JPH03215498A - Protein-polysaccharides complex material - Google Patents

Protein-polysaccharides complex material

Info

Publication number
JPH03215498A
JPH03215498A JP2003559A JP355990A JPH03215498A JP H03215498 A JPH03215498 A JP H03215498A JP 2003559 A JP2003559 A JP 2003559A JP 355990 A JP355990 A JP 355990A JP H03215498 A JPH03215498 A JP H03215498A
Authority
JP
Japan
Prior art keywords
complex
protein
dextran
ovalbumin
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003559A
Other languages
Japanese (ja)
Inventor
Akio Kato
昭夫 加藤
Kunihiko Kobayashi
邦彦 小林
Soichiro Nakamura
宗一郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakano Vinegar Co Ltd
Original Assignee
Nakano Vinegar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakano Vinegar Co Ltd filed Critical Nakano Vinegar Co Ltd
Priority to JP2003559A priority Critical patent/JPH03215498A/en
Publication of JPH03215498A publication Critical patent/JPH03215498A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bakery Products And Manufacturing Methods Therefor (AREA)
  • Seasonings (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To obtain the subject complex material useful for foods or drugs, etc., as functional protein having a high emulsifying activity and an antibacterial activity with safety by boning protein and branched polysaccharide with an aminocarbonyl reaction. CONSTITUTION:Protein is bonded to branched polysaccharide with an aminocarbonyl reaction to afford the objective complex material. Besides, e.g. dextran is used as the polysaccharide and allowed to react preferably in a condition of 50-80 deg.C and 60-80% relative humidity for 2-6 week.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は蛋白質と活性化していない分枝状多糖類とをア
ミノカルボニル反応によって結合させた蛋白質一多糖類
複合体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a protein-polysaccharide complex in which a protein and an unactivated branched polysaccharide are bonded by an aminocarbonyl reaction.

〔従来の技術及び発明が解決しようとする課題〕従来、
蛋白質に化学修飾(J, Agric.Food Ch
em.+33, 125(1985))や酵素修飾(A
gric. Biol. Chew.,50. 302
5(1986))を施したり、加熱等により蛋白質を変
性させたり (Agric. Biol. Che+w
.. 45+ 2775(1981))することによっ
て、蛋白質の機能性を改善しようとする研究が数多くな
されてきた。
[Problems to be solved by conventional techniques and inventions] Conventionally,
Chemical modification of proteins (J, Agric. Food Ch
em. +33, 125 (1985)) and enzyme modification (A
gric. Biol. Chew. ,50. 302
5 (1986)) or denature the protein by heating etc. (Agric. Biol. Che+w
.. .. 45+ 2775 (1981)), many studies have been conducted to improve the functionality of proteins.

しかしながら、従来の化学修飾すなわち蛋白質のアシル
化、アルキル化、アミド化、脱アミド化、エステル化等
の処理及び蛋白質に炭水化物や脂肪酸を結合させる処理
においては薬剤を用いるため、安全性の面からこれらの
化学修飾により得られた蛋白質を食品原料として使用す
るには問題があった。
However, conventional chemical modifications, such as acylation, alkylation, amidation, deamidation, and esterification of proteins, as well as the binding of carbohydrates and fatty acids to proteins, involve the use of drugs, so these methods are not recommended from a safety perspective. There are problems in using proteins obtained by chemical modification as food raw materials.

また、一般に蛋白質は乳化活性を有するが、加熱等の処
理による変性に伴って不溶化がおこり、乳化剤等に用い
る場合、品質上の欠陥が生じる。
In addition, although proteins generally have emulsifying activity, they become insolubilized when denatured by treatments such as heating, resulting in quality defects when used as emulsifiers and the like.

本発明者らはこれまで行なわれてきた化学修飾・酵素修
飾の大部分が低分子物質を結合させる試みであったとい
う現状を踏まえ、また現在、一般的によく用いられてい
るショ糖一脂肪酸エステル等の低分子系乳化剤がpnや
塩濃度の影響を受けやすいという欠点を有していたこと
から、優れた高分子系乳化剤を得るべく多Ii類のよう
な高分子物質を蛋白質に結合させることを試み、その結
果活性化した分枝状多I!類を結合させることによって
水溶性でかつ乳化特性に優れた機能性蛋白質が得られる
ことを発見した.(特開平1 −233300; J,
Agric.Food  Chew.  3β,,  
42N198B);  Agric.  Biol. 
 CheII1.訪, 2147(1989)) Lか
しながら、この方法は分枝状多I!類を活性化すること
が必須であるため、活性化剤として臭化シアン、過ヨー
ド酸ナトリウム、塩化シアヌル等の薬剤を用いており、
先に述べたように安全性の面で問題が残っていた。
The present inventors took into account the current situation that most of the chemical and enzymatic modifications that have been carried out to date have been attempts to bind low-molecular substances, and also Since low-molecular-weight emulsifiers such as esters had the disadvantage of being easily affected by pn and salt concentration, in order to obtain excellent polymer-based emulsifiers, high-molecular substances such as Polymer Ii were bonded to proteins. As a result, the branched multi-I! It was discovered that a functional protein that is water-soluble and has excellent emulsifying properties can be obtained by combining these molecules. (Unexamined Japanese Patent Publication No. 1-233300; J,
Agric. Food Chew. 3β,,
42N198B); Agric. Biol.
CheII1. (Vis., 2147 (1989)) However, this method has a branched polymorphism. Since it is essential to activate these compounds, chemicals such as cyanogen bromide, sodium periodate, and cyanuric chloride are used as activators.
As mentioned earlier, safety issues remained.

また、得られた機能性蛋白質は分子量分布が広く製品の
規格基準をそろえにくいという欠点も有していた。
In addition, the obtained functional protein had a wide molecular weight distribution, making it difficult to standardize the product specifications.

