JPH03216832A - Magneto-optical recording medium and production thereof - Google Patents

Magneto-optical recording medium and production thereof

Info

Publication number
JPH03216832A
JPH03216832A JP1321490A JP1321490A JPH03216832A JP H03216832 A JPH03216832 A JP H03216832A JP 1321490 A JP1321490 A JP 1321490A JP 1321490 A JP1321490 A JP 1321490A JP H03216832 A JPH03216832 A JP H03216832A
Authority
JP
Japan
Prior art keywords
recording layer
magneto
layer
optical recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1321490A
Other languages
Japanese (ja)
Inventor
Hideo Yamanaka
英生 山中
Satoshi Matsubaguchi
敏 松葉口
Takashi Yamada
隆 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP1321490A priority Critical patent/JPH03216832A/en
Publication of JPH03216832A publication Critical patent/JPH03216832A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve bias characteristics by setting the ratio of the film forming speed and gaseous pressure at the time of forming a recording layer by a sputtering method to a specific value or above. CONSTITUTION:After the inside of a sputtering chamber is evacuated to <=1X10<-6> Torr vacuum degree, an inert gas is introduced into the sputtering chamber. Electric power is then supplied to a target and the target is sputtered under the conditions of >=2.4X10<4> q/p when the film forming speed is designated as q(Angstrom /min) and the gaseous pressure as p(Torr) to form the recording layer essentially consisting of a transition metal and rare earth metal on a substrate. The film forming speed is then slightly increased particularly in the region where the gaseous pressure is low by changing the film forming speed according to the gaseous pressure. A required bias magnetic field is decreased in this way. The improvement in C/N, the miniaturization of the drive and the improvement in the adaptability to overwriting are thus obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光磁気記録媒体の製造方法に関し、特に、記
録層のスーξツタ条件を制御することによりバイアス特
性が改良された光磁気記録媒体を得る方法に関するもの
である。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing a magneto-optical recording medium, and in particular to a magneto-optical recording medium in which bias characteristics are improved by controlling the fluctuation conditions of a recording layer. It concerns the method of obtaining the medium.

〔従来技術及びその問題点〕[Prior art and its problems]

近年、光磁気記録媒体はレーザー光による書き込み読み
出しが可能な光磁気ディスクとして、大容量のデータフ
ァイルなどに広く利用されている。
In recent years, magneto-optical recording media have been widely used for large-capacity data files as magneto-optical disks that can be written and read using laser light.

この光磁気記録媒体は、ガラス、プラスチックなどの透
明基板上に、スパッタ法により誘電体保護層(エンハン
ス層とも称される。)、記録層、無機保護層、更に、金
属反射層の薄膜を積層した多層構造の光磁気記録層を有
した形態が高いC/Nが得られるので広く使用されてい
る。
This magneto-optical recording medium is made by laminating a dielectric protective layer (also called an enhancement layer), a recording layer, an inorganic protective layer, and a thin metal reflective layer on a transparent substrate made of glass, plastic, etc. by sputtering. A configuration having a magneto-optical recording layer with a multilayer structure is widely used because it can obtain a high C/N.

そして、さらに高C/Nの光磁気記録媒体とするだめの
記録層としては、遷移金属と希土類金属を主体とする合
金の単一層もしくは遷移金属を主体とする薄膜と希土類
金属を主体とする薄膜をそもコ層以上積層した層が使用
されている。
The recording layer for a magneto-optical recording medium with an even higher C/N may be a single layer of an alloy mainly composed of a transition metal and a rare earth metal, or a thin film mainly composed of a transition metal and a thin film mainly composed of a rare earth metal. A layer consisting of more than one layer is used.

特に、希土類金属としてTbを遷移金属としてFe及び
COを用いた記録層はカ一回転角等の磁気特性が優れて
おり、例えば、特開昭II−7374<A号公報等に開
示されている。
In particular, a recording layer using Tb as a rare earth metal and Fe and CO as transition metals has excellent magnetic properties such as rotation angle, and is disclosed in, for example, Japanese Patent Laid-Open No. 7374-A. .

