JPH03219012A - Production of high tensile steel reduced in yield ratio and having superior weldability - Google Patents

Production of high tensile steel reduced in yield ratio and having superior weldability

Info

Publication number
JPH03219012A
JPH03219012A JP26637890A JP26637890A JPH03219012A JP H03219012 A JPH03219012 A JP H03219012A JP 26637890 A JP26637890 A JP 26637890A JP 26637890 A JP26637890 A JP 26637890A JP H03219012 A JPH03219012 A JP H03219012A
Authority
JP
Japan
Prior art keywords
less
steel
temperature
yield ratio
high tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26637890A
Other languages
Japanese (ja)
Inventor
Kiyoshi Uchida
清 内田
Yutaka Oka
裕 岡
Shozaburo Nakano
中野 昭三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Publication of JPH03219012A publication Critical patent/JPH03219012A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a high tensile steel reduced in yield ratio and having superior weldability by hot rolling a steel in which components and PCM are specified, respectively, and successively subjecting this steel to rapid cooling, air cooling, heating and holding at two phase region temp., hardening, and tempering under respectively specified conditions. CONSTITUTION:A steel having a composition which consists of, by weight, 0.03-0.10% C, 0.05-0.60% Si, 0.60-2.00% Mn, 0.10-0.50% Mo, <=0.030% P, <=0.020% S, further one or more kinds among <=1.00% Ni, <=0.70% Ci, <=0.70% Cu, <=0.06% V, <=0.05% Nb, and <=0.0050% B, and the balance essentially Fe and in which PCM(%) represented by PCM(%)=C+Si/30+Mn/20+Ni/60+Cr/20+Cu/20+Mo/15 +V/10+5B is regulated to 0.16-0.21 is hot rolled, cooled rapidly down to 300-500 deg.C without delay, and air-cooled to room temp. Subsequently, the steel is heated and held at a two phase region temp. between the Ac3 and the Ac1 transformation point, hardened at a cooling velocity not lower than air cooling velocity, and further tempered at 450-600 deg.C. By this method, the high tensile steel reduced in yield ratio as well as in welding crack sensitivity can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、建築、橋梁、タンクなどの鋼構造物に利用さ
れる溶接割れ感受性が低く、降伏比が80%以下、引張
強さが60kgf/lj以上の低降伏比高張力鋼の製造
方法に関するものである。
Detailed Description of the Invention <Industrial Application Field> The present invention is used for steel structures such as buildings, bridges, and tanks, and has low weld crack susceptibility, a yield ratio of 80% or less, and a tensile strength of 60 kgf. The present invention relates to a method for producing high tensile strength steel with a low yield ratio of /lj or more.

〈従来の技術〉 建築、橋梁、タンクなどの鉄骨構造物の大型化に伴い使
用される鋼材には高強度化、厚肉化が求められている。
<Conventional Technology> As steel structures such as buildings, bridges, and tanks become larger, steel materials used are required to have higher strength and thicker walls.

−・方、構造物の安全性、すなわち脆性破壊防止の観点
から降伏比の低いこと並びに溶接性の良いことが求めら
れている。
- On the other hand, from the viewpoint of structural safety, that is, prevention of brittle fracture, a low yield ratio and good weldability are required.

しかしながら、一般に高強度化とともに降伏比は上昇し
、溶接性は低下する傾向にあり、引張強さが60kgf
/m11以上の高張力鋼では80%以下の低降伏比と良
好な溶接性を兼備させることは容易ではない。すなわら
従来の低降伏比60キロ鋼は溶接割れ感受性(PCM−
0,24%程度)が高いため、溶接施工時には100℃
程度の予熱を必要とする。
However, in general, as strength increases, yield ratio increases and weldability tends to decrease, and tensile strength of 60 kgf
/m11 or higher, it is not easy to achieve both a low yield ratio of 80% or less and good weldability. In other words, conventional low yield ratio 60 kg steel has a high weld cracking susceptibility (PCM-
0.24%) is high, the temperature is 100℃ during welding work.
Requires some preheating.