本発明の課題は、これら従来技術の有する問題点を解消
し、安全でかつ優れた乳化特性を有する機能性蛋白質を
提供することにある。
An object of the present invention is to solve the problems of these conventional techniques and to provide a functional protein that is safe and has excellent emulsifying properties.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記問題点を解決すべくさらに研究を重
ねた結果、安全性の点で問題のある薬剤による活性化処
理を施さないで、分枝状多IJi類及び蛋白質がアミノ
カルボニル反応という極めて自然におこりうる安全な反
応によって複合体を形成し、しかも得られた複合体は乳
化特性に優れ、薬剤による活性化処理を施して得た複合
体よりも高い乳化活性を示し、分子量分布も狭く品質管
理上好ましい性質を有しており、また、とりわけ蛋白質
としてリゾチームを用いると単独ではダラム陰性菌に対
する抗菌活性はないが、本発明の複合体にすることによ
ってダラム陰性菌に対する抗菌活性が発現するという新
たな特性も加わったことを見出し、本発明を完成するに
到った。
As a result of further research in order to solve the above problems, the present inventors have found that branched polyIJi and proteins undergo aminocarbonyl reaction without activation treatment with drugs that are problematic in terms of safety. The complex is formed through a very naturally occurring and safe reaction, and the resulting complex has excellent emulsifying properties, exhibiting higher emulsifying activity than complexes obtained by activation treatment with drugs, and has a low molecular weight distribution. Also, when lysozyme is used as a protein, it has no antibacterial activity against Durham-negative bacteria, but by making it into the complex of the present invention, it has antibacterial activity against Durham-negative bacteria. The present invention was completed based on the discovery that a new property of expression was also added.

すなわち、本発明は、蛋白質と分枝状多糖類とをアミノ
カルボニル反応によって結合させた蛋白質一多糖類複合
体に関するものである。
That is, the present invention relates to a protein-polysaccharide complex in which a protein and a branched polysaccharide are bonded together through an aminocarbonyl reaction.

更に具体的には、乳化活性及び又は抗菌活性を有する上
記複合体に関するものである。
More specifically, it relates to the above complex having emulsifying activity and/or antibacterial activity.

以下、本発明につき、さらに詳細に説明する。The present invention will be explained in more detail below.

本発明でいう蛋白質とは、動物起源、植物起源のいずれ
でもよく、例えば卵白アルブミン、リゾチーム、牛乳蛋
白質、魚肉蛋白質、大豆蛋白質、小麦グルテン等が挙げ
られる。
The protein referred to in the present invention may be of either animal origin or plant origin, and includes, for example, ovalbumin, lysozyme, milk protein, fish protein, soybean protein, wheat gluten, and the like.

分枝状多Ii類としては、例えば、デキストラン、デキ
ストリン、ブルラン、キサンタンガム、カラギーナン、
コンドロイチン硫酸等が挙げられる。
Examples of branched polyol group II include dextran, dextrin, bullulan, xanthan gum, carrageenan,
Examples include chondroitin sulfate.

これら分枝状多糖類は、活性化処理を施す必要はなく、
そのままアミノカルボニル反応に供し、蛋白質との複合
体を形成しうる。
These branched polysaccharides do not require activation treatment;
It can be directly subjected to an aminocarbonyl reaction to form a complex with a protein.

本発明におけるアミノカルポニル反応は、例えは次のよ
うにして行なう。蛋白質と分枝状多糖類を適当な割合で
混合して水溶液とし、凍結乾燥させる。得られた粉末は
、個々の蛋白質によってアミノカルボニル反応の条件が
異なるが、概して50〜80゜C、相対湿度60〜80
%の条件下で2〜6週間反応させるごとにより、本発明
の複合体が形成される。
The aminocarbonyl reaction in the present invention is carried out, for example, as follows. Protein and branched polysaccharide are mixed in appropriate proportions to form an aqueous solution, which is then freeze-dried. The conditions for the aminocarbonyl reaction of the obtained powder differ depending on the individual protein, but in general, the temperature is 50-80°C and the relative humidity is 60-80°C.
% conditions for every 2 to 6 weeks, the complex of the present invention is formed.

反応条件を50’C未満あるいは相対湿度60%未満に
するとアミノカルボニル反応がおこりにくく、80゜C
を超える高温では褐変が急激におこるため、蛋白質の乳
化活性や抗菌活性が低下する原因となる。また相対湿度
が80%を超えるとべ夕つきがおこり品質の安定性が望
ましくない。2週間未満では反応が十分に進まず、また
6週間を超えて反応させても複合体の乳化活性は向上し
ない。
If the reaction conditions are less than 50°C or relative humidity less than 60%, the aminocarbonyl reaction is difficult to occur;
At high temperatures exceeding , browning occurs rapidly, which causes a decrease in the emulsifying activity and antibacterial activity of the protein. Moreover, when the relative humidity exceeds 80%, sootiness occurs and the stability of quality is undesirable. If the reaction is carried out for less than 2 weeks, the reaction will not proceed sufficiently, and if the reaction is carried out for more than 6 weeks, the emulsifying activity of the complex will not improve.

上記条件により反応させた粉末を水溶液とし、470n
mにおける吸光度を測定し、褐変反応の進行が確認でき
れば本発明の複合体とすることができる。また、本複合
体は必要に応じてゲル濾過等によって濃縮して用いるこ
とができる。
The powder reacted under the above conditions was made into an aqueous solution, and 470n
If the progress of the browning reaction can be confirmed by measuring the absorbance at m, the composite of the present invention can be obtained. Further, the present complex can be used after being concentrated by gel filtration or the like, if necessary.

こうして得られた本発明の複合体は水に可溶でかつ薬剤
により活性化した分枝状多糖類を結合させたものよりも
乳化活性が高い。また耐塩性、耐酸性においても既存の
食品用乳化剤と比べて温かに優れており、更にはアルカ
リ性溶液中および加熱により乳化特性が向上するという
利点も有している。
The thus obtained complex of the present invention is soluble in water and has a higher emulsifying activity than one in which a branched polysaccharide activated by a drug is bound. In addition, it has superior salt resistance and acid resistance in warm conditions compared to existing food emulsifiers, and also has the advantage that its emulsifying properties are improved in alkaline solutions and when heated.

