JPH03222483A - Infrared ray detecting element - Google Patents

Infrared ray detecting element

Info

Publication number
JPH03222483A
JPH03222483A JP2018724A JP1872490A JPH03222483A JP H03222483 A JPH03222483 A JP H03222483A JP 2018724 A JP2018724 A JP 2018724A JP 1872490 A JP1872490 A JP 1872490A JP H03222483 A JPH03222483 A JP H03222483A
Authority
JP
Japan
Prior art keywords
wiring
photoconductive
cells
individual
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018724A
Other languages
Japanese (ja)
Inventor
Akinaga Yamamoto
晃永 山本
Masao Nakayama
雅夫 中山
Takeru Tsujimura
辻村 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2018724A priority Critical patent/JPH03222483A/en
Publication of JPH03222483A publication Critical patent/JPH03222483A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the ratio of openings by connecting at least one of a pair of electrodes of a plurality of photoconductive cells to a wiring layer through openings formed at an insulating layer, thereby laying wirings under the cells. CONSTITUTION:An SiO2 film 11 is formed on a silicon substrate 10, and individual wirings 12 and a common wiring 13 are laid on the film 11. Here, the wirings 12 are so formed that individual contact pads 14 are formed under one ends of photoconductive cells 2, and the wiring 13 is so formed as to form a common contact pad 15 under the other end of the cells 2. The wirings 12, the wiring 13, the pads 14 and the pad 15 are buried in an SiO2 film 18. Accordingly, a wiring layer and the cells 2 are separated by an insulating film. Thus, the wirings are laid under the cells to obtain an infrared ray detecting element for improving the ratio of the openings.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光導電型の赤外線検出素子に関するもので、特
に光導電セルをマトリクス状あるいはアレイ状に集積し
た素子に使用される。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a photoconductive type infrared detection element, and is particularly used for an element in which photoconductive cells are integrated in a matrix or array.

〔従来の技術〕[Conventional technology]

Pb S、Pb Seなどの光導電セルを用いた赤外線
検出素子が知られている。第5図は4X4のマトリクス
構成とした従来例を示す。図示の通り、基板1上には4
X4−16個の光導電セル2が配置され、各光導電セル
2の一方側には共通電極3が設けられると共に、他方側
には個別電極4が設けられる。共通電極3は共通配線5
に接続され、個別電極4は個別配線6に接続され、これ
らを介して光導電セル2にバイアスが印加される。
Infrared detection elements using photoconductive cells such as PbS and PbSe are known. FIG. 5 shows a conventional example with a 4×4 matrix configuration. As shown, there are 4
X4-16 photoconductive cells 2 are arranged, and each photoconductive cell 2 is provided with a common electrode 3 on one side and an individual electrode 4 on the other side. Common electrode 3 is common wiring 5
The individual electrodes 4 are connected to individual wires 6, and a bias is applied to the photoconductive cell 2 via these.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来のようにして光導電セルをマトリク
ス状あるいはアレイ状に配設すると、光導電セルの数が
多くなるにつれて共通配線5および個別配線6の占める
範囲が大きくなる。例えば、第5図の例では個別配線6
が光導電セル2の間から外部に出されるために、上下の
方向で光導電セル2の相互間に広い不感エリアが現れる
。このため、検出素子としての開口率が大きく低下する
欠点があった。
However, when photoconductive cells are conventionally arranged in a matrix or array, as the number of photoconductive cells increases, the area occupied by the common wiring 5 and the individual wiring 6 increases. For example, in the example shown in Fig. 5, the individual wiring 6
is emitted to the outside from between the photoconductive cells 2, so that a wide dead area appears between the photoconductive cells 2 in the vertical direction. For this reason, there was a drawback that the aperture ratio as a detection element was greatly reduced.