従来の低降伏比高張力鋼の製造方法としては、フェライ
トとオーステナイトの二相域温度に再加熱してから焼入
れる方法が知られている。この方法は低降伏比化には「
効であるが、炭素当鼠が0.35〜0.50%と高いた
め溶接性があまり良くない。
As a conventional method for producing high-strength steel with a low yield ratio, a method is known in which the steel is reheated to a temperature in the two-phase region of ferrite and austenite and then quenched. This method is effective for lowering the yield ratio.
However, since the carbon content is high at 0.35 to 0.50%, weldability is not very good.

この方法で製造した低降伏比鋼の一例が日本鋼管技報N
o、122(1988)の第9頁に示されているが、F
eq、 0.45%(PCl30.24%)からなる組
成で、引張強さ60kgf/*j以上、降伏比で80%
以下が得られているものの、溶接性はY割れ防止予熱温
度で100℃と高い。このように従来法では溶接施工で
予熱を必要としない低降伏比60キロ鋼が得られなかっ
た。
An example of low yield ratio steel manufactured using this method is published in Nippon Kokan Giho No.
o, 122 (1988), page 9, but F.
eq, 0.45% (PCl30.24%), tensile strength 60kgf/*j or more, yield ratio 80%
Although the following was obtained, the weldability was high at 100°C at the preheating temperature to prevent Y cracking. As described above, with the conventional method, it was not possible to obtain a low yield ratio 60 kg steel that did not require preheating during welding.

〈発明が解決しようとする課題〉 このような現状に’Xi ’iで本発明はなされたもの
で、溶接施工において予熱を必要としない良好な溶接性
を有し、かつトイ伏比で80%以下、引張強さで60k
gf/−以上の低降伏比高張力鋼の製造方法を(に案す
ることを目的とするものである。
<Problems to be solved by the invention> In view of the current situation, the present invention was developed in 'Xi'i. Below, the tensile strength is 60k
The purpose of the present invention is to propose a method for producing high-strength steel with a low yield ratio of gf/- or more.

く課題を解決するための下段〉 本発明者らは、溶接割れ感受性が低く、かつ低降伏比を
有する高張力鋼の製造方法について鋭意研究をかさねた
結果、C含有量を低減し合金元素を添加した成分系で、
二(■焼入れ前の組織を若干粗い組織として、焼入れ焼
もどし処理を施すことにより達成した。
The present inventors have conducted intensive research into a method for manufacturing high-strength steel that has low weld cracking susceptibility and a low yield ratio. With the added ingredients,
(2) Achieved by making the structure before quenching slightly coarser and subjecting it to quenching and tempering.

