-05
JP6043790A JPH03224256A (ja) 1989-12-05 1990-03-12 電子機器の冷却装置

Publications (1)

Publication Number Publication Date
JPH03224256A true JPH03224256A (ja) 1991-10-03

Family

ID=26401507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6043790A Pending JPH03224256A (ja) 1989-12-05 1990-03-12 電子機器の冷却装置

Country Status (1)

Country Link
JP (1) JPH03224256A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014016145A (ja) * 2012-07-05 2014-01-30 Yang Tai He 熱伝達装置
CN106229304A (zh) * 2016-08-05 2016-12-14 上海交通大学 基于逆压电效应的3d芯片封装冷却结构
JP2018018857A (ja) * 2016-07-25 2018-02-01 富士通株式会社 液浸冷却装置、液浸冷却システム、及び液浸冷却装置の制御方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014016145A (ja) * 2012-07-05 2014-01-30 Yang Tai He 熱伝達装置
JP2018018857A (ja) * 2016-07-25 2018-02-01 富士通株式会社 液浸冷却装置、液浸冷却システム、及び液浸冷却装置の制御方法
US10743438B2 (en) 2016-07-25 2020-08-11 Fujitsu Limited Liquid cooling device, liquid cooling system, and control method of liquid cooling device
CN106229304A (zh) * 2016-08-05 2016-12-14 上海交通大学 基于逆压电效应的3d芯片封装冷却结构

Similar Documents

Publication Publication Date Title
CA1115822A (en) Cooling tunnels for semiconductor devices
US5305184A (en) Method and apparatus for immersion cooling or an electronic board
US6243268B1 (en) Cooled IC chip modules with an insulated circuit board
US7489034B2 (en) Integrated circuit cooling system and method
JPH0334562A (ja) 電子デバイスの温度制御装置
JPH0637219A (ja) パワー半導体装置の冷却装置
An et al. 3D numerical analysis of two-phase immersion cooling for electronic components
WO2022132581A1 (en) An immersion cooling system
JP2023531889A (ja) 発熱コンポーネントの熱マネジメントを改善するシステム及び方法
JPH03224256A (ja) 電子機器の冷却装置
CN110062565A (zh) 基于热电制冷技术的均热板加固服务器高效散热装置及方法
JPH02114597A (ja) 電子素子の冷却方法
JPH04147657A (ja) 電子部品冷却機構
CN207235341U (zh) 基于终端的散热结构及终端
US11732982B2 (en) Heat sinks with vibration enhanced heat transfer
JPS6154654A (ja) 液冷装置
JPH04372159A (ja) 半導体装置の冷却装置及び冷却方法
JPH04151860A (ja) 電子装置の冷却装置
JPH0533015Y2 (ja)
JPH0320070B2 (ja)
JP3362005B2 (ja) 半導体電力変換装置
JPS59232448A (ja) 液冷容器
JPS63181453A (ja) 半導体装置の冷却方法
JPH0321093B2 (ja)
JPH1137599A (ja) 冷却装置およびその冷却方法