光磁気記録媒体への情報の記録に際しては、まず媒体に
消去用のバイアス磁界を印加しつつレーザービームを一
様に照射して、すでに書き込まれた記録情報を消去する
と同時に記録層を一定の方向に磁化し、ついで、書き込
み用のバイアス磁界を印加しつつレーザービームによる
記録情報の書き込みが行われる。
When recording information on a magneto-optical recording medium, first, a bias magnetic field for erasing is applied to the medium and a laser beam is uniformly irradiated, erasing the recorded information that has already been written and at the same time moving the recording layer in a certain direction. Then, recording information is written using a laser beam while applying a bias magnetic field for writing.

C/Nと前記バイアス磁界(Hb)との関係は、一般に
バイアス磁界に比例してC/Nは大きくなるが、C/N
の変化が飽和する飽和バイアス磁界(Hbs)が媒体固
有の特性として存在する。そして、この飽和バイアス磁
界を小さくすることは、すなわち前記の消去、書き込み
時に必要なパイアス磁界を小さくできると言うことであ
り、また同時に同じバイアス磁界を印加したとしても飽
和・ζイアス磁界が小さい媒体を使用した方がC/Nを
向上させる上で有利となる。
The relationship between C/N and the bias magnetic field (Hb) is that generally C/N increases in proportion to the bias magnetic field, but C/N
A saturation bias magnetic field (Hbs) in which the change in Hbs is saturated exists as a characteristic unique to the medium. Reducing this saturation bias magnetic field means that the bias magnetic field necessary for erasing and writing can be reduced, and even if the same bias magnetic field is applied at the same time, the saturation/ζ bias magnetic field is small. It is more advantageous to use the C/N ratio.

消去及び書き込み時に必要な前記,Sイアス磁界(Hb
)は通常130乃至3000e(エルステツド)である
が、この値を小さくすることは、ノぐイアス磁界印加用
磁石を小さくできることになるので、ドライブの小型化
にとって有利となる。
The above-mentioned S ear magnetic field (Hb
) is usually 130 to 3000e (oersted), but reducing this value allows the magnet for applying the magnetic field to be made smaller, which is advantageous for miniaturizing the drive.

また、最近、光磁気記録媒体の使用形態が多用化してお
り、オーバーライト記録の要求が強いが、その際も必要
なバイアス磁界(Hb)を小さくすることは、装置の小
型化、アクセスタイムの短縮に必須の要件となることが
予測される。
In addition, magneto-optical recording media have recently become more widely used, and there is a strong demand for overwrite recording, but reducing the bias magnetic field (Hb) required in this case also requires miniaturization of the device and shortening of access time. It is predicted that this will become an essential requirement for shortening the time.

しかしながら、C/N等の他の特性を犠牲にする事なく
消去及び書き込み時に必要なノζイアス磁界を低下する
方法として、未だ有効なものが提案されていない。
However, no effective method has yet been proposed for reducing the noise magnetic field required during erasing and writing without sacrificing other characteristics such as C/N.

例えば、記録層の組成の面から、前記のTb −Fe−
Co系合金の記録層において、COの組成比を低下させ
記録層の磁気モーメントを減少させて必要なバイアス磁
界をかなり小さくできるが、反面カー回転角などの光磁
気特性が低下してし壕い実用に供し得なかった。
For example, from the viewpoint of the composition of the recording layer, the above-mentioned Tb-Fe-
In a Co-based alloy recording layer, the required bias magnetic field can be considerably reduced by lowering the CO composition ratio and reducing the magnetic moment of the recording layer, but on the other hand, the magneto-optical properties such as the Kerr rotation angle are degraded. It could not be put to practical use.

また、記録層の成膜条件の面から、成膜時のガス圧を低
下させることにより、不純物の混入を減らしてカー回転
角を高めてC/Nを向上させる方法が米国特tグ♂33
04t3号に開示されているが、この方法では、記録層
のバイアス特性は制御できず、時として、外部磁界に対
して感度が鈍い結果となり、バイアス特性の良くない−
記録層となることがあった。
In addition, from the viewpoint of film formation conditions for the recording layer, there is a method to improve the C/N by reducing the incorporation of impurities and increasing the Kerr rotation angle by lowering the gas pressure during film formation.
However, with this method, the bias characteristics of the recording layer cannot be controlled, and sometimes the sensitivity to external magnetic fields is low, resulting in poor bias characteristics.
Sometimes it became a recording layer.