また、蛋白質としてリゾチームを用いた場合には、複合
体にすることによって単独では得られなかったダラム陰
性菌に対する抗菌性が得られるという新しい機能も有し
ていた。
Furthermore, when lysozyme was used as a protein, it had a new function in that by making it into a complex, antibacterial properties against Durham-negative bacteria could not be obtained by using it alone.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、蛋白質と多糖類との複合体を得るに際
して薬剤を使用せず、アミノカルボニル反応を用いるた
め得られた蛋白質−多糖類複合体は安全なものであり、
食品、医薬品、化粧品等に適用することができる。更に
また、本発明の蛋白質一多糖類複合体は、従来の乳化剤
に比べ、耐酸性、耐塩性に優れているほか、更に耐熱性
にも優れているため、乳化剤として極めて有利に使用で
きるほか、得られる複合体の分子量分布も狭く、製品の
規格もそろえ易いという利点を有するものである。とり
わけ、蛋白質がリゾチームである場合の蛋白質一多糖類
複合体は、単独のりゾチーノ、がグラム陰性菌に対して
は抗菌活性がなかったのに対し、ダラム陰性菌に対して
も抗菌活性を有するようになり、この点でも画期的なも
のであり、本発明は、上記食品、医薬品、化粧品等の分
野において多大な貢献をするものである。
According to the present invention, the protein-polysaccharide complex obtained is safe because the aminocarbonyl reaction is used without using any drugs when obtaining the protein-polysaccharide complex.
It can be applied to foods, medicines, cosmetics, etc. Furthermore, the protein-polysaccharide complex of the present invention has excellent acid resistance and salt resistance as well as heat resistance compared to conventional emulsifiers, so it can be used extremely advantageously as an emulsifier. The obtained composite has the advantage that the molecular weight distribution is narrow and the product specifications can be easily matched. In particular, when the protein is lysozyme, the protein-polysaccharide complex appears to have antibacterial activity against Durham-negative bacteria as well, whereas lysozyme alone had no antibacterial activity against Gram-negative bacteria. This invention is groundbreaking in this respect as well, and the present invention will make a significant contribution to the fields of food, medicine, cosmetics, etc. mentioned above.

つぎに本発明の実施例により詳しく説明する。Next, the present invention will be explained in detail using examples.

(実施例〕 実施例l 卵白アルブミンーデキストラン複合体の調製 卵白アルブミンとデキストラン(和光純薬工業製;平均
分子量75000)の混合物(重量比1:1およびl:
5)を卵白アルプミン1gに対して水l00Idに溶解
し、30分間攪拌した後、凍結乾燥した。得られた粉末
をガラスシャーレに入れ、飽和ヨウ化カリウム溶液で約
65%湿度に調整したデシケータ中で50’C又は60
゜Cで3週間保持することにより反応せしめた。対照と
してデキストランの代わりにグルコースを用いた混合物
(重量比1:1)についても同様に調製した。
(Example) Example 1 Preparation of ovalbumin-dextran complex A mixture of ovalbumin and dextran (manufactured by Wako Pure Chemical Industries, Ltd.; average molecular weight 75,000) (weight ratio 1:1 and l:
5) was dissolved in 100 Id of water per 1 g of egg white albumin, stirred for 30 minutes, and then freeze-dried. The obtained powder was placed in a glass Petri dish and heated at 50'C or 60°C in a desiccator adjusted to approximately 65% humidity with a saturated potassium iodide solution.
The reaction was carried out by keeping the mixture at °C for 3 weeks. As a control, a mixture using glucose instead of dextran (weight ratio 1:1) was similarly prepared.

得られた複合体を蒸留水に溶解し、470nmの吸光度
を測定し、褐変反応の進行を確認した結果を第1図に示
した。
The obtained complex was dissolved in distilled water, and the absorbance at 470 nm was measured to confirm the progress of the browning reaction. The results are shown in FIG.

第1図より、卵白アルブミンーグルコース混合物は50
’Cで反応せしめると褐変が急速に進行するのに対し、
卵白アルプミンーデキストラン混合物は同じ条件ではわ
ずかじか褐変せず、アミノカルボニル反応が進んでいな
いことが示された。一方、60゜Cで反応せしめた卵白
アルブミンーデキストラン混合物(重量比1:5)では
褐変が認められ、アミノカルボニル反応による複合体が
生成していることがわかる。
From Figure 1, the ovalbumin-glucose mixture is 50%
When reacting with 'C, browning progresses rapidly, whereas
The egg white albumin-dextran mixture did not turn slightly brown under the same conditions, indicating that the aminocarbonyl reaction did not proceed. On the other hand, browning was observed in the ovalbumin-dextran mixture (weight ratio 1:5) reacted at 60°C, indicating that a complex was formed due to the aminocarbonyl reaction.

実施例2 卵白アルブミンーデキストラン複合体と卵白
アルプミンーグルコース複合体 の乳化特性の比較 乳化特性はPearceらの方法(J.八gric. 
Food.Chem.,26. 716−723(19
78))に準じて測定した。
Example 2 Comparison of emulsifying properties of ovalbumin-dextran complex and oval albumin-glucose complex The emulsifying properties were determined by the method of Pearce et al.
Food. Chem. , 26. 716-723 (19
78)).

すなわち、油1. 0 dと蛋白質複合体の0.1χ(
w/v)水溶液3.0戚をよく振盪した後12000r
pI1で20”C、1分間ホモゲナイズして乳化物を得
た。得られた乳化物を経時的に底から50μlまたは1
00μ!取り、0. 1χSDS水溶液5戚で希釈し、
5 00n+mにおける吸光度を測定した。尚、乳化直
後に測定した吸光度を乳化活性とし、乳化安定性は吸光
度の半減朋で評価した。
That is, oil 1. 0 d and 0.1χ (
w/v) 12000r after shaking the aqueous solution 3.0 well.
Homogenize at pI1 for 1 minute at 20"C to obtain an emulsion. 50 μl or 1
00μ! Take, 0. Diluted with 1χ SDS aqueous solution 5,
The absorbance at 500n+m was measured. The absorbance measured immediately after emulsification was defined as the emulsifying activity, and the emulsifying stability was evaluated based on the half-reduction of the absorbance.