すなわち、本発明は、重量比にて、C: 0.03〜0
.10%、Si : 0.05〜0.60%、Mn :
 0.60〜2.00%、Mo : 0.10〜0.5
0%、P : 0.030%以下、S : 0.020
%以下を含み、さらにNi : 1.00%以下、Cr
 : o、7゜%以下、Cu : 0.70%以下、V
 : 0.06%以下、Nb:0.05%以下及びB 
: 0.0050%以下のうちから選ばれた一種以上を
含み、さらに必要に応してTi:0、003〜0.05
%を含み、残部が実質的にPeからなり、かつPcM(
%) = C+5i/30+Mn/20+Ni/60 
lCr / 20 + Cu / 20←門o/ 15
」−V / 10+ 5 Bが0.16〜0.21%で
ある鋼を熱間圧延後、直ちに300〜550 ℃まで象
冷するか、もしくは空冷後Ac3点以上の温度に再加熱
した後300〜550 ℃まで2冷したのち、室温まで
空冷し、さらにAc、3〜^C1変態点間の二相域温度
に加熱保持した後、空冷以上の冷却速度で焼入れし、そ
の後450〜600℃の温度で焼もどしを行うことを特
徴とする溶接性の良好な低降伏比高張力鋼の製造方法で
ある。
That is, in the present invention, in terms of weight ratio, C: 0.03 to 0
.. 10%, Si: 0.05-0.60%, Mn:
0.60-2.00%, Mo: 0.10-0.5
0%, P: 0.030% or less, S: 0.020
% or less, and further includes Ni: 1.00% or less, Cr
: o, 7% or less, Cu: 0.70% or less, V
: 0.06% or less, Nb: 0.05% or less and B
: Contains one or more selected from 0.0050% or less, and further includes Ti: 0, 003 to 0.05 as necessary.
%, the remainder consists essentially of Pe, and PcM (
%) = C+5i/30+Mn/20+Ni/60
lCr / 20 + Cu / 20← Gate o / 15
-V/10+5 After hot rolling steel with a B content of 0.16 to 0.21%, it is immediately subjected to elephant cooling to a temperature of 300 to 550 °C, or after air cooling, it is reheated to a temperature of Ac3 or higher and then heated to a temperature of 300 °C or higher. After cooling to ~550 °C for 2 times, air cooling to room temperature, and further heating and holding at a temperature in the two-phase region between Ac and 3~C1 transformation points, quenching at a cooling rate higher than air cooling, and then cooling at 450 to 600 °C. This is a method for producing a low yield ratio, high tensile strength steel with good weldability, which is characterized by performing tempering at a high temperature.

〈作 用〉 以下、本発明について詳細に説明する。<For production> The present invention will be explained in detail below.

まず鋼の組成の限定理由について述べる。First, we will discuss the reasons for limiting the composition of steel.

c:o、o3〜0.10% Cは高強度かつ低YRを得るために0.03%(重量%
以下同じ)以上必要であるが、0.10%を超えると溶
接割れ感受性が高くなるため0.03〜0.10%とし
た。
c: o, o3~0.10% C is 0.03% (wt%) to obtain high strength and low YR.
The same applies hereinafter) or more is necessary, but if it exceeds 0.10%, the susceptibility to weld cracking increases, so it is set at 0.03 to 0.10%.

Si : 0.05〜0.60% Siは脱酸剤として0.05%以上必要であるが、0.
65%を超えると溶接熱影響部の低温靭性を低下させる
ため、0.05〜0.60%とした。
Si: 0.05-0.60% Si is required as a deoxidizing agent in an amount of 0.05% or more, but 0.05% or more is required as a deoxidizing agent.
If it exceeds 65%, the low-temperature toughness of the weld heat-affected zone deteriorates, so it is set at 0.05 to 0.60%.

Mn : 0.60〜2.00% Mnは焼入性の確保、強度確保のため0.60%以上必
要であるが、2.00%を超える過剰の添加は溶接性を
低下させるため、0.60〜2.00%とした。
Mn: 0.60-2.00% Mn is required at 0.60% or more to ensure hardenability and strength, but excessive addition of more than 2.00% will reduce weldability, so .60 to 2.00%.

P :  0.030%以下、S :  0.020%
以下P、Sは鋼中に混入する不純物として不可避である
が、ともに溶接性、靭性、延性を阻害するため、それぞ
れ0.010%以下、0.020%以下に限定した。
P: 0.030% or less, S: 0.020%
Hereinafter, P and S are unavoidable as impurities mixed in steel, but since both impair weldability, toughness, and ductility, they are limited to 0.010% or less and 0.020% or less, respectively.

Mo : O,IO〜0.50% Moはオーステーノ・イト中に固ン容してオーステナイ
+の焼入性を高めるとともに、焼もどし時に析出し焼も
どし軟化抵抗を高め、強度上昇に寄与する元素であり、
0.10%以上を必要とするが、050%を超えての添
加は溶接性、延靭性を低下するので、0.10〜0.5
0%とした。
Mo: O, IO ~ 0.50% Mo is an element that solidifies in austenite and improves the hardenability of austenite, and also precipitates during tempering to increase tempering softening resistance and contribute to increased strength. and
0.10% or more is required, but addition of more than 0.50% reduces weldability and ductility, so 0.10 to 0.5
It was set to 0%.

