JPH02209421A - Production of high tensile steel with low yield ratio - Google Patents

Production of high tensile steel with low yield ratio

Info

Publication number
JPH02209421A
JPH02209421A JP2658389A JP2658389A JPH02209421A JP H02209421 A JPH02209421 A JP H02209421A JP 2658389 A JP2658389 A JP 2658389A JP 2658389 A JP2658389 A JP 2658389A JP H02209421 A JPH02209421 A JP H02209421A
Authority
JP
Japan
Prior art keywords
steel
yield ratio
rolling
cooling
low yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2658389A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kataoka
片岡 義弘
Yutaka Oka
裕 岡
Kenichi Amano
虔一 天野
Shozaburo Nakano
中野 昭三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2658389A priority Critical patent/JPH02209421A/en
Publication of JPH02209421A publication Critical patent/JPH02209421A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a high tensile steel having tensile characteristics as well as low yield ratio by subjecting a steel with a specific composition to heating and rolling at a specific temp., applying quenching to the above without delay to form martensitic structure, and carrying out heating and cooling again under respectively specified conditions. CONSTITUTION:A slab having a composition consisting of, by weight ratio, 0.03-0.20% C, 0.01-1.0% Si, 0.30-2.0% Mn, <=0.010% N, further either or both of 0.005-0.070% Al and 0.01-0.04% Ti, and the balance essentially Fe is heated up to about 1000-1250 deg.C and hot-rolled into a steel plate of prescribed thickness. Subsequently, after rolling is finished at a temp. of the Ar3 point or above, the steel plate is quenched without delay or is cooled after the completion of rolling, heated again up to a temp. of the Ar3 point or above, and then quenched, by which the structure of the steel plate is formed into a martensitic structure. The steel plate whose structure is transformed to martensitic structure is heated again up to a temp. range between Ac3 and (Ac3+50 deg.C) and then cooled at <=100 deg.C/min cooling rate. By this method, the high tensile steel with low yield ratio in which tensile strength and yield ratio are regulated to >=about 60kgf/mm<2> and about 70-85%, respectively, can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は引張強さが60kgf/mj以上であってかつ
降伏比(降伏点または0.2%耐力/引張強さ)が70
〜85%である低降伏比高張力鋼の製造方法に関するも
のである。
Detailed Description of the Invention <Industrial Application Field> The present invention has a tensile strength of 60 kgf/mj or more and a yield ratio (yield point or 0.2% yield strength/tensile strength) of 70.
The present invention relates to a method for producing high tensile strength steel with a low yield ratio of ~85%.

〈従来の技術〉 鉄鋼構造物の大形化に伴い、材料の高強度化が益々要求
されるようになってきている。
<Prior Art> As steel structures become larger in size, there is an increasing demand for materials with higher strength.

従来、引張強さが60kgf/−以上の高張力鋼は焼入
れ一焼戻し処理によって製造されているが、このような
方法によって製造された鋼の特徴は高強度高靭性である
が降伏比が著しく高くなることである。この降伏比が高
いということが破壊に対する安全性の観点から建築、橋
梁等の構造物への高張力鋼の使用が制限されている原因
の一つとなっている。そこで降伏を生じてから破壊まで
に余裕のある低降伏比を有する鋼材への要望が高くなっ
てきた。
Conventionally, high-tensile steel with a tensile strength of 60 kgf/- or more has been manufactured by quenching and tempering, but the characteristics of steel manufactured by this method are high strength and toughness, but a significantly high yield ratio. It is what happens. This high yield ratio is one of the reasons why the use of high-strength steel in structures such as buildings and bridges is restricted from the viewpoint of safety against destruction. Therefore, there has been an increasing demand for steel materials that have a low yield ratio that provides ample time between yielding and fracture.