第2図に、実施例lで得られた複合体3種と60゜Cに
保持した卵白アルブミン単独の場合について乳化活性を
測定した結果を示した。第2図よりアミノカルボニル反
応によって得られた卵白アルブミンーデキストラン混合
物は、卵白アルブミングルコース混合物及び卵白アルブ
ミン単独に比べて溝かに高い活性を有していた。とりわ
け、重量比1;5で60゜C3週間保持することにより
反応せしめた卵白アルブミンーデキストラン複合体は活
性が高かった。
FIG. 2 shows the results of measuring the emulsifying activity of the three types of complexes obtained in Example 1 and ovalbumin alone maintained at 60°C. From FIG. 2, the ovalbumin-dextran mixture obtained by the aminocarbonyl reaction had significantly higher activity than the ovalbumin-glucose mixture and ovalbumin alone. In particular, the ovalbumin-dextran complex reacted by maintaining it at 60°C for 3 weeks at a weight ratio of 1:5 had high activity.

実施例3 種々の蛋白質一多糖類複合体の調製実施例1
に於けるデキストランをデキストリンに代え、その他は
実施例1と全く同様(相対湿度65χ、温度60’Cで
3週間保持することにより反応)にして卵白アルブミン
ーデキストリン複合体を調製し、本発明複合体を得た。
Example 3 Preparation of various protein-polysaccharide complexes Example 1
An ovalbumin-dextrin complex was prepared in the same manner as in Example 1 except that dextran was replaced with dextrin (the reaction was maintained at a relative humidity of 65χ and a temperature of 60'C for 3 weeks). I got a body.

また実施例lに於ける卵白アルミプンを大豆蛋白、リゾ
チームに代え、その他は実施例lと全く同様にして大豆
蛋白一デキストラン複合体、リゾチームーデキストラン
複合体を調製して本発明複合体を得た。
In addition, a soybean protein-dextran complex and a lysozyme-dextran complex were prepared in the same manner as in Example 1 except that the egg white aluminium in Example 1 was replaced with soybean protein and lysozyme, and the complex of the present invention was obtained. .

実施例4 卵白アルブミンーデキストラン複合体の精製
と複合体生成の確認 実施例2で最も乳化活性の高かった卵白アルプミンーデ
キストラン複合体(重量比1:5,60゜C,65χ相
対湿度で3週間保持することにより反応)をさらに精製
するため、セフアクリルS−300 (70X3cm)
を用いてゲル濾過を行なった結果を第3図に示す。
Example 4 Purification of ovalbumin-dextran complex and confirmation of complex formation Ovalbumin-dextran complex, which had the highest emulsifying activity in Example 2 (weight ratio 1:5, 3 weeks at 60°C and 65χ relative humidity) Sephacryl S-300 (70X3cm) to further purify the reaction)
Figure 3 shows the results of gel filtration using .

溶出は10n+M NaClを含有する50mM酢酸緩
衝液(pH5.0)を用いて流速は毎分0.36mlで
行ない、3.Omlずつ分画した。
Elution was performed using 50mM acetate buffer (pH 5.0) containing 10n+M NaCl at a flow rate of 0.36ml per minute; 3. It was fractionated in Oml portions.

第3図において、実線は280nmにおける吸光度(蛋
白質の吸収)を、破線はフェノール硫酸法で発色させた
後の470nmにおける吸光度(tJ!の吸収)を示し
ている。未処理卵白アルブミンの溶出位置を矢印で示し
たが、本発明の複合体中の卵白アルブミンの溶出位置は
卵白アルブミン単独の溶出位置より高分子側に移り、又
、その位置がデキストランの溶出位置とほぼ一致した事
及びその両者の?容出パターンが類似していることによ
り卵白アルブミンーデキストラン複合体が形成されてい
る事が確認できた。
In FIG. 3, the solid line shows the absorbance at 280 nm (absorption of protein), and the broken line shows the absorbance at 470 nm (absorption of tJ!) after color development using the phenol-sulfuric acid method. The elution position of untreated ovalbumin is shown by an arrow, but the elution position of ovalbumin in the complex of the present invention is shifted to the polymer side compared to the elution position of ovalbumin alone, and this position is also the elution position of dextran. The fact that they almost matched and the two? It was confirmed that an ovalbumin-dextran complex was formed because the release patterns were similar.

第3図の分画番号26 − 36を脱イオン水に対して
透析後、凍結乾燥し、本発明卵白アルブミンーデキスト
ラン複合体とした。さらに複合体の形成を確認するため
に、SDS−ポリアクリルアミドゲル電気泳動を行なっ
た結果を第4図に示す。
Fraction numbers 26-36 in FIG. 3 were dialyzed against deionized water and then freeze-dried to obtain the ovalbumin-dextran complex of the present invention. In order to further confirm the formation of a complex, SDS-polyacrylamide gel electrophoresis was performed, and the results are shown in FIG.

電気泳動は、0. 1χSDSを含む10χアクリルア
ミド分離ゲルと3χ固定ゲルを用いてLaemmliの
方法(Nature, 227, 680(1970)
)に準じて行なった。蛋白質試料(20μf,0.1χ
)は1χSDSと1χメルカブトエタノールを含むトリ
スーグリシン緩衝液(pH8.8)で調製し、電気泳動
は0. 1χSDSを含むトリスーグリシン泳動用緩衝
液を用い、10mAの一定電流で5時間行なった。ゲル
はクーマシープル一〇−250とフクシンを用いてl及
び炭水化物染色を行なった。
Electrophoresis was performed at 0. Laemmli's method (Nature, 227, 680 (1970)) using a 10χ acrylamide separation gel containing 1χ SDS and a 3χ fixation gel.
). Protein sample (20μf, 0.1χ
) was prepared with a tris-glycine buffer (pH 8.8) containing 1χ SDS and 1χ mercaptoethanol, and electrophoresis was carried out at 0. Using a tris-glycine migration buffer containing 1xSDS, the electrophoresis was carried out at a constant current of 10 mA for 5 hours. The gel was stained with Coomassie Pul 10-250 and fuchsin for carbohydrate staining.