一方、第5図に示すような構成をとるときには、光導電
材料を基板の全面に被着した後にセルごとにこれを分離
し、この上から電極および配線を形成するか、または基
板上に電極および配線を形成した後、この上に光導電材
料を被着してセルごとに分離するか、いずれか一方の手
法を採る必要がある。しかし、前者の手法では微細な配
線パターンの形成が難しく、後者の手法ではイオンエツ
チングの様な方法でセルを分離できない(化学的エツチ
ングが必要になる)ので、光導電特性の劣化は避けられ
ない。
On the other hand, when adopting the configuration shown in Fig. 5, the photoconductive material is deposited on the entire surface of the substrate and then separated into individual cells, and electrodes and wiring are formed thereon, or electrodes and wiring are formed on the substrate. After forming the wiring and the wiring, it is necessary to apply a photoconductive material thereon and separate each cell, or to adopt one of two methods. However, with the former method, it is difficult to form fine wiring patterns, and with the latter method, cells cannot be separated using methods such as ion etching (chemical etching is required), so deterioration of photoconductive properties is unavoidable. .

本発明は上記のような欠点を解決することを目的として
いる。
The present invention aims to solve the above-mentioned drawbacks.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の赤外線検出素子は、少なくとも上面が絶縁性に
された基板と、この基板の上面に敷設された配線層と、
この配線層の上に形成された絶縁層と、この絶縁層の上
にマトリクス状もしくはアレイ状に配置された複数の光
導電セルとを備え、複数の光導電セルがそれぞれ有する
一対の電極のうち、少なくとも一方の電極は絶縁層に形
成された開口を介して配線層に接続されていることを特
徴とする。ここで、半導体基板の上面に絶縁膜を被着し
て基板を構成し、当該半導体基板に光導電セルの出力信
号を処理する回路を形成してもよい。
The infrared detecting element of the present invention includes a substrate having at least an insulating upper surface, a wiring layer laid on the upper surface of this substrate,
It comprises an insulating layer formed on this wiring layer, and a plurality of photoconductive cells arranged in a matrix or array on this insulating layer, and one of a pair of electrodes each of the plurality of photoconductive cells has. , at least one electrode is connected to a wiring layer through an opening formed in an insulating layer. Here, the substrate may be constructed by depositing an insulating film on the upper surface of the semiconductor substrate, and a circuit for processing the output signal of the photoconductive cell may be formed on the semiconductor substrate.

また、光導電セルがそれぞれ有する一対の電極のうちの
一方は、複数の光導電セル間で共通接続し、配線層の少
なくとも一部は、絶縁層を介して光導電セルの下側に敷
設してもよい。
Further, one of the pair of electrodes each of the photoconductive cells has is commonly connected between the plurality of photoconductive cells, and at least a part of the wiring layer is laid below the photoconductive cells via an insulating layer. You can.

〔作用〕[Effect]

本発明の構成によれば、配線層と光導電セルが絶縁層に
よって分離される。このため、光導電セルの下に配線を
敷いて開口率を向上させ得る。
According to the configuration of the present invention, the wiring layer and the photoconductive cell are separated by the insulating layer. Therefore, wiring can be laid under the photoconductive cell to improve the aperture ratio.

〔実施例〕〔Example〕

以下、添付図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は実施例の構成を示し、同図(a)は平面図、同
図(b)はA−A線断面図である。シリコン基板10の
上面にはS iO2膜11が形成され、S s O2膜
11の上には個別配線12、共通配線13が敷設されて
いる。ここで、個別配線12は光導電セル2の一方の端
部下側で個別コンタクトパッド14をなすように成形さ
れ、共通配線13は光導電セル2の他方の端部下側で共
通コンタクトバッド15をなすように成形されている。
FIG. 1 shows the configuration of an embodiment, with FIG. 1(a) being a plan view and FIG. 1(b) being a sectional view taken along the line A--A. A SiO2 film 11 is formed on the upper surface of the silicon substrate 10, and individual wirings 12 and a common wiring 13 are laid on the SsO2 film 11. Here, the individual wiring 12 is formed to form an individual contact pad 14 under one end of the photoconductive cell 2, and the common wiring 13 is formed to form a common contact pad 15 under the other end of the photoconductive cell 2. It is shaped like this.