このような情況から低降伏比高張力鋼の製造方法が、例
えば特開昭53−23817号公報、特開昭55974
25号公報などにより提案されている。これらの発明の
特徴は、処理方法に若干の相違は存在するが、いずれも
Ac、変態点とAc3変態点の間の二相温度域に加熱し
、フェライトとマルテンサイト又はベイナイトの混合組
織にすることにより降伏比を低下させることにある。し
かしながらこの方法では降伏点の低下とともに引張強さ
も低下し、従来の焼入れ焼戻し法で得られていたと同等
の高強度を得るためには従来鋼よりもC量または合金元
素の添加量を増加する必要が生じ、溶接性が犠牲になる
という欠点を有していた。
Under these circumstances, methods for producing high tensile strength steel with low yield ratio have been proposed, for example, in JP-A-53-23817 and JP-A-55974.
This method has been proposed in Publication No. 25 and the like. Although there are some differences in the processing methods, the characteristics of these inventions are that they all involve heating to a two-phase temperature range between the Ac transformation point and the Ac3 transformation point to create a mixed structure of ferrite and martensite or bainite. The purpose of this is to lower the yield ratio. However, with this method, the tensile strength also decreases as the yield point decreases, and in order to obtain the same high strength as that obtained with the conventional quenching and tempering method, it is necessary to increase the amount of C or alloying elements added compared to conventional steel. This has the disadvantage of sacrificing weldability.

〈発明が解決しようとする課題〉 以上のように、従来の焼入れ焼戻し法により製造される
高張力鋼と同等の材料特性を有し、降伏比だけを低下さ
せる製造法は提案されていない。
<Problems to be Solved by the Invention> As described above, no manufacturing method has been proposed that has material properties equivalent to high-strength steel manufactured by conventional quenching and tempering methods and reduces only the yield ratio.

本発明の目的は従来鋼と同等の化学組成で引張強さのレ
ベルを低下させることなく、低降伏比を存する高張力鋼
の製造方法を提案するものである。
An object of the present invention is to propose a method for manufacturing high-strength steel having a chemical composition equivalent to that of conventional steel and having a low yield ratio without reducing the level of tensile strength.

〈課題を解決するための手段〉 本発明者らは、低降伏比でしかも引張強さの低下の少な
い鋼材の製造方法について鋭意検討した結果、強度レベ
ルに応じた適正な組成とし、通常の加熱圧延工程で所定
の寸法にしたのち、冷却又は加熱冷却により次工程で行
う熱処理前の組織をマルテンサイト組織とする工程と、
再度AC3〜(^c++50℃)の温度範囲に加熱し適
正冷却速度で冷却する工程を組合せることにより、はじ
めて低降伏比で引張強さの低下の少ない高張力鋼が得ら
れることを見出し本発明を構成した。
<Means for Solving the Problems> As a result of intensive studies by the present inventors on a method for manufacturing steel materials with a low yield ratio and less decrease in tensile strength, the inventors determined that the composition was appropriate according to the strength level, and A step of forming a martensitic structure into a martensitic structure before heat treatment in the next step by cooling or heating and cooling after forming the material into a predetermined size in a rolling process;
It was discovered that by combining the steps of heating again to a temperature range of AC3 to (^c++50°C) and cooling at an appropriate cooling rate, a high tensile strength steel with a low yield ratio and little decrease in tensile strength could be obtained for the first time, and the present invention was made. was configured.

すなわち本発明は、重量比にて、C: 0.03〜0.
20%、 Si : 0.01〜1.0%、 Mn :
 0.30〜2.0%。
That is, in the present invention, C: 0.03 to 0.03 in terms of weight ratio.
20%, Si: 0.01-1.0%, Mn:
0.30-2.0%.

N :  0.010%以下、さらにAI:  0.0
05〜0.070%及びTi : 0.01〜0.04
%のいずれか又は両者を含み、また必要に応じてさらに
Ni:0.1〜1.5%、Cu:0.05〜0.5%、
 Cr :0.20〜0.70%、 Mo : 0.2
0〜0.70%、  V : 0.01〜0.10%及
びB:0.0002〜o、ooso%のうち1種又は2
種以上を含み残部実質的にFeからなる綱を加熱した後
、Ar3点以上の温度で圧延を終了し直ちに急冷するか
、あるいは圧延終了後冷却したのちAc、+意思上の温
度に加熱後急冷してマルテンサイト組織とした後、再度
AC2〜(Acs+50”C)の温度範囲に加熱後、空
冷以上100℃/分以下の冷却速度で冷却することを特
徴とする低降伏比高張力鋼の製造方法である。
N: 0.010% or less, and AI: 0.0
05-0.070% and Ti: 0.01-0.04
% or both, and if necessary further Ni: 0.1 to 1.5%, Cu: 0.05 to 0.5%,
Cr: 0.20-0.70%, Mo: 0.2
0 to 0.70%, V: 0.01 to 0.10%, and B: 0.0002 to o, one or two of ooso%
After heating a steel wire containing more than 100% Fe, the remainder being essentially Fe, rolling is finished at a temperature of Ar3 or higher and immediately quenched, or after rolling is finished, the steel is cooled and then heated to Ac, + desired temperature and then quenched. Production of low yield ratio high tensile strength steel characterized by heating to a temperature range of AC2 to (Acs + 50"C) and then cooling at a cooling rate of not less than air cooling and not more than 100°C/min. It's a method.