第4図より、卵白アルブミンーデキストラン複合体は固
定ゲルと分離ゲルの間の境目付近に蛋白質と炭水化物染
色の単一バンドが出ていることから、卵白アルブミンが
デキストランに共有結合していることがわかる。さらに
、画分l (第3図の分画番号26〜30)は画分2 
(第3図の分画番号31〜36)よりも鋭いバンドを示
した。一方、臭化シアンで活性化したデキストランを用
いて調製した卯白アルブミンーデキストラン複合体は固
定ゲルで高分子の広いバンドがみられ、分子量分布が広
いことがわかった。このことからも本発明の複合体が臭
化シアン等を用いたものよりも規格基準をそろえやすい
という利点を有していることがわかる。続いて、本発明
の卯白アルブミンーデキストラン複合体の平均分子量を
高速液体クロマトグラフィーを連結した低角光散乱技術
を用いて決定した.(J.八gric. Food. 
Chem. 36, 421 (1988))その結果
、平均分子量は約20万であり、この値は本複合体にお
ける卵白アルブミン対デキストランの結合比率の重量比
l:3,モル比t : 1.6〜2.2から得られる推
定値とよく一致している。
From Figure 4, the ovalbumin-dextran complex shows a single band of protein and carbohydrate staining near the boundary between the fixation gel and separation gel, indicating that ovalbumin is covalently bound to dextran. Recognize. Furthermore, fraction 1 (fraction numbers 26 to 30 in Figure 3) is fraction 2.
(Fraction numbers 31 to 36 in Figure 3) showed a sharper band. On the other hand, the white albumin-dextran complex prepared using dextran activated with cyanogen bromide showed a broad band of polymers in the immobilized gel, indicating that it had a wide molecular weight distribution. This also shows that the composite of the present invention has the advantage that specifications can be more easily met than those using cyanogen bromide or the like. Subsequently, the average molecular weight of the white albumin-dextran complex of the present invention was determined using a low-angle light scattering technique coupled with high-performance liquid chromatography. (J. Hachigric. Food.
Chem. 36, 421 (1988)) As a result, the average molecular weight was about 200,000, and this value was determined by the weight ratio of the binding ratio of ovalbumin to dextran in this complex: l:3, molar ratio t: 1.6-2. It is in good agreement with the estimated value obtained from 2.

また、実施例3で調製したりゾチームーデキストラン複
合体の平均分子量は約15万、リゾチームとデキストラ
ンの結合比(モル比)はl:2であり、大豆蛋白質−デ
キストラン複合体の平均分子量は約22〜23万、結合
比(モル比)は1:lであった。
Furthermore, the average molecular weight of the zozyme-dextran complex prepared in Example 3 is approximately 150,000, the binding ratio (molar ratio) of lysozyme and dextran is 1:2, and the average molecular weight of the soybean protein-dextran complex is approximately 220,000 to 230,000, and the binding ratio (molar ratio) was 1:1.

実施例5 本発明の卯白アルブミンーデキストラン複合
体と卵白アルブミンー臭化シア ンで活性化したデキストラン複合体と の乳化特性の比較 実施例4で分画した本発明の卵白アルブミンデキストラ
ン複合体の画分1、画分2 (第3図)および臭化シア
ンで活性化したデキストランを結合させた卵白アルプミ
ンーデキストラン複合体について実施例2と同法にて乳
化特性を測定した結果を第5図に示す。
Example 5 Comparison of emulsifying properties between the rabbit albumin-dextran complex of the present invention and the ovalbumin-dextran complex activated with cyanogen bromide Fraction of the egg white albumin dextran complex of the present invention fractionated in Example 4 Figure 5 shows the results of measuring the emulsifying properties of Fraction 1, Fraction 2 (Figure 3) and the egg white albumin-dextran complex bound with dextran activated with cyanogen bromide using the same method as in Example 2. .

本発明の複合体は臭化シアンで活性化したデキストラン
を結合させた複合体よりも数倍乳化活性が高かった。こ
のことからも本発明の複合体は乳化力が強いことがわか
る。また、単なる混合物では卵白アルプミン単独と同程
度に活性が低かった。
The complex of the present invention had several times higher emulsifying activity than the complex bound to dextran activated with cyanogen bromide. This also shows that the composite of the present invention has strong emulsifying power. Moreover, the activity of a simple mixture was as low as that of egg white albumin alone.

さらに、吸光度の半減期は、卵白アルブミン単独で約3
0秒、臭化シアンで活性化したデキストランを結合させ
た複合体で約1分であるのに対し本発明複合体では約I
O分であり、乳化安定性にも優れていた。また市販乳化
剤3種(実施例8参照)については吸光度の半減期はい
ずれも約5分てあった。
Furthermore, the absorbance half-life of ovalbumin alone is approximately 3
0 seconds, and about 1 minute for the complex bound to dextran activated with cyanogen bromide, while for the complex of the present invention it takes about I
The emulsion stability was also excellent. Furthermore, the absorbance half-life of three commercially available emulsifiers (see Example 8) was approximately 5 minutes.

尚、画分1と画分2は乳化特性の差がほとんどなかった
ので、以後はまとめて使用した。
Incidentally, since there was almost no difference in emulsifying properties between Fraction 1 and Fraction 2, they were used together from now on.

実施例6 乳化特性に及ぼすpllの影響実施例4で精
製した卵白アルブミンーデキストラン複合体の乳化特性
に及ぼすpl+の影響を、水相としてl/15Mリン酸
緩衝液(pH7.4)、1/15M炭酸緩衝液(pH 
1 0)、l/15Mクエン酸緩衝液(pl+ 3 )
の3種を用いて測定した結果を第6図に示す。
Example 6 Effect of pl+ on emulsification properties The effect of pl+ on the emulsification properties of the ovalbumin-dextran complex purified in Example 4 was investigated using 1/15M phosphate buffer (pH 7.4) as the aqueous phase and 1/15M phosphate buffer (pH 7.4) as the aqueous phase. 15M carbonate buffer (pH
10), l/15M citrate buffer (pl+3)
FIG. 6 shows the results of measurements using three types.

第6図より、本複合体の優れた乳化特性はp113の酸
性溶液中でも安定に保たれ、pl+ 1 0のアルカリ
溶液中ではさらに向上し、乳化活性は約2倍、吸光度の
半減期ものびて乳化安定性も増した。市販乳化剤のほと
んどが酸性溶液中では活性が極めて低いことからも本複
合体が優れていることがわかる。
From Figure 6, the excellent emulsifying properties of this complex remain stable even in an acidic solution of p113, and are further improved in an alkaline solution of p1+10, the emulsifying activity is approximately doubled, and the half-life of absorbance is extended. Emulsion stability was also increased. The superiority of this composite can also be seen from the fact that most commercially available emulsifiers have extremely low activity in acidic solutions.