さらに以上の成分系に加えて、所定の強度を得るための
下記の成分を一種以上添加することができる。
Furthermore, in addition to the above-mentioned component system, one or more of the following components can be added in order to obtain a predetermined strength.

Ni :  1.00%以下、Cr : 0.70%以
下、Cu : 0.70%以L V : 0.06%以
下、Nb : 0.05%以下及びT3: 0.005
0%以下。
Ni: 1.00% or less, Cr: 0.70% or less, Cu: 0.70% or more, L V: 0.06% or less, Nb: 0.05% or less, and T3: 0.005
Less than 0%.

いずれの元素も強度」−昇に有効であるが、過剰添加は
溶接性、延靭性を低下するので、それぞれの上限を上記
のとおりとした。なおNi、 Cuは溶接性、延靭性を
あまり低下しないが、Niは高価な元素であり1%超で
は経済性に問題があり、Cuは0.7%超では熱間加工
性を劣化させる。
Both elements are effective in increasing strength, but excessive addition deteriorates weldability and ductility, so the upper limits for each element were set as above. Although Ni and Cu do not significantly reduce weldability and ductility, Ni is an expensive element and if it exceeds 1% there is a problem in economic efficiency, and if Cu exceeds 0.7% it deteriorates hot workability.

さらに本発明においては、必要に応じてT1を下記の範
囲で添加することができる。
Furthermore, in the present invention, T1 can be added in the following range if necessary.

Ti :  0.003〜0.05% Tiは(α1〜T)二用域加熱時において、フェライト
地に分散するγを微細に分散させ、強度および降伏比を
上昇させる。所定の強度を確保するにはTi O,00
3%以上を必要とするが、Ti  0.05%を超えて
の添加は降伏比を高めるので0.003〜0.05%と
した。
Ti: 0.003 to 0.05% Ti finely disperses γ dispersed in the ferrite base during heating in the (α1 to T) dual range, thereby increasing the strength and yield ratio. To ensure the specified strength, TiO,00
Ti is required to be 3% or more, but since adding more than 0.05% increases the yield ratio, it is set to 0.003 to 0.05%.

さらに、本発明鋼は良好な焼入性を6育保するため、P
cM(%) −C+5i/30トMn / 20 + 
Cu / 20 ]−Cr/20+Ni/60+ V 
/IQ÷5Bを0.16〜0.21%の範囲に限定した
。PCHは小さいほど溶接割れ感受性が小さいが、予熱
フリーのためには0.21%以下が必要であるが、0.
16%以下では強度の確保ができなくなるため、PCl
4を0.16〜0.21%の範囲とした。
Furthermore, since the steel of the present invention has good hardenability, P
cM (%) -C+5i/30tMn/20+
Cu/20]-Cr/20+Ni/60+V
/IQ÷5B was limited to a range of 0.16 to 0.21%. The smaller the PCH, the lower the susceptibility to weld cracking, but 0.21% or less is required for free preheating, but 0.21% or less is required.
If it is less than 16%, strength cannot be ensured, so
4 was set in the range of 0.16 to 0.21%.

以上の成分系からなる鋼を通常の造塊または連鋳により
造塊した後、熱間圧延により所定の板厚まで熱間圧延を
行い、圧延後直らに300〜550℃まで急冷するか、
もしくは圧延後−旦空冷しさらにAc3点以上の温度ま
で再加熱した′?B00〜550℃まで9冷したのち、
室温まで空冷する前処理を施す。
After forming the steel consisting of the above composition system by normal ingot making or continuous casting, hot rolling is performed to a predetermined thickness, and immediately after rolling, the steel is rapidly cooled to 300 to 550°C, or
Or, after rolling, it was first air cooled and then reheated to a temperature of Ac3 point or above? After cooling for 9 days from B00 to 550℃,
Perform pretreatment by air cooling to room temperature.