遷移金属及び希土類金属を主体とする記録層の別の問題
として、非常に酸化され易く、媒体の保存安定性が良く
ないと言う問題があク、この問題に対しては、記録層中
に、Cr,Ta,kl,Pt及びV等の元素を添加する
ことが有効であり、例えば、特開昭!r−/タタ11号
公報等に開示されている。
Another problem with recording layers mainly composed of transition metals and rare earth metals is that they are very easily oxidized and the storage stability of the medium is poor. It is effective to add elements such as Cr, Ta, kl, Pt, and V. r-/Tata No. 11, etc.

しかしながら、この記録層においても前記のパイアス磁
界の改良する技術については、何ら提案されていない。
However, no technique has been proposed for improving the bias magnetic field in this recording layer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、前記従来技術の問題点に鑑みなされたもので
あり、特に、必要なバイアス磁界(Hb)が比較的lJ
・さく、C/Nの向上に有利であク、ドライブの小型化
が可能であって、またオー・ζ−ライト適性にも優れた
光磁気記録媒体を提供することを目的としている。
The present invention has been made in view of the problems of the prior art, and in particular, the required bias magnetic field (Hb) is relatively lJ.
- It is an object of the present invention to provide a magneto-optical recording medium which is advantageous in improving the C/N ratio, allows miniaturization of the drive, and has excellent O/ζ-write suitability.

また、本発明の別の目的は、保存安定性に優れた光磁気
記録媒体を提供することである。
Another object of the present invention is to provide a magneto-optical recording medium with excellent storage stability.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

前記本発明の目的は、スパッタ室内を/ X/OTor
r以下の真空度にした後、不活性ガスを該スパッタ室内
に導入し、ついでターゲットに電力を投入し、成膜速度
をq(Å/分)及びガス圧をp(Torr)としたとき
に、q/pがJ.4’X/04以上望ましくは、/x/
05以上である条件でスパッタを行って、基板上に遷移
金属及び希土類金属を主成分とする記録層を成膜する光
磁気記録媒6 体の製造方法により達成される。
The object of the present invention is to control the inside of the sputtering chamber by
After reducing the degree of vacuum to r or less, inert gas is introduced into the sputtering chamber, then power is applied to the target, and when the film formation rate is q (Å/min) and the gas pressure is p (Torr), , q/p is J. 4'X/04 or more, preferably /x/
This is achieved by a method of manufacturing a magneto-optical recording medium 6 in which a recording layer containing transition metals and rare earth metals as main components is formed on a substrate by sputtering under conditions of 0.05 or higher.

本発明の製造方法によれば、成膜速度をガス圧に応じて
かえることにより特に、従来のスパッタ法よりもガス圧
が比較的低い領域で成膜速度を比較的高めにすることに
より、必要なバイアス磁界を比較的小さくすることがで
き、C/Nの向上、ト゛ライブの小型化K有利でオーバ
ーライト適性もある光磁気記録媒体を得ることが出来る
According to the manufacturing method of the present invention, by changing the film formation rate according to the gas pressure, especially by making the film formation rate relatively high in a region where the gas pressure is relatively low compared to the conventional sputtering method, the required The bias magnetic field can be made relatively small, and a magneto-optical recording medium can be obtained which is advantageous in improving the C/N and miniaturizing the drive, and is also suitable for overwriting.

特に記録層の組成がTb−Fe−Co−X(Xは、Cr
,Ta,A7%Pt,Ti、W及び■の中から選ばれた
少なくとも一種の元素)系である場合、成膜速度q(Å
/分)とスパッタ室内のガス圧pとの関係をq/pが一
.≠×704以上、望着しくけ/X/05以上、特に望
ましくは3X/05以上とすることにより、必要なバイ
アス磁界は、低くなり、且つ記録層の耐腐食性も向上す
るので、保存安定性にも優れた光磁気記録媒体を得るこ
とが出来る。
In particular, the composition of the recording layer is Tb-Fe-Co-X (X is Cr).
, Ta, A7%Pt, Ti, W, and at least one element selected from
/min) and the gas pressure p in the sputtering chamber, q/p is 1. By setting ≠x704 or more, preferably /X/05 or more, particularly preferably 3X/05 or more, the necessary bias magnetic field is lowered and the corrosion resistance of the recording layer is also improved, resulting in storage stability. A magneto-optical recording medium with excellent properties can also be obtained.

