WO2015133439A1 - Pullulan gel, method for producing same, and use of same - Google Patents

Pullulan gel, method for producing same, and use of same Download PDF

Info

Publication number
WO2015133439A1
WO2015133439A1 PCT/JP2015/056103 JP2015056103W WO2015133439A1 WO 2015133439 A1 WO2015133439 A1 WO 2015133439A1 JP 2015056103 W JP2015056103 W JP 2015056103W WO 2015133439 A1 WO2015133439 A1 WO 2015133439A1
Authority
WO
WIPO (PCT)
Prior art keywords
pullulan
gel
pullulan gel
aqueous solution
protein
Prior art date
Application number
PCT/JP2015/056103
Other languages
French (fr)
Japanese (ja)
Inventor
寿一 馬場
理恵子 鈴木
Original Assignee
日本全薬工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本全薬工業株式会社 filed Critical 日本全薬工業株式会社
Priority to JP2016506484A priority Critical patent/JP6211680B2/en
Publication of WO2015133439A1 publication Critical patent/WO2015133439A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/02Peptides being immobilised on, or in, an organic carrier
    • C07K17/10Peptides being immobilised on, or in, an organic carrier the carrier being a carbohydrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0018Pullulan, i.e. (alpha-1,4)(alpha-1,6)-D-glucan; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/18Spheres

Definitions

  • the present invention relates to pullulan gel and its production method and use.
  • Pullulan is a water-soluble polysaccharide in which three molecules of glucose are linked by ⁇ -1,4 and maltotriose is linked by ⁇ -1,6 bonds, and is currently widely used as a food additive and pharmaceutical supplement. .
  • Patent Document 1 describes a water-soluble conjugate preparation composed of a drug and a water-soluble polysaccharide pullulan for the purpose of targeting the drug to the liver.
  • This conjugate preparation is produced by reacting pullulan with cyanuric chloride and then chemically bonding the cyanurized pullulan and the drug.
  • Non-Patent Document 1 describes a pullulan nanogel to which hydrophobic cholesterol and a cationic functional group are added. This nanogel is produced by assembling hydrophilic pullulan utilizing the property that hydrophobic cholesterol gathers together in an aqueous solvent.
  • JP 9-124512 A Japanese Patent Publication “JP 9-124512 A” (published May 13, 1997)
  • the pullulan gel according to the present invention is formed by crosslinking a plurality of pullulans.
  • the present invention is also a method for producing a pullulan gel in which a plurality of pullulans are crosslinked, a step of stirring an aqueous solution containing pullulan and a crosslinking agent represented by the following general formula (2), and the aqueous solution after the step A pullulan gel production method comprising the step of cross-linking by standing.
  • a plurality of R 1 to R 3 are each independently a chlorine atom, a fluorine atom, a bromine atom or an iodine atom
  • the present invention is also a method for producing a pullulan gel in which a plurality of pullulans are crosslinked, a step of stirring an aqueous solution containing pullulan and a crosslinking agent represented by the general formula (2), and the aqueous solution after the steps And a step of cross-linking by stirring in a water-insoluble liquid.
  • the present invention is also a method for producing a pullulan gel in which a plurality of pullulans are crosslinked, a step of stirring an aqueous solution containing pullulan and a crosslinking agent represented by the general formula (2), and the aqueous solution after the steps
  • a method for producing pullulan gel comprising an emulsifier is provided.
  • a new method for using pullulan can be provided.
  • an Example it is a figure which shows the ground pullulan gel and its particle diameter. In an Example, it is a figure which shows transition of the Der f 2-specific IgG antibody in a rat serum. In an Example, it is a figure which shows the result after pullulan microgel and each process. In an Example, it is a figure which shows the pullulan film. In an Example, it is a figure which shows the protein sustained release property of each pullulan gel film. In an Example, it is a figure which shows the particle diameter of a pullulan microgel.
  • the pullulan gel according to the present invention is formed by crosslinking a plurality of pullulans.
  • Pullulan is a polysaccharide in which maltotriose, in which three molecules of glucose are ⁇ -1,4 linked, is linked by ⁇ -1,6 bonds.
  • the average molecular weight of the pullulan constituting the pullulan gel according to the present invention is not particularly limited and may be appropriately selected according to the purpose, but may be, for example, 20 kDa to 1600 kDa. Unless otherwise specified in this specification, “A to B” representing a numerical range means “A or more and B or less”.
  • the protein, peptide or amino acid may be cross-linked to pullulan.
  • the structure of the crosslinked portion where a plurality of pullulans are crosslinked is not particularly limited.
  • the plurality of pullulans are crosslinked by a structure represented by the following general formula (1).
  • At least two of the plurality of * are bridging points with pullulan.