この前処理で急冷を300〜550℃で停止するのは低
降伏比を得るためである。C含有量を低減し合金元素を
高めた低pert鋼は低降伏比を得難い傾向にあるが、
第1図に示すように前処理の急冷を300〜550 ℃
で停止することにより、降伏比を80%以下に低下する
ことができる。従って、前処理のや冷の停止温度は30
0〜550℃に限定される。
The reason why the rapid cooling is stopped at 300 to 550° C. in this pretreatment is to obtain a low yield ratio. Low-pert steels with reduced C content and increased alloying elements tend to have a low yield ratio.
As shown in Figure 1, the pretreatment is rapidly cooled to 300-550℃.
By stopping at this point, the yield ratio can be lowered to 80% or less. Therefore, the stopping temperature for pretreatment is 30
Limited to 0-550°C.

る。Ru.

なお、第1図は第1表に示す組成からなる鋼を圧延後直
ちに焼入れしたもの(Δタイプ)と、圧延後空冷しさら
にAc、意思上の900℃に再加熱し焼入れしたもの(
Bタイプ)の二種の前処理について、それぞれ冷却停止
温度までの冷却速度を6℃/ sにして焼入れだ後空冷
し、次いでAc、〜Ac1点範囲内の800℃に再加熱
した後、水冷し、550゛Cで焼もどし処理した場合の
引張特性と前処理の冷却停止温度との関係を示したもの
である。
Figure 1 shows steels with the compositions shown in Table 1 that were quenched immediately after rolling (Δ type), and those that were air-cooled after rolling and then reheated and quenched at an intended temperature of 900°C (Ac).
For the two types of pretreatment (type B), the cooling rate to the cooling stop temperature was set to 6℃/s, and the material was quenched and then air cooled, then reheated to 800℃ within the range of Ac and ~Ac1 points, and then water cooled. This figure shows the relationship between the tensile properties when tempered at 550°C and the cooling stop temperature of the pretreatment.

次にAc+〜Ac=変態点間の二相域温度に加熱するの
は、低降伏比に有効な軟質のフェライトと高強度に必要
な硬質の硬化相(オーステナイ日を得るためである。A
c3点超の加熱では軟質のフェラ・イトを含む二相組織
は得難く、低降伏比が得られない。二相域温度からの焼
入れ冷却速度は、高強度、高靭性を得るためにはゑ、冷
はど望ましい。
Next, heating is performed to a temperature in the two-phase region between Ac+ and Ac=transformation points in order to obtain a soft ferrite phase effective for low yield ratio and a hard hardened phase (austenite phase) necessary for high strength.
When heated above the c3 point, it is difficult to obtain a two-phase structure containing soft ferrite, and a low yield ratio cannot be obtained. The quenching cooling rate from the two-phase region temperature is desirable in order to obtain high strength and high toughness.

空冷未満の徐冷却では硬化相(オーステナ、イト相)で
十分な焼入れ性が得られないため、空冷以上の冷却とし
た。
Since sufficient hardenability could not be obtained in the hardened phase (austener phase, austenite phase) with gradual cooling less than air cooling, cooling more than air cooling was used.

次に焼入れ硬化した脆い硬化相は、450℃以上の焼も
どしにより靭性を向上する必要がある。
Next, the brittle hardened phase that has been quenched and hardened needs to be tempered at 450° C. or higher to improve its toughness.

方、600゛C超の高温で焼もどしすると硬化相の軟化
が大きくなり、引張強さの低下、降伏比の」−昇を招く
ので、焼もどし温度の上限は600℃とした。
On the other hand, if tempering is performed at a high temperature exceeding 600°C, the hardened phase will become significantly softened, leading to a decrease in tensile strength and an increase in yield ratio, so the upper limit of the tempering temperature was set at 600°C.