本発明の前記の効果は、いまだ明確ではないが、ガス圧
を低くすることにより、スパッタ室に残存する酸素、水
分、不活性ガス分子等不純物の混入を防止して記録層の
薄膜の構造を緻密にし且つ記録層を構成する結晶粒が細
かくなること、また成膜速度を比較的大きくすることに
よりスパッタ粒子のエネルギーが大きくなるので、基板
上でのスパッタ粒子の混合が進み成膜される記録層の緻
密化を促進して、このことがキュリー点付近での抗磁力
の変化を急峻なものとし、バイアス磁界が効果的に作用
するものと推定される。
Although the above-mentioned effects of the present invention are not yet clear, by lowering the gas pressure, the structure of the thin film of the recording layer is improved by preventing the incorporation of impurities such as oxygen, moisture, and inert gas molecules remaining in the sputtering chamber. By making the recording layer denser and the crystal grains constituting the recording layer finer, and by increasing the deposition rate relatively, the energy of the sputtered particles increases, so the mixing of the sputtered particles on the substrate progresses and the recorded recording layer is formed. It is presumed that this promotes the densification of the layer, which causes a steep change in coercive force near the Curie point, and that the bias magnetic field acts effectively.

本発明の方法において、記録層を成膜する際は、スパッ
タ室内に、Ar,Kr,He等の不活性ガスを所定のガ
ス圧p(Torr)に成るまで導入して、記録層を構成
する金属成分となる各ターゲットに印加する電力を調節
することにより、前記ガス圧に応じて成膜速度q(Å/
分)を設定し、q/pがコ.≠×/04以上となるよう
にして、基板ホルダーに装着された基板に記録層を成膜
する。
In the method of the present invention, when forming the recording layer, an inert gas such as Ar, Kr, He, etc. is introduced into the sputtering chamber until a predetermined gas pressure p (Torr) is reached to form the recording layer. By adjusting the power applied to each target, which is a metal component, the film formation rate q (Å/
minutes), and q/p is set. A recording layer is formed on a substrate mounted on a substrate holder so that ≠×/04 or more.

本発明の方法におけるスパッタ法は、マグネトロンスパ
ッタ法が好ましく、遷移金属のターゲット、希土類金属
のターゲットもしくはそれらの金属の合金のターゲット
にDC[力もしくはRF電力を印加してそれぞれの金属
のプラズマを発生させ、一元同時スパッタ法等により記
録層が成膜される。
The sputtering method in the method of the present invention is preferably a magnetron sputtering method, in which DC [power or RF power is applied to a transition metal target, a rare earth metal target, or an alloy target of these metals to generate plasma of each metal. Then, a recording layer is formed by a one-source simultaneous sputtering method or the like.

記録層の膜厚は、iooo乃至3000kである。The thickness of the recording layer is iooo to 3000k.

通常,前記記録層と基板との間には、記録膚のエンハン
ス層として誘電体層が成膜される。そして、記録層の上
には、記録層を保護するだめの無機物の保護層が成膜さ
れる。
Usually, a dielectric layer is deposited between the recording layer and the substrate as a recording layer enhancement layer. Then, an inorganic protective layer for protecting the recording layer is formed on the recording layer.

前記エンハンス層及び保護層の成膜条件には特に制限は
ないが、通常それらの膜厚は、エンハンス層は、100
乃至/300kであり、無機物の保護層は、200乃至
isoohである。
There are no particular restrictions on the film-forming conditions for the enhancement layer and the protective layer, but the thickness of the enhancement layer is usually 100%.
The thickness of the inorganic protective layer is 200 to 300k.

更に、光磁気記録層の特性を改良するために、前記無機
物の保護層上に、金属反射層を300乃至toOAの厚
さで成膜することもできる。
Furthermore, in order to improve the characteristics of the magneto-optical recording layer, a metal reflective layer can be formed on the inorganic protective layer to a thickness of 300 to OA.

本発明の方法により得られる前記記録層は、遷移金属及
び希土類金属を主体さした非品質の層であり、その形態
は単一の層であっても、また、遷移金属を主体とする層
と希土類金属を主体とする層が交互にλ層以上積層した
層であってもよい。
The recording layer obtained by the method of the present invention is a non-quality layer mainly composed of transition metals and rare earth metals, and may be in the form of a single layer or a layer mainly composed of transition metals. It may be a layer in which λ or more layers mainly composed of rare earth metals are laminated alternately.