く作 用〉 本発明に用いる鋼の組成限定理由について以下に述べる
Function> The reason for limiting the composition of the steel used in the present invention will be described below.

C:強度確保のために0.03%以上は必要であるが多
量すぎると靭性、溶接性が劣化するため上限を0.20
%とする。
C: 0.03% or more is necessary to ensure strength, but if it is too large, toughness and weldability will deteriorate, so the upper limit should be set at 0.20.
%.

Si:脱酸剤、強化元素として0.01%以上必要であ
るが延性、靭性の低下を考慮して上限を1.0%とする
Si: 0.01% or more is required as a deoxidizing agent and reinforcing element, but the upper limit is set to 1.0% in consideration of deterioration in ductility and toughness.

Mn=強度確保のため0.30%以上必要であるが2.
0%を超えると溶接性が劣化するので上限を2.0%と
する。
Mn=0.30% or more is required to ensure strength, but 2.
If it exceeds 0%, weldability deteriorates, so the upper limit is set at 2.0%.

N:、/V、Tiと窒化物を生成し結晶粒の微細化に寄
与するが多量すぎると靭性を低下させるため上限を0.
010%とする。
N:, /V, forms nitrides with Ti and contributes to grain refinement, but if too large, toughness decreases, so the upper limit should be set at 0.
010%.

AZ+ Ti :結晶粒の微細化、Nの固定から、Al
:0.005%以上、 Ti : 0.01%以上のい
ずれか或いは両方が必要であるが過剰の添加は靭性を劣
化させるので上限をそれぞれ0.070%、 0.04
%とした。
AZ+Ti: From grain refinement and N fixation, Al
: 0.005% or more, Ti: 0.01% or more, or both are necessary, but excessive addition deteriorates toughness, so the upper limits are set to 0.070% and 0.04, respectively.
%.

以上のような各成分に加えて、目的の強度に応じて下記
成分の1種以上を添加することができるCu:強化元素
として0.05%以上添加するが過剰に添加すると焼戻
し時にフェライト中に析出し、降伏点を高めるため0.
5%以下とする。
In addition to the above-mentioned components, one or more of the following components can be added depending on the desired strength.Cu: 0.05% or more is added as a reinforcing element, but if added in excess, it may form in the ferrite during tempering. 0.0 to increase precipitation and yield point.
5% or less.

Nj:焼入れ性向上、靭性向上のため0.1%以上添加
するが経済性の点から上限を1.5%とする。
Nj: Added in an amount of 0.1% or more to improve hardenability and toughness, but the upper limit is set to 1.5% from the economic point of view.

Cr、 Mo、 V :強度向上元素としてそれぞれ0
.20%、 0.20%、 0.01%以上添加するが
過剰の添加は炭化物析出強化により降伏比を高めるため
上限をそれぞれ0.70%、 0.70%、 0.10
%とする。
Cr, Mo, V: 0 each as strength improving elements
.. 20%, 0.20%, and 0.01% or more are added, but excessive addition increases the yield ratio due to carbide precipitation strengthening, so the upper limit is 0.70%, 0.70%, and 0.10, respectively.
%.

B:焼入れ性向上のため0.0002%以上添加するが
0.0050%を超えるとその効果は飽和するので上限
をo、ooso%とした。
B: 0.0002% or more is added to improve hardenability, but the effect is saturated if it exceeds 0.0050%, so the upper limit was set to o, ooso%.

以上のような範囲内で強度や靭性レベルを考慮して各元
素を組合せた成分系の綱を通常の工程で圧延用スラブと
した後、好ましくは1000〜1250℃の温度に加熱
して熱間圧延により所定の板厚の鋼板とする。
A steel with a composition system that combines each element within the above range considering the strength and toughness level is made into a rolling slab in a normal process, and then heated to a temperature of preferably 1000 to 1250°C and hot-rolled. A steel plate with a specified thickness is formed by rolling.