また、この効果は実施例3で調製したいずれの蛋白質一
多糖類複合体についても同様に現れた。
Moreover, this effect appeared similarly for all the protein-polysaccharide complexes prepared in Example 3.

実施例7 乳化特性に及ぼす加熱処理の影響実施例4で
精製した卯白アルブミンーデキストラン複合体を100
゜Cで加熱し、未処理のものと乳化特性を比較し、第7
図に示した。第7図より、本複合体は100゜Cで加熱
することによって乳化活性は約1.6倍に上昇し、乳化
安定性を示す吸光度の半減期も明らかに延びていること
がわかる。熱変性による蛋白質の沈澱もみられず、以上
の結果から本複合体は加熱殺菌して使用できるという利
点を有していることがわかる。
Example 7 Effect of heat treatment on emulsification properties The white albumin-dextran complex purified in Example 4 was
Heated at °C and compared the emulsifying properties with the untreated one.
Shown in the figure. From FIG. 7, it can be seen that when this complex is heated at 100°C, the emulsifying activity increases about 1.6 times, and the half-life of absorbance, which indicates emulsion stability, is also clearly extended. No protein precipitation due to heat denaturation was observed, and the above results indicate that this complex has the advantage of being heat sterilized and usable.

また、実施例3で調製したいずれの蛋白質複合体につい
ても同様の効果を有していた。
Furthermore, all of the protein complexes prepared in Example 3 had similar effects.

実施例8 市販乳化剤との乳化活性の比較水溶液、耐酸
性、耐塩性について実施例2で使用した方法で乳化活性
を測定し、市販乳化剤3種と比較した結果を第1表に示
す。いずれも0.1χ(w/v)水溶液として用い、耐
酸性は酢酸を1χ添加、耐塩性はNaC lを3χ添加
して乳化させた。市販乳化剤としては、キラヤニンC−
100 (丸善化成製)、モノグリセリド(太陽化学製
)、シヨ糖脂肪酸エステルS−1570(三菱化成製)
の3種を使用し、本発明の蛋白質一多Ig類複合体は実
施例lおよび実施例3で調製した卵白アルブミンーデキ
ストラン複合体および大豆蛋白−デキストラン複合体く
重量比1:5,60″C,  3週間反応)を使用した
Example 8 Comparison of emulsifying activity with commercially available emulsifiers The emulsifying activity of aqueous solution, acid resistance, and salt resistance was measured using the method used in Example 2, and the results of comparison with three types of commercially available emulsifiers are shown in Table 1. Both were used as 0.1x (w/v) aqueous solutions, and for acid resistance, acetic acid was added for 1x, and for salt resistance, NaCl was added for 3x and emulsified. As a commercially available emulsifier, Quillayanin C-
100 (manufactured by Maruzen Kasei), monoglyceride (manufactured by Taiyo Kagaku), sucrose fatty acid ester S-1570 (manufactured by Mitsubishi Kasei)
The protein-multi-Ig complex of the present invention is the ovalbumin-dextran complex and the soybean protein-dextran complex prepared in Example 1 and Example 3 at a weight ratio of 1:5.60''. C, 3-week reaction) was used.

(本真以下余白) 以上のように本発明の蛋白質一多糖類複合体は市販乳化
剤よりも耐酸性、耐塩性に優れていることがわかる。
(Margins below the text) As described above, it can be seen that the protein-polysaccharide complex of the present invention has better acid resistance and salt resistance than commercially available emulsifiers.

実施例9 リゾチームーデキストラン複合体の抗菌活性 実施例3で調製したりゾチームーデキストラン複合体を
用いて抗菌活性を抗菌スペクトルにより測定した結果を
第2表に示す。用いた菌種は八. hydrop旧1a
, V, parahaemolyticus, E.
coliの3種でいずれもダラム陰性菌である。
Example 9 Antibacterial activity of lysozyme-dextran complex The antibacterial activity of the lysozyme-dextran complex prepared in Example 3 was measured by antibacterial spectrum, and the results are shown in Table 2. The bacterial species used were 8. hydro old 1a
, V. parahaemolyticus, E.
All three types of coli are Durham-negative bacteria.

それぞれの菌は第2表〜第4表に示す組成から成る寒天
培地にリゾチーム及びリゾチームーデキストラン複合体
をリゾチーム換算で100ppm添加して30゜Cで3
日間培養した。
For each bacterium, 100 ppm of lysozyme and lysozyme-dextran complex (calculated as lysozyme) was added to an agar medium having the composition shown in Tables 2 to 4, and incubated at 30°C for 30 minutes.
Cultured for 1 day.

第5表にそれぞれの菌に対する抗菌活性を示す。Table 5 shows the antibacterial activity against each bacteria.

表中−は抗菌作用が認められなかったことを示し、++
は抗菌作用が特に強かったことを示す。
- in the table indicates that no antibacterial effect was observed, ++
indicates that the antibacterial effect was particularly strong.

第2表 A. hydrophila 用培地 第3表 ■. parahaemolyticus用培地第4表 E,coli 用培地 ^.bydrophila V,parahaemolyticus{+ ++ E.coli ÷+ 以上のようにいずれの菌種に対しても、リゾチーム単独
ではダラム陰性菌に対して抗菌作用を示さないが、アミ
ノカルボニル反応によってデキストランを結合させるこ
とにより、抗菌活性を発現したことがわかる。
Table 2 A. Hydrophila culture medium Table 3 ■. parahaemolyticus Table 4 E, coli medium ^. byrophila V, parahaemolyticus {+ ++ E. coli ÷+ As mentioned above, lysozyme alone does not show antibacterial activity against Durham-negative bacteria for any bacterial species, but it has been shown that lysozyme exerts antibacterial activity by binding dextran through an aminocarbonyl reaction. Recognize.

このように、アミノカルボニル反応により蛋白質一多糖
類複合体になることによって乳化活性を有し、ダラム陰
性菌の菌体に結合しやすい構造になったと推定される。
Thus, it is presumed that the aminocarbonyl reaction forms a protein-polysaccharide complex, which has emulsifying activity and has a structure that easily binds to the cells of Durham-negative bacteria.