なお、個別配線12、共通配線13、個別コンタクトパ
ッド14および共通コンタクトバッド15は、共にアル
ミニウム等で一体形成されている。
Note that the individual wiring 12, the common wiring 13, the individual contact pads 14, and the common contact pad 15 are all integrally formed of aluminum or the like.

個別コンタクトバッド14および共通コンタクトバッド
15の上側には、個別電極16および共通電極17が例
えば金により形成され、この個別電極16および共通電
極17の上面を除いて、個別配線12、共通配線13、
個別コンタクトバッド14および共通コンタクトバッド
15は5102膜18に埋め込まれる。そして、個別電
極16および共通電極17にオーミック接触するように
光導電セル2が設けられ、その上に保護膜19が被着さ
れる。
Above the individual contact pads 14 and common contact pads 15, individual electrodes 16 and common electrodes 17 are formed of, for example, gold.
Individual contact pads 14 and common contact pads 15 are embedded in 5102 film 18. A photoconductive cell 2 is provided in ohmic contact with the individual electrodes 16 and the common electrode 17, and a protective film 19 is deposited thereon.

上記の実施例では、個別配線12および共通配線13を
S 102膜18によって光導電セル2から分離し、か
つ個別配線12および共通配線13を光導電セル2の下
側に敷設している。このため、個別配線12および共通
配線13を形成するためのスペースが、光導電セル2の
相互間だけではなくなるので、複数の光導電セル2を集
積させることが可能になる。また、シリコン基板10の
上に赤外線検出素子を構成しているので、このシリコン
基板10に信号処理回路を形成できる。具体的には、光
導電セル2に一定バイアスをかけるバイアス回路、光導
電セル2の出力信号をアナログ、ディジタル処理する回
路(増幅回路、A/D変換回路、マルチプレクサ等)を
設けることが可能になる。実施例の工程は、いわゆるシ
リコンウェーハプロセスを適用でき、従って100μm
×100μm程度の光導電セル2を、120〜130μ
mピッチで集積できる。
In the above embodiment, the individual wiring 12 and the common wiring 13 are separated from the photoconductive cell 2 by the S102 film 18, and the individual wiring 12 and the common wiring 13 are laid under the photoconductive cell 2. Therefore, the space for forming the individual wiring 12 and the common wiring 13 is not limited to between the photoconductive cells 2, so that it becomes possible to integrate a plurality of photoconductive cells 2. Further, since the infrared detection element is formed on the silicon substrate 10, a signal processing circuit can be formed on this silicon substrate 10. Specifically, it is possible to provide a bias circuit that applies a constant bias to the photoconductive cell 2, and a circuit (amplifier circuit, A/D conversion circuit, multiplexer, etc.) that processes the output signal of the photoconductive cell 2 in analog and digital form. Become. The process of the example can be applied to a so-called silicon wafer process, and therefore a 100 μm
×100μm photoconductive cell 2, 120~130μm
Can be integrated with m pitch.

次に、上記実施例に係る赤外線検出素子の製造工程を、
第2図の素子断面図により説明する。
Next, the manufacturing process of the infrared detection element according to the above example is as follows:
This will be explained with reference to a cross-sectional view of the element shown in FIG.