次に次工程の熱処理前の組織をマルテンサイト組織とす
るが、マルテンサイト組織とする方法は計5点以上の温
度で圧延を終了し、直ちに急冷するか圧延終了後冷却し
たのち再びAcs点以上の温度に加熱して急冷などして
鋼板の組織をマルテンサイト組織とする方法があるがい
ずれでもよい。
Next, the structure before heat treatment in the next step is made into a martensitic structure, but the method to make it into a martensitic structure is to finish rolling at a total temperature of 5 points or more, and immediately quench it, or cool it after rolling and then return it to the Acs point or higher. There is a method of changing the structure of the steel sheet to a martensitic structure by heating it to a temperature of

マルテンサイト組織としたのち次に鋼板を八〇。After forming the martensitic structure, the steel plate was made into a 80mm steel plate.

〜(^c!+50℃)の温度に再加熱後、空冷以上10
0”C/分以下の冷却速度で冷却する。
After reheating to a temperature of ~(^c!+50℃), air cooling or more 10
Cool at a cooling rate of 0"C/min or less.

つぎに本発明の基礎となった実験結果を第1図及び第2
図に示す。
Next, the experimental results that formed the basis of the present invention are shown in Figures 1 and 2.
As shown in the figure.

第1表に示す引張強さ80kgf/−級の組成の綱を用
いて1200℃に加熱後、板厚25mmに熱間圧延し室
温まで放冷したものをへC5点以上に加熱して焼入れし
、マルテンサイト組織としたものを第1図は650〜9
50℃に再加熱し10℃/分の冷却速度で冷却したとき
の再加熱温度と引張特性の関係を示したもので、第2図
は前述のマルテンサイト組織としたものを870℃に再
加熱し種々の冷却速度で冷却したときの冷却速度と引張
特性との関係を示したものである。
A steel having a tensile strength of 80 kgf/- class shown in Table 1 was heated to 1200°C, then hot-rolled to a thickness of 25 mm, allowed to cool to room temperature, and then heated to C5 point or higher and quenched. , Fig. 1 shows 650-9 with martensitic structure.
Figure 2 shows the relationship between reheating temperature and tensile properties when reheated to 50℃ and cooled at a cooling rate of 10℃/min. This figure shows the relationship between cooling rate and tensile properties when cooling at various cooling rates.

これより、^cy〜(Acs+50℃)で再加熱し、1
00℃/分以下の冷却速度を組合せることにより引張強
度の低下がなく、降伏比が85〜70℃となることがわ
かる。
From this, reheat at ^cy ~ (Acs + 50℃) and 1
It can be seen that by combining a cooling rate of 00°C/min or less, there is no decrease in tensile strength and the yield ratio is 85 to 70°C.

〈実施例〉 第2表に示す引張強さ60〜80kgf/−級の綱を溶
製し圧延用スラブとした後、圧延条件、熱処理条件を種
々変化させて鋼板を製造し確性試験を実施した。その結
果を第3表に示す。名調とも通常の焼入れ焼戻し処理で
引張強さがそれぞれ60kgf/ij。
<Example> A steel plate having a tensile strength of 60 to 80 kgf/- class shown in Table 2 was melted into a slab for rolling, and then steel plates were manufactured under various rolling conditions and heat treatment conditions, and a reliability test was conducted. . The results are shown in Table 3. The tensile strength of both of them is 60kgf/ij after normal quenching and tempering treatment.

70kgf/d、 80kgf/−レベルとなるよやに
成分調整したものである。第2表から明らかなように、
各引張強さレベルの綱とも従来法では降伏比が高い(A
I、Bl、CI、H3,H4鋼)か、あるいは降伏比は
低くなっているが引張強さも低下している(B3.B4
.Hl、H2,If鋼)。本発明法では引張強さのレベ
ルは通常の焼入れ焼戻し処理材と同等で降伏比のみ低下
している(A2゜B2.C2,D、E、F、G、H5,
12,JK鋼)。
The components have been adjusted to a level of 70 kgf/d and 80 kgf/-. As is clear from Table 2,
The conventional method has a high yield ratio for ropes at each tensile strength level (A
I, Bl, CI, H3, H4 steel), or the yield ratio is lower but the tensile strength is also lower (B3.B4
.. Hl, H2, If steel). In the method of the present invention, the tensile strength level is the same as that of ordinary quenched and tempered materials, and only the yield ratio is reduced (A2°B2.C2, D, E, F, G, H5,
12, JK Steel).