すなわち、ダラム陰性菌体外壁のりポボリサッカライド
にリゾチームーデキストラン複合体が結合し、外壁リポ
ポリサ,,カライドを不安定化させ菌体を破壊するもの
と考えられる。
That is, it is thought that the lysozyme-dextran complex binds to the povosaccharide on the outer wall of the Durham-negative bacterial cell, destabilizing the outer wall lipopolysaccharide and destroying the bacterial cell.

実施例10  卵白アルブミンーデキストラン複合体の
製パン効果 実施例1で調製した卵白アルブミンーデキストラン複合
体を用いて第6表に示す配合比で家庭用ホームベーカリ
ーにて常法に従ってパンを焼いたところ、対照に比べて
パン容積は有意に増大し、ふっくらとした焼き上がりに
なった。
Example 10 Bread making effect of egg white albumin-dextran complex When bread was baked using the egg white albumin-dextran complex prepared in Example 1 at the mixing ratio shown in Table 6 in a conventional manner in a home bakery, Compared to the control, the volume of the bread increased significantly, resulting in fluffy baked goods.

(本頁以下余白) 第6表 パンの配合比 強力粉        140g 砂it!     8.5g スキムミルク      3g 塩                2.5gハタ− 
         5.5g 水               105dドライイー
スト      1.5g 本発明卵白アルプミン デキストラン複合体   0.2g 実施例l1  卵白アルブミンーデキストラン複合体を
添加したドレソシング製造 実施例1で調製した卵白アルプミンーデキストラン複合
体を用いて第7表に示す配合比で常法によりドレッシン
グを作製したところ、酸・塩に対する安定性が高く分離
しにくい乳化性を有したトレンシングができた。
(Margins below this page) Table 6 Bread composition ratio Strong flour 140g Sand it! 8.5g skim milk 3g salt 2.5g hatah
5.5g water 105d dry yeast 1.5g egg white albumin dextran complex of the present invention 0.2 g Example 11 Production of dressings to which egg white albumin-dextran complex was added When a dressing was prepared using a conventional method using the compounding ratio shown in Table 7, a dressing with emulsifying properties that was highly stable against acids and salts and difficult to separate was obtained.

第7表 ドレッシングの配合比 水               40χ砂$J!  
   15χ 食酢    15χ 植物油         24χ キサンタンガム      0.2χ 食塩    5χ 本発明卵白アルブミンー デキストラン複合体   0.3χ グルタミン酸ナトリウム 0.5χ 実施例12  リゾチームーデキストラン複合体を添加
したマヨネーズの製造 実施例3で調製したリゾチームーデキストラン複合体を
用いて第8表の配合比で常法によりマヨネーズを作製し
、常温で1週間保存したところ、対照では腐敗がみられ
たが、本発明リゾチームデキストラン複合体では腐敗が
見られなかった。
Table 7 Dressing ratio water 40χ sand $J!
15χ Vinegar 15χ Vegetable oil 24χ Xanthan gum 0.2χ Salt 5χ Ovalbumin-dextran complex of the present invention 0.3χ Sodium glutamate 0.5χ Example 12 Production of mayonnaise containing lysozyme-dextran complex Lysozyme-dextran prepared in Example 3 When mayonnaise was prepared using the complex according to the conventional method at the mixing ratio shown in Table 8 and stored at room temperature for one week, spoilage was observed in the control, but no spoilage was observed with the lysozyme dextran complex of the present invention. .

第8表 マヨネーズの配合比 油               72χ卵黄    
10χ 食酢    12χ 食塩    1.5χ 辛子粉         0.2χ 水                4.0χ本発明リ
ヅチーム デキストラン複合体   0.3χ 〔発明の効果] 本発明によれば、蛋白質及び薬剤等による活性化をして
いない分枝状多IHRをアミノカルポニル反応によって
結合させることにより優れた乳化活性を有する蛋白質一
多Il!頻複合体を得ることができ、この蛋白質一多糖
類複合体は安全性の上でも優れているため食品、医薬品
、化粧品等の製造に好適に使用できる。また、抗菌活性
も有するので防腐剤等にも使用可能である。
Table 8 Mayonnaise blending ratio Oil 72χ Egg yolk
10χ Vinegar 12χ Salt 1.5χ Mustard powder 0.2χ Water 4.0χ Lizuzyme dextran complex of the present invention 0.3χ [Effects of the invention] According to the present invention, branches that have not been activated by proteins, drugs, etc. A protein that has excellent emulsifying activity is produced by combining Shata IHR with aminocarbonyl reaction! This protein-polysaccharide complex is excellent in terms of safety and can be suitably used in the production of foods, medicines, cosmetics, etc. It also has antibacterial activity, so it can be used as a preservative.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアミノカルボニル反応中の卵白アルブミンー炭
水化物混合物の褐変度を示す図、第2図はアミノカルボ
ニル反応中の各卵白アルブミン炭水化物の混合物の乳化
活性の変化を示す図、第3図は60゜C3週間反応させ
た卵白アルブミンーデキストラン複合体のセフアクリル
S−300カラムの溶出パターンを示す図、第4図は卵
白アルブミンデキストラン複合体のSDS−ポリアクリ
ルアミド電気泳動を示す図、第5図は卵白アルブミンデ
キストラン複合体の乳化特性を示す図、第6図は卵白ア
ルブミンーデキストラン複合体の乳化特性に及ぼすpH
の影響を示す図、第7図は卵白アルブミンーデキストラ
ン複合体の乳化特性に及ぼす加熱処理の影響を示す図で
ある。
Figure 1 shows the degree of browning of the ovalbumin-carbohydrate mixture during the aminocarbonyl reaction, Figure 2 shows the change in emulsifying activity of each ovalbumin carbohydrate mixture during the aminocarbonyl reaction, and Figure 3 shows the degree of browning of the ovalbumin-carbohydrate mixture during the aminocarbonyl reaction. Figure 4 shows the elution pattern of the ovalbumin-dextran complex reacted for 3 weeks on a Cephacryl S-300 column, Figure 4 shows the SDS-polyacrylamide electrophoresis of the ovalbumin-dextran complex, and Figure 5 shows the elution pattern of the ovalbumin-dextran complex reacted for 3 weeks. Figure 6 shows the effect of pH on the emulsifying properties of the ovalbumin-dextran complex.
FIG. 7 is a diagram showing the influence of heat treatment on the emulsification properties of the ovalbumin-dextran complex.