  • pullulan gel is formed by crosslinking only pullulan, in which case * not a crosslinking point with pullulan is a hydroxy group. Specifically, two of the plurality of * are crosslinking points with pullulan, the other * is a hydroxy group, or three of the plurality of * are crosslinking points with pullulan. Contains some cross-linked structure. That is, the pullulan gel includes a structure in which two or more molecules, preferably three or more molecules of pullulan are crosslinked by one crosslinked structure.
  • the pullulan gel may contain a structure represented by the above general formula (1) in which only one of a plurality of * is bonded to the pullulan, that is, does not constitute a bridge. .
  • a protein, peptide or amino acid may be further cross-linked to pullulan.
  • the structure of the cross-linked moiety in which the protein, peptide or amino acid is cross-linked to pullulan is not particularly limited. For example, it is cross-linked by the structure represented by the general formula (1). In that case, * that is not a cross-linking point with pullulan is a cross-linking point with protein, peptide or amino acid. That is, the pullulan gel contains a cross-linked structure in which two of the plurality of * are cross-linking points with pullulan, and other * are cross-linking points with proteins, peptides or amino acids.
  • the pullulan gel according to the present invention has many such crosslinked structures. For this reason, in one embodiment, a large number of pullulans are configured in a network via a large number of cross-linked structures. Note that pullulans are not directly connected to each other. Pullulan is considered to be crosslinked with hydroxy groups at random positions. Therefore, pullulan may have a plurality of crosslinking points in one molecule. In addition, when a protein, peptide or amino acid is cross-linked, the protein, peptide or amino acid may be present inside and on the surface of the pullulan gel.
  • cross-linked structures included in one pullulan gel there is no need for one type of cross-linking.
  • proteins are bound to at least some of the many cross-linked structures. That's fine. That is, in one embodiment, in some of the plurality of crosslinking structures, two of the plurality of * are crosslinking points with pullulan, and the other * is a crosslinking point with proteins, In another part of the structure, two of the plurality of * are cross-linking points with pullulan, and the other * is a hydroxy group.
  • two proteins and one pullulan are bonded in addition to the above-described crosslinking structure (that is, one * is a crosslinking point with pullulan and two * is a crosslinking point with protein). It may contain a crosslinked structure.
  • one protein and one pullulan are bonded (that is, one * is a cross-linking point with pullulan, one * is a cross-linking point with protein, and one * May be a crosslinked structure).
  • amino acid residues constituting the protein or peptide are cross-linked by the hydroxy group of amino acids having a hydroxy group in the side chain (serine, tyrosine, threonine, etc.). It is done.
  • carboxy group of an amino acid such as glutamic acid and aspartic acid
  • proteins that are cross-linked to pullulan gel include antibodies, antigens, receptors, ligands for receptors, enzymes, ligands for enzymes, hormones, and functional fragments thereof.
  • the protein may be a natural protein or a non-natural protein.
  • Such a pullulan gel in which proteins are crosslinked can be used as, for example, a protein detection kit described later.
  • peptide refers to a compound in which two or more amino acids are connected by peptide bonds.
  • Peptide also includes oligopeptides and polypeptides.
  • Examples of peptides that are cross-linked to pullulan gel include fragments other than the functional fragments of the above protein.
  • a pullulan gel in which such a peptide is cross-linked can also be used, for example, as a protein detection kit described later.
  • the amino acid cross-linked to pullulan gel may be a natural amino acid or a non-natural amino acid.
  • the amino acid is preferably an amino acid having a hydroxy group.
  • Examples of amino acids having a hydroxy group include serine, tyrosine, threonine, hydroxyproline, hydroxylysine, and derivatives thereof.
  • it can bridge
  • the pullulan gel according to the present invention may be a hydrogel or an organogel.
  • the organic solvent in the organogel include methanol, ethanol, acetone, or chloroform.
  • the pullulan gel according to the present invention is stable not only with water but also with an organic solvent such as methanol.
  • the size and shape of pullulanger are not particularly limited, and may be set as appropriate according to the purpose of use.
  • Examples of the shape include a spherical shape, a rectangular parallelepiped, and a sheet shape.
  • the size may be, for example, a size of several tens of cm squares or a size on the order of ⁇ m (a pullulan microgel). Further, the size may be on the order of nm (pullulan nanogel). Further, it may be a sheet having a thickness of 1 ⁇ m to 3 mm. In one embodiment, particles having an average particle diameter of 50 nm to 1 mm are preferable.
  • the “average particle diameter” can be calculated as an average particle diameter in terms of volume using a measurement method by a laser diffraction / scattering method.
  • the pullulan microgel and pullulan nanogel of the present invention can be of a size having needle penetration and can be administered to a living body by injection. As shown in the examples described later, pullulan gel does not show irritation and inflammatory reaction when administered subcutaneously, and can be safely administered to a living body.