第1表 〈実施例〉 第2表に供試材の化学成分を示す、供試材A〜Lは本発
明の成分範囲内にある綱で、M−0鋼は比較鋼である。
Table 1 (Example) Table 2 shows the chemical composition of the test materials. Test materials A to L are steels within the composition range of the present invention, and M-0 steel is a comparison steel.

これらの鋼について第3表に示す前処理A、B法を施し
た後、Ac+〜Ac+点範囲内の二相域温度に加熱保持
した後、空冷以上の冷却速度で焼入れし、500〜56
0℃で焼もどし処理を行った。
After subjecting these steels to the pretreatment methods A and B shown in Table 3, they were heated and maintained at a two-phase region temperature within the Ac+ to Ac+ point range, and then quenched at a cooling rate higher than air cooling to a temperature of 500 to 56
Tempering treatment was performed at 0°C.

これらの機械的性質を第3表に示す0本発明法では引張
強さ(T S ) 60kgf/−以上で、77%以下
の低降伏比(YR)が得られている。Y型溶接割れ試験
による割れ防止予熱温度はいずれも25℃以下で予熱を
必要としない。また、Tiフリー鋼(A〜I)に比べT
i添加@(J−L)はYRが幾分高めであるが、YS、
TSが高い。
These mechanical properties are shown in Table 3. According to the method of the present invention, a tensile strength (T S ) of 60 kgf/- or more and a low yield ratio (YR) of 77% or less are obtained. The preheating temperature for preventing cracking in the Y-type weld cracking test was 25° C. or lower in all cases, and no preheating was required. Also, compared to Ti-free steels (A to I), T
YR is somewhat higher in i-added @ (J-L), but YS,
TS is high.

これに対し比較例では、TS≧60kgf/lJ、YR
≦80%、Y割れ防止予熱温度≦25℃のいずれかが満
足されていない。
On the other hand, in the comparative example, TS≧60kgf/lJ, YR
Either ≦80% or Y crack prevention preheating temperature≦25°C is not satisfied.

例えば、A2、A3鋼は、成分的には発明範囲内にあり
良好な溶接性を有するが、熱処理条件が適切でないため
YR≦80%を満足できない。M、N、0鋼はいずれも
Pcイが高く、Y割れ防止予熱温度が75℃以上と高い
For example, A2 and A3 steels are within the range of the invention in terms of composition and have good weldability, but cannot satisfy YR≦80% because the heat treatment conditions are not appropriate. M, N, and 0 steels all have high Pc and Y crack prevention preheating temperatures of 75°C or higher.

また、P鋼はTi含有量が発明範囲を超えるためYRが
80%超えとなる。
Furthermore, since the Ti content of P steel exceeds the invention range, YR exceeds 80%.

〈発明の効果〉 C含有量を低減しMO等の合金元素含有量を高め、PC
9を0.16〜0.21%に調節した銅に、予め本発明
の前処理を施した後、Ac、〜Ac3変態点間の二相域
温度に再加熱保持してから焼入れ、焼もどし処理するこ
とにより、溶接割れ感受性が小さく予熱が不要で、降伏
比が80%以下、引張強さが60kgf/i以上の低降
伏比高張力鋼の製造が可能となった。
<Effects of the invention> By reducing the C content and increasing the content of alloying elements such as MO, PC
Copper with 9 adjusted to 0.16 to 0.21% is subjected to the pretreatment of the present invention in advance, and then reheated and held at a temperature in the two-phase region between Ac and Ac3 transformation points, then quenched and tempered. Through this treatment, it has become possible to produce a low-yield-ratio, high-strength steel with low weld cracking susceptibility, no need for preheating, a yield ratio of 80% or less, and a tensile strength of 60 kgf/i or more.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は引張特性に及ぼずif■処理時の冷却停止温度
の影響を示すグラフである。
FIG. 1 is a graph showing the influence of the cooling stop temperature during the if① treatment on the tensile properties.