Claims (1)

【特許請求の範囲】 1、蛋白質と分枝状多糖類とをアミノカルボニル反応に
よって結合させた蛋白質−多糖類複合体。 2、乳化活性を有するものである請求項1記載の蛋白質
−多糖類複合体。 3、抗菌活性を有するものである請求項1記載の蛋白質
−多糖類複合体。
[Scope of Claims] 1. A protein-polysaccharide complex in which a protein and a branched polysaccharide are bonded together by an aminocarbonyl reaction. 2. The protein-polysaccharide complex according to claim 1, which has emulsifying activity. 3. The protein-polysaccharide complex according to claim 1, which has antibacterial activity.
JP2003559A 1990-01-12 1990-01-12 Protein-polysaccharides complex material Pending JPH03215498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003559A JPH03215498A (en) 1990-01-12 1990-01-12 Protein-polysaccharides complex material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003559A JPH03215498A (en) 1990-01-12 1990-01-12 Protein-polysaccharides complex material

Publications (1)

Publication Number Publication Date
JPH03215498A true JPH03215498A (en) 1991-09-20

Family

ID=11560785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003559A Pending JPH03215498A (en) 1990-01-12 1990-01-12 Protein-polysaccharides complex material

Country Status (1)

Country Link
JP (1) JPH03215498A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029999A (en) * 1996-07-15 1998-02-03 Kdk Corp Production of saccharified amino compound
WO2001038481A1 (en) * 1999-11-25 2001-05-31 Cognis Deutschland Gmbh & Co. Kg Detergent granules with an improved dissolution rate
JP2003081999A (en) * 2001-09-11 2003-03-19 Asahi Denka Kogyo Kk PROTEIN/beta-GLUCAN COMPLEX COMPOSITION
JP2003104837A (en) * 2001-09-28 2003-04-09 Mikimoto Pharmaceut Co Ltd Emulsified composition
WO2004078334A1 (en) * 2003-03-04 2004-09-16 Fuji Oil Company, Limited Emulsifier contianing polysaccharide-protein complex as the active ingredient, process for producing the same and emulsified composition
EP2238843A1 (en) * 2009-02-26 2010-10-13 DSM IP Assets B.V. Compositions of fat-soluble active ingredients containing protein-polysaccharide conjugates
WO2015133439A1 (en) * 2014-03-07 2015-09-11 日本全薬工業株式会社 Pullulan gel, method for producing same, and use of same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029999A (en) * 1996-07-15 1998-02-03 Kdk Corp Production of saccharified amino compound
WO2001038481A1 (en) * 1999-11-25 2001-05-31 Cognis Deutschland Gmbh & Co. Kg Detergent granules with an improved dissolution rate
US7049279B1 (en) 1999-11-25 2006-05-23 Cognis Deutschland Gmbh & Co. Kg Process for preparing detergent granules with an improved dissolution rate
JP2003081999A (en) * 2001-09-11 2003-03-19 Asahi Denka Kogyo Kk PROTEIN/beta-GLUCAN COMPLEX COMPOSITION
JP2003104837A (en) * 2001-09-28 2003-04-09 Mikimoto Pharmaceut Co Ltd Emulsified composition
WO2004078334A1 (en) * 2003-03-04 2004-09-16 Fuji Oil Company, Limited Emulsifier contianing polysaccharide-protein complex as the active ingredient, process for producing the same and emulsified composition
EP2238843A1 (en) * 2009-02-26 2010-10-13 DSM IP Assets B.V. Compositions of fat-soluble active ingredients containing protein-polysaccharide conjugates
WO2015133439A1 (en) * 2014-03-07 2015-09-11 日本全薬工業株式会社 Pullulan gel, method for producing same, and use of same
JPWO2015133439A1 (en) * 2014-03-07 2017-04-06 日本全薬工業株式会社 Pull-langer and its production method and use

Similar Documents

Publication Publication Date Title
Geng et al. Preparation and characterization of ovalbumin and carboxymethyl cellulose conjugates via glycosylation
Koshani et al. Production and properties of tragacanthin-conjugated lysozyme as a new multifunctional biopolymer
Jiménez-Castaño et al. Glycosylation of individual whey proteins by Maillard reaction using dextran of different molecular mass
CA1164377A (en) Process for producing a low-molecular weight peptide composition and nutrient agent containing the same
US20080268127A1 (en) Gelation of Anionic Polysaccarides Using Protein Hydrolysates
JPH06506589A (en) Gel-like products and their manufacturing methods
Scaman et al. Effect of pH, temperature and sodium bisulfite or cysteine on the level of Maillard-based conjugation of lysozyme with dextran, galactomannan and mannan
Chaturvedi et al. A review on properties and applications of xanthan gum
CN1875749A (en) A natural food emulsifier made from protein-polysaccharide covalent polymer and preparation method thereof
JPH03215498A (en) Protein-polysaccharides complex material
Babiker Effect of chitosan conjugation on the functional properties and bactericidal activity of gluten peptides
Wang et al. Whey protein structure and denaturation and interactions with other food components
JPH03215500A (en) Treating of lactoferrin-containing solution
EP0837882A1 (en) Collagen peptide fraction and its uses
JP2005187401A (en) Protein-chitosan complex and method for producing the same
Yao et al. Mooncake production waste: Nutritional value and comprehensive utilization of salted duck egg white
JPH01233300A (en) Functional protein
Alahdad et al. Preparation and Properties of Dextran Sulfate− Lysozyme Conjugate
JPWO2005120541A1 (en) Method for producing protein with enhanced antihypertensive effect
JPH05339299A (en) Production of protein-polysaccharide complex compound
JPH06292514A (en) Production of processed product of milk serum protein
JPS61265052A (en) Production of transparent egg white gel
JPH05339298A (en) Production of protein-polysaccharide complex compound
JP3860025B2 (en) Method for water-solubilizing muscle protein by treatment with reducing sugar under low relative humidity and water-soluble sugar-added muscle protein
CN116686985B (en) Processing method of colon controlled release fruit and vegetable gel beads