まず、第2図(a)に示すように、シリコン基板10の
上面にCVD法等により5102膜11を形成し、フォ
トマスク(図示せず)を用いてリフトオフ法でアルミニ
ウム配線をパターン形成し、これを個別配線12、共通
配線13、個別コンタクトバッド14および共通コンタ
クトバッド15とする。なお、配線材にはニッケルなど
を用いてもよい。この工程において、配線形成は平坦な
5IO2膜11の上面に対して行なわれるので、十分な
微細パターンとすることができる。次いで、CVD法等
を用いて全面にS i O2膜18を被着し、上記の配
線材を埋め込む(第2図(b)図示)。
First, as shown in FIG. 2(a), a 5102 film 11 is formed on the upper surface of a silicon substrate 10 by a CVD method or the like, and an aluminum wiring is patterned by a lift-off method using a photomask (not shown). These are designated as individual wiring 12, common wiring 13, individual contact pad 14, and common contact pad 15. Note that nickel or the like may be used for the wiring material. In this step, since wiring is formed on the flat upper surface of the 5IO2 film 11, a sufficiently fine pattern can be obtained. Next, a SiO2 film 18 is deposited on the entire surface using a CVD method or the like, and the above wiring material is embedded (as shown in FIG. 2(b)).

次に、フォトマスク(図示せ−ず)を用いて5102膜
18を選択的にエツチングし、個別コンタクトバッド1
4および共通コンタクトバッド15の上面のみを露出さ
せる(同図(c)図示)。次に、金メツキを施して個別
コンタクトバッド14、共通コンタクトバッド15の上
面に個別電極16および共通電極17を埋め込み、その
上の全面にpb s、pb Seなどの光導電材料を被
着する。
Next, the 5102 film 18 is selectively etched using a photomask (not shown), and the individual contact pads 18 are etched.
4 and the upper surfaces of the common contact pad 15 are exposed (as shown in FIG. 4(c)). Next, the individual electrodes 16 and the common electrode 17 are buried in the upper surfaces of the individual contact pads 14 and the common contact pads 15 by gold plating, and a photoconductive material such as PB S or PB Se is deposited on the entire surface thereof.

しかる後、この光導電材料膜をエツチングによりセルご
とに分離し、光導電セル2を形成する(同図(d)図示
)。この工程において、光導電材料膜のエツチングは、
個別配線12、共通配線13などが8102膜18に埋
め込まれた状態で行なわれるので、例えばイオンエツチ
ングを用いて光導電セル2ごとに分離することができ、
従って化学的エツチングによって光導電セル2の特性が
劣化することもなくなる。最後に、光導電セル2の活性
化をした後に、全面に保護膜19を被着すると、第1図
の赤外線検出素子が完成する。
Thereafter, this photoconductive material film is separated into individual cells by etching to form photoconductive cells 2 (as shown in FIG. 4(d)). In this process, the photoconductive material film is etched by
Since the individual wiring 12, the common wiring 13, etc. are buried in the 8102 film 18, it is possible to separate each photoconductive cell 2 using, for example, ion etching.
Therefore, the characteristics of the photoconductive cell 2 are not deteriorated by chemical etching. Finally, after activating the photoconductive cell 2, a protective film 19 is applied over the entire surface, thereby completing the infrared detecting element shown in FIG.

次に、上記実施例の変形例を第3図および第4図により
説明する。
Next, a modification of the above embodiment will be explained with reference to FIGS. 3 and 4.

シリコン基板10に形成された5IO2膜11上には、
水平方向に延びる複数本の水平配線21が形成され、そ
の上に、一端の下側と他端の上側に水平電極22と垂直
電極23が形成された光導電セル2が設けられる。そし
て、その上には垂直方向に延びる複数本の垂直配線24
が敷設される。
On the 5IO2 film 11 formed on the silicon substrate 10,
A plurality of horizontal wirings 21 extending in the horizontal direction are formed, and a photoconductive cell 2 is provided thereon, in which a horizontal electrode 22 and a vertical electrode 23 are formed on the lower side of one end and the upper side of the other end. A plurality of vertical wiring lines 24 extending in the vertical direction are disposed above it.
will be laid down.