また、前記記録層の耐腐食性を向上させるために、Cr
%Ta,A4、Pt1Ti,W及びV等を含有させるこ
とが好ましく、中でもCrが最も効果的である。
Further, in order to improve the corrosion resistance of the recording layer, Cr
It is preferable to contain %Ta, A4, Pt1Ti, W and V, among which Cr is the most effective.

そして、その含有量は、コ乃至20atL%であり、望
ましくは3乃至/jat%である。
The content thereof is from 1 to 20 atL%, preferably from 3 to 1/jat%.

遷移金属としては、例えばFe,Co,Ni等を、希土
類金属としては、Tb,Gd,Sb,DY、Sm等を使
用することが出来る。前記記録層の組成の具体例として
は、(}dCo、GdFe.TbFe,DyFe,Gd
FeTb,TbFeCo,TbFeNi,GdFeCo
等が挙げられる。中でも、TbFeCoが最も好ましく
、更にその組成中にCr,Ti、W,Ta,A7,Pt
及びV等が含有された組成であることが、実用上充分な
耐腐食性を有する上で好甘しい。
As the transition metal, for example, Fe, Co, Ni, etc. can be used, and as the rare earth metal, Tb, Gd, Sb, DY, Sm, etc. can be used. Specific examples of the composition of the recording layer include (}dCo, GdFe.TbFe, DyFe, Gd
FeTb, TbFeCo, TbFeNi, GdFeCo
etc. Among them, TbFeCo is the most preferred, and its composition further includes Cr, Ti, W, Ta, A7, Pt.
A composition containing V and V is preferable in terms of having practically sufficient corrosion resistance.

前記エンハンヌ層、及び無機保護層の材料としては、例
えば、SiOx,SiNx,AJNx及びZn8等の酸
化物、窒化物及び硫化物などの誘電体が使用される。中
で本、光学的特性、保護機能の面から、Siの窒化物、
A7の窒化物もしくはそれらの混合物が好ましい。
As the material for the enhanne layer and the inorganic protective layer, for example, dielectrics such as oxides such as SiOx, SiNx, AJNx, and Zn8, nitrides, and sulfides are used. Among them, from the viewpoint of optical properties and protective functions, Si nitride,
A7 nitrides or mixtures thereof are preferred.

また、無機保護層の上に金属反射層を設けて、更に、C
/Nを改良することも出来る。その金属反射層の材料と
しては、AJやNi等を主体とする300乃至tooh
の厚さの金属の薄膜で、他の層と同様ス/8ツタ法で成
膜される。
Further, a metal reflective layer is provided on the inorganic protective layer, and further C
/N can also be improved. The material of the metal reflective layer is 300 to 300 mm, mainly made of AJ or Ni.
It is a thin metal film with a thickness of

本発明の光磁気記録媒体並びにその製造方法における基
板の材質としては、ポリカーボネート、ポリメチルメタ
クリレート、エポキシ樹脂、ガラス等が使用される。中
でも、ポリカーボネート、ポリメチルメタクリレート、
エボキシ樹脂等の樹脂基板が好ましく、特に、ポリカー
ボネートは、吸水率が小さく、ガラス転移転が高いなど
の利点を有しているので特に好ましい。
Polycarbonate, polymethyl methacrylate, epoxy resin, glass, etc. are used as the material for the substrate in the magneto-optical recording medium and its manufacturing method of the present invention. Among them, polycarbonate, polymethyl methacrylate,
A resin substrate such as epoxy resin is preferred, and polycarbonate is particularly preferred since it has advantages such as low water absorption and high glass transition transfer.

本発明における光磁気記録媒体は、前記のように基板上
に各層を成膜して光磁気記録層を形成後、その上面及び
側面を紫外線硬化樹脂等の有機樹脂保護層で被覆するこ
とにより、光磁気記録媒体の保存安定性を更に高めるこ
ともできる。
In the magneto-optical recording medium of the present invention, after forming a magneto-optical recording layer by forming each layer on a substrate as described above, the top surface and side surfaces thereof are coated with an organic resin protective layer such as an ultraviolet curing resin. It is also possible to further improve the storage stability of the magneto-optical recording medium.

また、ホットメルト接着剤等より成る接着剤層を介して
、基板の光磁気記録層の内面を外側に向けて、貼合わせ
ることにより両面記録型の光磁気記録媒体とすることも
できる。
Furthermore, a double-sided recording type magneto-optical recording medium can be obtained by bonding the substrates with the inner surfaces of the magneto-optical recording layers facing outward via an adhesive layer made of a hot melt adhesive or the like.