  • the color of the pullulan gel of the present invention (when not impregnated with a colored liquid or a colored drug) varies depending on the production conditions, but is transparent to white, preferably transparent.
  • the pullulan gel of the present invention is preferably uniform in color.
  • the pullulan gel according to the present invention may be impregnated with a drug.
  • the drug include medical drugs, experimental drugs, vaccines, and the like.
  • biomolecules such as nucleic acids (DNA, RNA, etc.) and other chemical substances may be mentioned.
  • the drug is not cross-linked with pullulan and is dissolved or suspended in a liquid (water or an organic solvent) retained by the pullulan gel.
  • the pullulan gel impregnated with a drug can also be used as a material having a sustained release property, and can be suitably used in the medical field, for example, as an adjuvant, a wound dressing, and an anti-adhesion agent.
  • the pullulan gel according to the present invention can maintain its shape even when subjected to autoclave (121 ° C., 20 minutes). Therefore, when the pullulan gel according to the present invention is applied to a living body or the like, or used for an experiment or the like, sterilization by an autoclave can be performed. When using for an autoclave, it is preferable to carry out the pullulan gel soaked in water. In addition, the pullulan gel of the present invention can maintain its shape even when it is frozen and thawed. Therefore, frozen storage is also possible.
  • the pullulan gel according to the present invention does not substantially contain a toxic substance such as cyanuric chloride used in the production method described later. Moreover, the crosslinked structure itself has almost no toxicity to the living body. Therefore, the pullulan gel according to the present invention can be safely applied to a living body.
  • the pullulan gel according to the present invention may be a hybrid gel containing a polysaccharide other than pullulan.
  • the polysaccharide is not cross-linked to pullulan but is part of the pullulan gel by being entangled with the network structure of the pullulan constituting the pullulan gel.
  • the polysaccharide may be entangled in the protein.
  • the polysaccharide may be present inside and / or outside the pullulan gel.
  • a plurality of molecular polysaccharides are entangled with a plurality of molecular pullulans, so that pullulan and the polysaccharides are stretched in a network in a pullulan gel.
  • polysaccharide examples include hydroxypropyl ⁇ -cyclodextrin, dextran, sodium dextran sulfate, ⁇ -cyclodextrin, sodium alginate, hydroxypropylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, xanthan gum, gum arabic, chitosan , And trehalose, and derivatives thereof.
  • the polysaccharide may be one type or two or more types.
  • Such a hybrid gel has the advantage that it can be gelled by combining a gel that is not gelled with a polysaccharide alone with pullulan.
  • a hybrid gel with hydroxypropyl ⁇ -cyclodextrin is expected to have a high adjuvant effect.
  • pullulan gel injected subcutaneously is difficult to decompose, but can be easily decomposed by combining with these polysaccharides.
  • a hybrid gel with ⁇ -cyclodextrin can have a sustained release property when impregnated with a low molecular compound.
  • the pullulanger according to the present invention may hold an arbitrary object inside.
  • the object include a magnetic body.
  • Such pullulan gel can be used for various applications utilizing the properties of the object. For example, when a magnetic substance is held inside, there is a usage method such as protein affinity purification.
  • a plurality of R 1 to R 3 are each independently a chlorine atom, a fluorine atom, a bromine atom or an iodine atom.
  • the crosslinking agent is preferably cyanuric chloride (the following general formula (3)) in which all of R 1 to R 3 are chlorine atoms.
  • the concentration of pullulan contained in the aqueous solution is not particularly limited, but may be, for example, 2% (w / v) to 15% (w / v).
  • the hardness of the pullulan gel can be adjusted by the concentration of pullulan contained in the aqueous solution. The higher the pullulan concentration, the harder the pullulan gel.
  • the concentration of the crosslinking agent contained in the aqueous solution is not particularly limited, but may be, for example, 0.1% (w / v) to 0.3% (w / v).
  • the hardness of the pullulan gel can be adjusted. The higher the concentration of the crosslinking agent, the harder the pullulan gel.
  • a commercially available thing can be used for a pullulan and a crosslinking agent.
  • the pH of the aqueous solution is preferably 5.0 to 10.0, more preferably 5.0 to 8.0, still more preferably 6.0 to 8.0, and 6.5 to More preferably, it is 7.5, and it is especially preferable that it is pH 7.0.
  • pH is too high, it will become a non-uniform cloudy gel which has a part from which hardness differs.
  • sodium hydroxide is used, pullulan undergoes a chemical reaction and develops (colors) from yellow to tan in a few minutes (see also reference examples described later). This is probably because the structure of the pullulan itself has changed. Therefore, the pullulan gel of the present invention cannot be produced using sodium hydroxide.
  • the temperature at the time of stirring is preferably 0 ° C. to 45 ° C., and more preferably 0 ° C. to 37 ° C.
  • the stirring speed can be, for example, 10 rpm to 1000 rpm, preferably 100 rpm to 500 rpm.