ここで、水平配線21と水平電極22の間、垂直電極2
3と垂直配線24の間は共に電気的に接続され、これら
は図示しない5102膜に埋め込まれている。そして、
上面に保護膜(図示せず)が形成され、変形例の赤外線
検出素子が完成されている。
Here, between the horizontal wiring 21 and the horizontal electrode 22, the vertical electrode 2
3 and the vertical wiring 24 are both electrically connected, and these are embedded in a 5102 film (not shown). and,
A protective film (not shown) is formed on the upper surface, and the modified infrared detection element is completed.

第4図は上記変形例の全体的回路構成を示している。FIG. 4 shows the overall circuit configuration of the above modification.

図示の通り、水平配線21は走査回路31に接続され、
垂直配線24は読出回路32に接続される。ここで、光
導電セル2は信号電荷をチャージするためのにゴンデン
サ33が並列接続されるが、これはシリコン基板10中
に例えばpnダイオードを形成することで得られる。こ
の変形例によれば、走査回路31によって水平配線21
を1本づつ走査することにより、ライン単位で検出信号
を読出回路32に読み出すことができる。
As illustrated, the horizontal wiring 21 is connected to the scanning circuit 31,
Vertical wiring 24 is connected to readout circuit 32 . Here, the photoconductive cell 2 is connected in parallel with a capacitor 33 for charging signal charges, which can be obtained by forming, for example, a pn diode in the silicon substrate 10. According to this modification, the horizontal wiring 21 is
By scanning the lines one by one, the detection signal can be read out to the readout circuit 32 line by line.

〔発明の効果〕〔Effect of the invention〕

以上、説明した通り本発明の構成によれば、配線層と光
導電セルが絶縁膜によって分離される。
As described above, according to the configuration of the present invention, the wiring layer and the photoconductive cell are separated by the insulating film.

このため、光導電セルの下に配線を敷いて開口率を向上
させ得る。また本発明の赤外線検出素子は、全体のサイ
ズを十分に小型化できるので、例えばペルチェ電子冷却
器を付設することにより、更に特性の向上を図ることが
可能になる。
Therefore, wiring can be laid under the photoconductive cell to improve the aperture ratio. Furthermore, since the infrared detecting element of the present invention can be sufficiently miniaturized in its overall size, it is possible to further improve the characteristics by adding, for example, a Peltier electronic cooler.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る赤外線検出素子の構成図
、第2図は本発明の実施例に係る赤外線検出素子の製造
工程を示す断面図、第3図は実施例の変形例に係る赤外
線検出素子の斜視図、第4図はその回路構成図、第5図
は従来例に係る赤外線検出素子の構成図である。 10・・・シリコン基板、11・・・5102膜、12
・・・個別配線、13・・・共通配線、14・・・個別
コンタクトパッド、15・・・共通コンタクトパッド、
16・・・個別電極、17・・・共通電極、18・・・
5102膜、19・・・保護膜。
Fig. 1 is a configuration diagram of an infrared detection element according to an embodiment of the present invention, Fig. 2 is a sectional view showing the manufacturing process of an infrared detection element according to an embodiment of the invention, and Fig. 3 is a modification of the embodiment. FIG. 4 is a perspective view of such an infrared detection element, FIG. 4 is a circuit configuration diagram thereof, and FIG. 5 is a configuration diagram of a conventional infrared detection element. 10... Silicon substrate, 11... 5102 film, 12
...Individual wiring, 13...Common wiring, 14...Individual contact pad, 15...Common contact pad,
16...Individual electrode, 17...Common electrode, 18...
5102 film, 19...protective film.