〔発明の効果〕〔Effect of the invention〕

スパッタ法で、記録層を成膜する際の成膜速度q(Å/
分)をガス圧p(Torr)に対して、q/pが2.≠
×/04以上となるように設定することによシ、バイア
ス特性の優れた光磁気記録媒体とすることができる。
The deposition rate q (Å/
minute) to the gas pressure p (Torr), q/p is 2. ≠
By setting the ratio to be ×/04 or more, a magneto-optical recording medium with excellent bias characteristics can be obtained.

前記本発明の新規な特徴を、以下の実施例及び比較例に
よって、更に具体的に説明する。
The novel features of the present invention will be explained in more detail with reference to the following Examples and Comparative Examples.

(実施例一l) 射出成形により片面に案内溝が設けられた径lsomm
.厚さ/ .2mmのポリカーボネート基板をスパッタ
装置の回転基板ホルダー上にセットして、スパッタ室に
アルゴンガスを導入して、ガス圧を/mTorrとした
。そして、マグネトロンスバッタ法Kよシまずエンハン
ス層として、llOOAの厚さのSiNxの薄膜を成膜
した。
(Example 1l) Diameter lsommm with guide groove provided on one side by injection molding
.. thickness/ . A 2 mm polycarbonate substrate was set on a rotating substrate holder of a sputtering device, and argon gas was introduced into the sputtering chamber to set the gas pressure to /mTorr. Then, using the magnetron scattering method K, a thin film of SiNx with a thickness of 11OOA was first formed as an enhancement layer.

ついで、FeCoCr合金のターゲットに700Wの電
力を印加し、Tbのターゲットには、λtoWの電力を
印加して、成膜速度コj!Å/分で二元同時スパッタを
行って、前記基板上にTb16Fe68CogCr6成
る組成の記録層をλダOAの厚さに成膜した。
Next, a power of 700 W was applied to the FeCoCr alloy target, and a power of λtoW was applied to the Tb target to reduce the film formation rate coj! A recording layer having a composition of Tb16Fe68CogCr6 was formed on the substrate by dual sputtering at a rate of .ANG./min to a thickness of .lambda.OA.

この記録層の成膜時のガス圧pは、成膜室に導入するア
ルゴンガスの流量をコントロールすることによって、J
×/0  4Torrとした。
The gas pressure p during film formation of this recording layer can be determined by controlling the flow rate of argon gas introduced into the film formation chamber.
×/0 4 Torr.

なお、前記ターゲットと前記基板との距離は、/lfO
mmとした。
Note that the distance between the target and the substrate is /lfO
mm.

しかる後、前記記録層の上に無機保護層として、8iN
xの薄膜を23OAの厚さで成膜し、更にその上に金属
反射層として、AJ合金の薄膜をaOoAの膜厚で成膜
して前記基板上にμ層構成の光磁気記録層が形成された
光磁気記録媒体の試料を得た。
After that, 8iN was applied as an inorganic protective layer on the recording layer.
A thin film of x is formed with a thickness of 23 OA, and a thin film of AJ alloy is further formed with a thickness of aOoA as a metal reflective layer on top of it, to form a magneto-optical recording layer with a μ layer structure on the substrate. A sample of a magneto-optical recording medium was obtained.

(実施例−2〜−2及び比較例−l、一コ)実施例一l
において、記録層成膜時のガス圧p及び記録層の成膜速
度qを第/表の様に変えた以外は、実施例一/と同一の
条件で同一の組成及び同一の構成の光磁気記録媒体の試
料を得た。
(Examples-2 to -2 and Comparative Examples-1 and 1) Example 1
In , a magneto-optical film with the same composition and structure was prepared under the same conditions as in Example 1/, except that the gas pressure p during recording layer deposition and the recording layer deposition rate q were changed as shown in Table 1. A sample of the recording medium was obtained.