なお従来法の熱処理はそれぞれ次のように行った。The conventional heat treatments were performed as follows.

A1:通常の再加熱焼入れ焼戻し B1:直接焼入れ+Ac、点直上加熱焼入れ焼戻し BICR+加速冷却+2相域加熱焼入れ焼戻し B4:直接焼入れ+2相域焼戻し C1:直接焼入れ焼戻し Hl:直接焼入れ+2相域加熱焼入れ焼戻しB2:直接
焼入れ+2相域焼戻し H1直接焼入れ焼戻し H1直接焼入れ+Ac、点直上加熱焼入れ焼戻し 11:直接焼入れ+2相域加熱焼入れ焼戻し〈発明の効
果〉 本発明によれば従来の焼入れ焼戻し型の高張力鋼と化学
組成、引張強さは同等であって、降伏比の低い引張特性
をもつ高張力鋼が得られ、建築、橋梁等の構造物への高
張力鋼の適用が拡大される。
A1: Normal reheating quenching and tempering B1: Direct quenching + Ac, point heating quenching and tempering BICR + accelerated cooling + two-phase region heating quenching and tempering B4: Direct quenching + two-phase region heating and tempering C1: Direct quenching and tempering Hl: Direct quenching + two-phase region heating and tempering Tempering B2: Direct quenching + 2-phase region tempering H1 Direct quenching Tempering H1 Direct quenching + Ac, point heating quenching Tempering 11: Direct quenching + 2-phase region heating quenching and tempering <Effects of the invention> According to the present invention, the high A high-strength steel having the same chemical composition and tensile strength as tensile steel and a low yield ratio in tensile properties can be obtained, and the application of high-tensile steel to structures such as buildings and bridges will be expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は再加熱温度による降伏点、引張強さ、降伏比の
変化を示すグラフ、第2図は再加熱後の冷却速度が降伏
点、引張強さ、降伏比に及ぼす影響を示すグラフである
Figure 1 is a graph showing the changes in yield point, tensile strength, and yield ratio due to reheating temperature, and Figure 2 is a graph showing the effect of cooling rate after reheating on yield point, tensile strength, and yield ratio. be.

Claims (1)

【特許請求の範囲】 1、重量比にて、C:0.03〜0.20%、Si:0
.01〜1.0%、Mn:0.30〜2.0%、N:0
.010%以下、さらにAl:0.005〜0.070
%及びTi:0.01〜0.04%のいずれか又は両者
を含み残部実質的にFeからなる鋼を加熱した後、Ar
_3点以上の温度で圧延を終了し直ちに急冷するか、あ
るいは圧延終了後冷却したのちAc_3点以上の温度に
加熱後急冷してマルテンサイト組織とした後、再度Ac
_3〜(Ac_3+50℃)の温度範囲に加熱後、空冷
以上100℃/分以下の冷却速度で冷却することを特徴
とする低降伏比高張力鋼の製造方法。 2、重量比にて、C:0.03〜0.20%、Si:0
.01〜1.0%、Mn:0.30〜2.0%、N:0
.010%以下、さらにAl:0.005〜0.070
%及びTi:0.01〜0.04%のいずれか又は両者
を含み、またさらにNi:0.1〜1.5%、Cu:0
.05〜0.5%、Cr:0.20〜0.70%、Mo
:0.20〜0.70%、V:0.01〜0.10%及
びB:0.0002〜0.0050%のうち1種又は2
種以上を含み残部実質的にFeからなる鋼を加熱した後
、Ar_3点以上の温度で圧延を終了し直ちに急冷する
か、あるいは圧延終了後冷却したのちAc_3点以上の
温度に加熱後急冷してマルテンサイト組織とした後、再
度Ac_3〜(Ac_3+50℃)の温度範囲に加熱後
、空冷以上100℃/分以下の冷却速度で冷却すること
を特徴とする低降伏比高張力鋼の製造方法。
[Claims] 1. Weight ratio: C: 0.03 to 0.20%, Si: 0
.. 01-1.0%, Mn: 0.30-2.0%, N: 0
.. 010% or less, further Al: 0.005 to 0.070
% and Ti: 0.01 to 0.04% or both, and the remainder substantially consists of Fe, then Ar
Either finish rolling at a temperature of 3 points or higher and immediately quench it, or after cooling after finishing rolling, heat to a temperature of 3 points or higher and quench to form a martensitic structure, then re-roll the Ac
A method for producing a high tensile strength steel with a low yield ratio, which comprises heating to a temperature range of _3 to (Ac_3+50°C) and then cooling at a cooling rate of not less than air cooling and not more than 100°C/min. 2. Weight ratio: C: 0.03-0.20%, Si: 0
.. 01-1.0%, Mn: 0.30-2.0%, N: 0
.. 010% or less, further Al: 0.005 to 0.070
% and Ti: 0.01 to 0.04% or both, and further Ni: 0.1 to 1.5%, Cu: 0
.. 05-0.5%, Cr: 0.20-0.70%, Mo
:0.20~0.70%, V:0.01~0.10% and B:0.0002~0.0050%, one or two of them
After heating steel containing more than 100% Fe, the remainder being essentially Fe, rolling is finished at a temperature of Ar_3 or higher and immediately quenched, or after rolling is finished, the steel is heated to a temperature of Ac_3 or higher and then rapidly cooled. A method for producing a high tensile strength steel with a low yield ratio, which comprises forming a martensitic structure, heating it again to a temperature range of Ac_3 to (Ac_3+50°C), and then cooling at a cooling rate of not less than air cooling and not more than 100°C/min.
JP2658389A 1989-02-07 1989-02-07 Production of high tensile steel with low yield ratio Pending JPH02209421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2658389A JPH02209421A (en) 1989-02-07 1989-02-07 Production of high tensile steel with low yield ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2658389A JPH02209421A (en) 1989-02-07 1989-02-07 Production of high tensile steel with low yield ratio