Claims (2)

【特許請求の範囲】[Claims] (1)重量比にて、C:0.03〜0.10%、Si:
0.05〜0.60%、Mn:0.60〜2.00%、
Mo:0.10〜0.50%、P:0.030%以下、
S:0.020%以下を含み、さらにNi:1.00%
以下、Cr:0.70%以下、Cu:0.70%以下、
V:0.06%以下、Nb:0.05%以下及びB:0
.0050%以下のうちから選ばれた一種以上を含み、
残部が実質的にFeからなり、かつP_C_M(%)=
C+Si/30+Mn/20+Ni/60+Cr/20
+Cu/20+Mo/15+V/10+5Bが0.16
〜0.21%である鋼を熱間圧延後、直ちに300〜5
50℃まで急冷するか、もしくは空冷後Ac_3点以上
の温度に再加熱した後300〜550℃まで急冷したの
ち、室温まで空冷し、さらにAc_3〜Ac_1変態点
間の二相域温度に加熱保持した後、空冷以上の冷却速度
で焼入れし、その後450〜600℃の温度で焼もどし
を行うことを特徴とする溶接性の良好な低降伏比高張力
鋼の製造方法。
(1) In terms of weight ratio, C: 0.03 to 0.10%, Si:
0.05-0.60%, Mn: 0.60-2.00%,
Mo: 0.10 to 0.50%, P: 0.030% or less,
Contains S: 0.020% or less, and further Ni: 1.00%
Below, Cr: 0.70% or less, Cu: 0.70% or less,
V: 0.06% or less, Nb: 0.05% or less, and B: 0
.. Including one or more types selected from 0.0050% or less,
The remainder essentially consists of Fe, and P_C_M(%)=
C+Si/30+Mn/20+Ni/60+Cr/20
+Cu/20+Mo/15+V/10+5B is 0.16
~0.21% steel immediately after hot rolling.
It was rapidly cooled to 50°C, or after air cooling, it was reheated to a temperature of Ac_3 point or higher, then rapidly cooled to 300 to 550°C, air cooled to room temperature, and then heated and maintained at a two-phase region temperature between Ac_3 and Ac_1 transformation points. A method for producing a low yield ratio, high tensile strength steel with good weldability, characterized in that it is then quenched at a cooling rate higher than air cooling, and then tempered at a temperature of 450 to 600°C.
(2)重量比にて、C:0.03〜0.10%、Si:
0.05〜0.60%、Mn:0.60〜2.00%、
Mo:0.10〜0.50%、Ti:0.003〜0.
05%、P:0.030%以下、S:0.020%以下
を含み、さらにNi:1.00%以下、Cr:0.70
%以下、Cu:0.70%以下、V:0.06%以下、
Nb:0.05%以下及びB:0.0050%以下のう
らから選ばれた一種以上を含み、残部が実質的にFeか
らなり、かつP_C_M(%)=C+Si/30+Mn
/20+Ni/60+Cr/20+Cu/20+Mo/
15+V/10+5Bが0.16〜0.21%である鋼
を熱間圧延後、直ちに300〜550℃まで急冷するか
、もしくは空冷後Ac_3点以上の温度に再加熱した後
300〜550℃まで急冷したのち、室温まで空冷し、
さらにAc_3〜Ac_1変態点間の二相域温度に加熱
保持した後、空冷以上の冷却速度で焼入れし、その後4
50〜600℃の温度で焼もどしを行うことを特徴とす
る溶接性の良好な低降伏比高張力鋼の製造方法。
(2) In weight ratio, C: 0.03 to 0.10%, Si:
0.05-0.60%, Mn: 0.60-2.00%,
Mo: 0.10-0.50%, Ti: 0.003-0.
05%, P: 0.030% or less, S: 0.020% or less, Ni: 1.00% or less, Cr: 0.70
% or less, Cu: 0.70% or less, V: 0.06% or less,
Contains at least one type selected from Nb: 0.05% or less and B: 0.0050% or less, the remainder substantially consists of Fe, and P_C_M (%) = C + Si / 30 + Mn
/20+Ni/60+Cr/20+Cu/20+Mo/
After hot rolling steel with 15+V/10+5B of 0.16 to 0.21%, it is immediately quenched to 300 to 550℃, or after air cooling, it is reheated to a temperature of Ac_3 or higher and then quenched to 300 to 550℃. After that, air cool to room temperature,
Furthermore, after heating and holding at a temperature in the two-phase region between Ac_3 and Ac_1 transformation points, quenching is performed at a cooling rate higher than air cooling, and then 4
A method for producing a low yield ratio, high tensile strength steel with good weldability, which comprises tempering at a temperature of 50 to 600°C.
JP26637890A 1989-11-08 1990-10-05 Production of high tensile steel reduced in yield ratio and having superior weldability Pending JPH03219012A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-288659 1989-11-08
JP28865989 1989-11-08