(実施例−lo) 射出成形によシ片面に案内溝が設けられた径lJOmm
,厚さl,コmmのポリカーボ゛ネート基板をスパッタ
装置の回転基板ホルダー上にセットして、スパッタ室に
アルゴンガスを導入して、ガス圧を/mTorrとした
。そして、マグネトロンスパッタ法によシまずエンノ・
ンス層として、//00Aの厚さの8iNxの薄膜を成
膜した。
(Example-lo) Diameter lJOmm with guide groove provided on one side by injection molding
A polycarbonate substrate having a thickness of 1 mm and a thickness of 1 mm was set on a rotating substrate holder of a sputtering apparatus, and argon gas was introduced into the sputtering chamber to set the gas pressure to /mTorr. Then, by magnetron sputtering method, firstly, enno.
A thin film of 8iNx with a thickness of //00A was deposited as a conductive layer.

ついで、FeCO合金のターゲットに31IOWの電力
を印加し、Tbのターゲットには、/2jWの電力を印
加して、成膜速度iioÅ/分で二元同時スノξツタを
行って、前記基板上にTbH3Fe8Co74成る組成
の.24!OAの厚さの記録層を成膜した。
Next, a power of 31 IOW was applied to the FeCO alloy target, a power of /2jW was applied to the Tb target, and binary simultaneous snow ξ ivy was performed at a film formation rate of iioÅ/min to form a film on the substrate. The composition is TbH3Fe8Co74. 24! A recording layer having a thickness of OA was deposited.

なお、前記基板と前記ターゲットとの距離は、/fOm
mとした。
Note that the distance between the substrate and the target is /fOm
It was set as m.

この記録層の成膜時のガス圧pは、成膜室に導入するア
ルゴンガスの流量をコントロールすることによって、/
.4L×/0  3Torrとした。
The gas pressure p during film formation of this recording layer can be adjusted by controlling the flow rate of argon gas introduced into the film formation chamber.
.. 4L×/0 3 Torr.

しかる後、前記記録層の上に無機保護層として、SiN
xの薄膜をコjOAの厚さで成膜し、更にその上に金属
反射層として、1合金の薄膜を≠OOAの膜厚で成膜し
て前記基板上にq層構成の光磁気記録層が形成された光
磁気記録媒体の試料を得た。
After that, an inorganic protective layer of SiN is formed on the recording layer.
A thin film of x is formed with a thickness of cojOA, and a thin film of 1 alloy is formed as a metal reflective layer on top of it with a thickness of ≠OOOA to form a magneto-optical recording layer with a q-layer configuration on the substrate. A sample of a magneto-optical recording medium was obtained.

(実施例−//〜−/t、及び比較例−3、一弘)実施
例一/Oにおいて、記録層成膜時のガス圧p及び記録層
の成膜速度qを第7表の様に変えた以外は、実施例一i
oと同一の条件で同一の組成及び同一の構成の光磁気記
録媒体の試料を得た。
(Examples -//~-/t, and Comparative Example-3, Kazuhiro) In Example 1/O, the gas pressure p and recording layer deposition rate q during recording layer deposition were as shown in Table 7. Example 1i except for the changes
A sample of a magneto-optical recording medium having the same composition and structure was obtained under the same conditions as in Example 3.

以上のようにして得られた光磁気記録媒体の試料の飽和
バイアス磁界(Hbs)の強さを以下のような条件で測
定した。
The strength of the saturation bias magnetic field (Hbs) of the sample of the magneto-optical recording medium obtained as described above was measured under the following conditions.

飽和バイアス磁界(Hbs)の測定: 前記実施例及び比較例の光磁気記録媒体の試料について
、toooe(エルステツド)のパイアス磁界をかけて
光磁気記録層上で3乃至タmWの記録・ξワーで書き込
みを行い、C/Nが最大となる最適記録・gワーを求め
、次にその最適記録パワでバイアス磁界をO乃至7oo
Oe(エルステツド)の範囲で変化させて、バイアス磁
界に対するC/Nの変化を表す曲線を求め、その曲線か
ら読み取れる飽和C/Nから/dB低いC/Nに対応す
るバイアス磁界を飽和バイアス磁界(Hbs)とした。
Measurement of saturation bias magnetic field (Hbs): For the samples of the magneto-optical recording media of the above examples and comparative examples, a bias magnetic field of toooe (Oersted) was applied to the magneto-optical recording layer at a recording power of 3 to 1 mW at ξ watts. Perform writing, find the optimal recording/g power that maximizes C/N, and then set the bias magnetic field at the optimal recording power from 0 to 7 oo.
Obtain a curve representing the change in C/N with respect to the bias magnetic field by varying it within the range of Oe (Oersted), and change the bias magnetic field corresponding to the C/N that is /dB lower than the saturation C/N read from the curve to the saturation bias magnetic field ( Hbs).