Claims (1)

【特許請求の範囲】 1、少なくとも上面が絶縁性にされた基板と、この基板
の上面に敷設された配線層と、この配線層の上に形成さ
れた絶縁層と、この絶縁層の上にマトリクス状もしくは
アレイ状に配置された複数の光導電セルとを備え、前記
複数の光導電セルがそれぞれ有する一対の電極のうち、
少なくとも一方の電極は前記絶縁層に形成された開口を
介して前記配線層に接続されていることを特徴とする赤
外線検出素子。 2、前記基板は半導体基板の上面に絶縁膜を被着して構
成され、当該半導体基板には前記光導電セルの出力信号
を処理する回路が形成されている請求項1記載の赤外線
検出素子。 3、前記光導電セルがそれぞれ有する一対の電極のうち
の一方は、前記複数の光導電セル間で共通接続されてい
る請求項1記載の赤外線検出素子。 4、前記配線層の少なくとも一部は、前記絶縁層を介し
て前記光導電セルの下側に敷設されている請求項1記載
の赤外線検出素子。
[Claims] 1. A substrate having at least an insulating upper surface, a wiring layer laid on the upper surface of this substrate, an insulating layer formed on this wiring layer, and an insulating layer formed on this insulating layer. A plurality of photoconductive cells arranged in a matrix or an array, and among a pair of electrodes each of the plurality of photoconductive cells has,
An infrared detecting element, wherein at least one electrode is connected to the wiring layer through an opening formed in the insulating layer. 2. The infrared detecting element according to claim 1, wherein the substrate is constructed by depositing an insulating film on the upper surface of a semiconductor substrate, and a circuit for processing an output signal of the photoconductive cell is formed on the semiconductor substrate. 3. The infrared detecting element according to claim 1, wherein one of the pair of electrodes each of the photoconductive cells has is commonly connected between the plurality of photoconductive cells. 4. The infrared detecting element according to claim 1, wherein at least a portion of the wiring layer is laid below the photoconductive cell with the insulating layer interposed therebetween.
JP2018724A 1990-01-29 1990-01-29 Infrared ray detecting element Pending JPH03222483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018724A JPH03222483A (en) 1990-01-29 1990-01-29 Infrared ray detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018724A JPH03222483A (en) 1990-01-29 1990-01-29 Infrared ray detecting element

Publications (1)

Publication Number Publication Date
JPH03222483A true JPH03222483A (en) 1991-10-01

Family

ID=11979615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018724A Pending JPH03222483A (en) 1990-01-29 1990-01-29 Infrared ray detecting element

Country Status (1)

Country Link
JP (1) JPH03222483A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10847567B2 (en) 2017-01-12 2020-11-24 Mitsubishi Electric Corporation Infrared sensor device including infrared sensor substrate and signal processing circuit substrate coupled to each other

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10847567B2 (en) 2017-01-12 2020-11-24 Mitsubishi Electric Corporation Infrared sensor device including infrared sensor substrate and signal processing circuit substrate coupled to each other

Similar Documents

Publication Publication Date Title
US4555720A (en) Infra-red radiation detectors and their manufacture
JPS62101242U (en)
JPH056353B2 (en)
EP0345047B1 (en) Thermal imaging device
US7232998B2 (en) Bolometer-type infrared solid-state image sensor
US5367166A (en) Infrared detector devices and their manufacture
JP2566210B2 (en) Semiconductor device
US5077474A (en) Thermal imaging device
JPH03222483A (en) Infrared ray detecting element
US4025793A (en) Radiation detector with improved electrical interconnections
US6040579A (en) Thermoelectric sensor
JPS6331161A (en) Photoelectric conversion device
JPH06288846A (en) Matrix type surface pressure distribution detecting element
JP3940804B2 (en) Hybrid semiconductor device and manufacturing method thereof
JP3152005B2 (en) Manufacturing method of semiconductor acceleration sensor
JPS63308362A (en) High density optical detector mosaic array assembly and its manufacture
JPH04342177A (en) Thermopile
JPS61287263A (en) Solid-state image pickup device and manufacture thereof
JP2569523B2 (en) Solid-state imaging device
JPS6041728Y2 (en) semiconductor equipment
JPS63122166A (en) Solid-state image pickup device
JPH08306701A (en) Semiconductor device
JPS61121348A (en) Semiconductor device
JP2531435B2 (en) Solid-state imaging device and manufacturing method thereof
JP2869978B2 (en) Semiconductor device