Publications (1)

Publication Number Publication Date
JPH02209421A true JPH02209421A (en) 1990-08-20

Family

ID=12197568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2658389A Pending JPH02209421A (en) 1989-02-07 1989-02-07 Production of high tensile steel with low yield ratio

Country Status (1)

Country Link
JP (1) JPH02209421A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107240A (en) * 1990-08-27 1992-04-08 Nippon Steel Corp Steel having low yield ratio and excellent in fire resistance and toughness and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107240A (en) * 1990-08-27 1992-04-08 Nippon Steel Corp Steel having low yield ratio and excellent in fire resistance and toughness and its manufacture

Similar Documents

Publication Publication Date Title
JPS61157625A (en) Manufacture of high-strength steel sheet
JPH01230715A (en) Manufacture of high strength cold rolled steel sheet having superior press formability
JPS5983719A (en) Preparation of unnormalized high strength steel
JPH05105957A (en) Production of heat resistant high strength bolt
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JPH02209421A (en) Production of high tensile steel with low yield ratio
JPH0759738B2 (en) Ultra-high-strength PC steel wire or steel bar excellent in uniform elongation and method for producing the same
JPH0772299B2 (en) Manufacturing method of high yield steel plate with low yield ratio
JPH09165620A (en) Production of building use thick fire resistant steel tube low in yield ratio
JPH09165621A (en) Production of building use thick fire resistant steel tube having low yield ratio
JP3290019B2 (en) Manufacturing method of high strength hot rolled steel sheet with excellent fatigue properties and stretch flangeability
JPH02149624A (en) Manufacture of high-tensile cold rolled steel sheet excellent in formability
JPS6324012A (en) Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method
JPH0368715A (en) Production of structural steel plate excellent in strength and toughness
JP3297090B2 (en) Processing method of high tensile strength steel with little increase in yield ratio
JPH03219012A (en) Production of high tensile steel reduced in yield ratio and having superior weldability
JPS63140034A (en) Production of low yield ratio high tensile steel having excellent low-temperature toughness
JPH0394020A (en) Production of cold rolled steel sheet for deep drawing excellent in resistance to secondary working brittleness
JPS601364B2 (en) Manufacturing method of high toughness and high tensile strength steel
JPS63176425A (en) Manufacture of high-tensile steel with low yielding ratio reduced in residual stress
KR20220074475A (en) Non-heat treated steel with improved machinability and toughness and the method for manufacturing the same
JPH0641633A (en) Method for working high tensile strength steel small in rise of yield ratio
JPH04354823A (en) Production of 60kgf/mm tensile strength secondary steel having &lt;=80% yield ratio
JPS6167722A (en) Manufacture of cold rolled steel plate of high intensity and rolling by continuous annealing