得られた測定結果を示したのが第/表である。Table 1 shows the measurement results obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)スパッタ室内を1×10^−^6Torr以下の
真空度にした後、不活性ガスを該スパッタ室内に導入し
、ついでターゲットに電力を投入し、成膜速度をq(Å
/分)及びガス圧をp(Torr)としたときに、q/
pが2.4×/10^4以上である条件でスパッタを行
つて、基板上に遷移金属及び希土類金属からなる記録層
を成膜する光磁気記録媒体の製造方法。
(1) After setting the sputtering chamber to a vacuum level of 1×10^-^6 Torr or less, inert gas was introduced into the sputtering chamber, and then power was applied to the target to reduce the film formation rate to q(Å).
/min) and gas pressure p (Torr), q/
A method for manufacturing a magneto-optical recording medium, comprising forming a recording layer made of a transition metal and a rare earth metal on a substrate by performing sputtering under conditions where p is 2.4×/10^4 or more.
(2)基板上に、スパッタ法により成膜された遷移金属
及び希土類金属を主体とする記録層を有する光磁気記録
媒体において、該記録層は、 Tb−Fe−Co−X(Xは、Cr、Ta、Al、Pt
、Ti、W及びVの中から選ばれた少なくとも一種の元
素)系合金の薄膜であつて、かつ成膜速度をq(Å/分
)及びガス圧をp(Torr)としたときに、q/pが
10^5以上である条件で成膜されたものであることを
特徴とする光磁気記録媒体。
(2) In a magneto-optical recording medium having a recording layer mainly composed of transition metals and rare earth metals formed on a substrate by sputtering, the recording layer is made of Tb-Fe-Co-X (X is Cr). , Ta, Al, Pt
, at least one element selected from Ti, W, and V), and when the film formation rate is q (Å/min) and the gas pressure is p (Torr), q 1. A magneto-optical recording medium characterized in that the film is formed under conditions where /p is 10^5 or more.
JP1321490A 1990-01-23 1990-01-23 Magneto-optical recording medium and production thereof Pending JPH03216832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1321490A JPH03216832A (en) 1990-01-23 1990-01-23 Magneto-optical recording medium and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1321490A JPH03216832A (en) 1990-01-23 1990-01-23 Magneto-optical recording medium and production thereof

Publications (1)

Publication Number Publication Date
JPH03216832A true JPH03216832A (en) 1991-09-24

Family

ID=11826906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1321490A Pending JPH03216832A (en) 1990-01-23 1990-01-23 Magneto-optical recording medium and production thereof

Country Status (1)

Country Link
JP (1) JPH03216832A (en)

Similar Documents

Publication Publication Date Title
US5577020A (en) Magneto-optical disc with intermediate film layer between a recording film and a dielectric film
US4995024A (en) Magneto-optical recording element
JPH0325737A (en) Magneto-optical recording medium
EP0470546B1 (en) Magneto-optical recording medium
JPH03216832A (en) Magneto-optical recording medium and production thereof
US5710746A (en) Magneto-optical recording medium and reading method with magnetic layers of different coercivity
JPH0227545A (en) Magneto-optical recording layer and film formation thereof
JP2766520B2 (en) Method for manufacturing magneto-optical recording medium
US5529854A (en) Magneto-optic recording systems
US5193085A (en) Magneto-optical recording medium with exchange-coupled reproducing layer containing platinum
JP2681199B2 (en) Magneto-optical recording element
JPS62222609A (en) Photomagnetic recording medium
KR940007286B1 (en) Optical-magnetic medium
JP2729308B2 (en) Magneto-optical recording element and manufacturing method thereof
JP2620088B2 (en) Magneto-optical recording element and manufacturing method thereof
JPH0660452A (en) Magneto-optical recording medium
KR100244213B1 (en) Manufacturing method of magneto-optical recording medium
JP2932687B2 (en) Magneto-optical recording medium
JP3128232B2 (en) Magneto-optical recording medium
JP2829321B2 (en) Magneto-optical recording medium
KR100209584B1 (en) Magneto-optical disk
JPH05217232A (en) Magneto-optical recording medium and its production
JPH0684216A (en) Production of magneto-optical recording medium
JPH0464940A (en) Magneto-optical recording medium
JPH03278345A (en) Magneto-optical recording medium