Publications (1)

Publication Number Publication Date
JPH03219012A true JPH03219012A (en) 1991-09-26

Family

ID=17733023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26637890A Pending JPH03219012A (en) 1989-11-08 1990-10-05 Production of high tensile steel reduced in yield ratio and having superior weldability

Country Status (1)

Country Link
JP (1) JPH03219012A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272129A (en) * 1991-02-27 1992-09-28 Nkk Corp Production of high tension steel having low yield ratio
JPH05125481A (en) * 1991-11-01 1993-05-21 Sumitomo Metal Ind Ltd High tensile strength steel material having high toughness and low yield ratio and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272129A (en) * 1991-02-27 1992-09-28 Nkk Corp Production of high tension steel having low yield ratio
JPH05125481A (en) * 1991-11-01 1993-05-21 Sumitomo Metal Ind Ltd High tensile strength steel material having high toughness and low yield ratio and its production

Similar Documents

Publication Publication Date Title
KR950703661A (en) HIGH TENSILE STEEL HAVING SUPERIOR FATIGUE STRENGTH AND WELDABILITY AT WELDS AND METHOD FOR MANUFACTURING THE SAME
JP3160329B2 (en) Manufacturing method of heat resistant high strength bolt
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JPH03219012A (en) Production of high tensile steel reduced in yield ratio and having superior weldability
JPH0452225A (en) Production of steel plate having low yield ratio and high tensile strength
JP2551251B2 (en) Steel for bolts and nuts with excellent fire resistance
JPH03207814A (en) Manufacture of low yield ratio high tensile strength steel plate
JP2655956B2 (en) Manufacturing method of low yield ratio refractory steel sheet for building structure
JPS60165320A (en) Preparation of high tensile hot rolled steel plate with good processability
JPH07118741A (en) Production of extremely thick refined high strength steel plate
JPS63293110A (en) Production of thick steel plate having high strength, high toughness and low yield ratio
KR100514813B1 (en) A METHOD FOR MANUFACTURING Cr-Mo STEEL FOR HIGH TEMPERATURE APPLICATIONS
JP2546953B2 (en) Method for manufacturing high-strength steel for construction with excellent fire resistance
JPH0116283B2 (en)
JPH04272129A (en) Production of high tension steel having low yield ratio
JP2977843B2 (en) Method for producing 48 kg or less steel with low susceptibility to weld cracking at low temperatures
JPH0379716A (en) Manufacture of low yield ratio high tensile strength steel having good weldability
JPH04354823A (en) Production of 60kgf/mm tensile strength secondary steel having &lt;=80% yield ratio
JPS6096725A (en) Preparation of high tensile electroseamed steel pipe excellent in stress corrosion cracking resistance
JPH04314824A (en) Production of 70kgf/mm2 class high tensile strength steel excelent in weldability and having low yield ratio
JPH06264144A (en) Production of steel tube with low yield ratio for construction use by cold forming
JPH02213411A (en) Production of high tensile steel with low yield radio
JPH03229818A (en) Production of steel for low temperature use
JPH02209421A (en) Production of high tensile steel with low yield ratio
JPH0120210B2 (en)