  • the stirring time can be, for example, 1 minute to 5 hours, preferably 5 minutes to 3 hours. Even if the stirring time is short, pullulan gel can be produced in the step of performing cross-linking described later.
  • the aqueous solution contains, for example, a pH adjusting agent such as sodium bicarbonate (sodium bicarbonate) or sodium carbonate for adjusting pH, an organic solvent such as acetone for dissolving the crosslinking agent, and the like. May be included.
  • a pH adjusting agent such as sodium bicarbonate (sodium bicarbonate) or sodium carbonate for adjusting pH
  • an organic solvent such as acetone for dissolving the crosslinking agent, and the like. May be included.
  • a crosslinking agent dissolved in an organic solvent is added to the aqueous pullulan solution and the resulting aqueous solution is stirred.
  • a powdered crosslinker is added to the aqueous pullulan solution and the resulting aqueous solution is stirred.
  • a crosslinking agent having low solubility in water cyanuric chloride or the like
  • pullulan and the crosslinking agent can be uniformly present in the solution.
  • a step of forming the aqueous solution in a mold having a desired size and shape may be performed.
  • the temperature at the time of crosslinking can be, for example, ⁇ 20 ° C. to 45 ° C., preferably ⁇ 20 ° C. to 37 ° C., more preferably 0 ° C. to 37 ° C., and 0 ° C. to 30 ° C. More preferably.
  • the time for crosslinking may be appropriately set according to the size of the container or mold containing the aqueous solution, etc., and can be, for example, 30 minutes to 18 hours, preferably 30 minutes to 5 hours, and more preferably. Is 1 to 4 hours.
  • cyanuric chloride When cyanuric chloride is used as a cross-linking agent, it is considered that a chlorine atom is liberated in water and a hydroxyl group is formed at a position where pullulan is not bonded.
  • the pullulan gel thus obtained may be cut or pulverized into a desired size and shape.
  • the pullulan gel can be pulverized using a pulverizer, a homomixer, a Waring blender, a mortar, or the like, and can be pulverized to the ⁇ m order or, in some cases, the nm order. Further, the obtained pullulan gel can be dried and then pulverized.
  • it may further include a step of washing the cross-linking agent and pullulan adhering to the pullulan gel.
  • the washing step can be performed using water, for example.
  • ⁇ Manufacturing method 2> In another embodiment of the method for producing pullulan gel, a step of stirring an aqueous solution containing pullulan and the crosslinking agent represented by the general formula (2), and stirring the aqueous solution in a water-insoluble liquid after the step is performed. Cross-linking. This production method is particularly preferred when producing spherical pullulan microgels and pullulan nanogels.
  • the step of stirring the aqueous solution containing pullulan and the crosslinking agent is as described above, but the concentration of pullulan contained in the aqueous solution is preferably 4% (w / v) or more.
  • the step of allowing the aqueous solution to stand may be included before the step of crosslinking.
  • the standing time can be, for example, 1 minute to 60 minutes.
  • the temperature at the time of standing can be, for example, 4 ° C. to 37 ° C. It is preferable to carry out until the aqueous solution is slightly pulled.
  • the amount of the aqueous solution with respect to the water-insoluble liquid is preferably 1% by volume to 50% by volume, more preferably 1% by volume to 20% by volume, and still more preferably 1% by volume to 10% by volume. .
  • the stirring speed at the time of crosslinking is not particularly limited and may be appropriately set according to the size of the pullulan gel to be produced.
  • the stirring speed can be 100 rpm to 1000 rpm, and preferably 500 rpm to 1000 rpm.
  • the faster the stirring speed the smaller the average particle size of pullulan gel.
  • the temperature at the time of crosslinking is preferably ⁇ 20 ° C. to 45 ° C., more preferably ⁇ 20 ° C. to 37 ° C., and further preferably 0 ° C. to 30 ° C.
  • the stirring time can be, for example, 30 minutes to 5 hours, and preferably 1 hour to 4 hours.
  • the method for recovering the produced pullulan gel from the water-insoluble liquid is not particularly limited, but it is preferable to add water before recovery. Thereby, pullulan gel floats in water and adsorption
  • the pullulan gel may be allowed to stand and cross-linking may proceed further.
  • This production method is particularly preferred when producing spherical pullulan microgels and pullulan nanogels.
  • the step of stirring the aqueous solution containing pullulan and the crosslinking agent is as described above, but the concentration of pullulan contained in the aqueous solution is preferably 4% (w / v) or more.
  • the emulsifier examples include surfactants such as sodium lauryl sulfate, DKS NL-15, and DKS NL-50.
  • the emulsifier may be contained in an aqueous solution containing pullulan and a crosslinking agent, may be contained in a water-insoluble liquid, or may be contained in both.
  • the concentration of the emulsifier contained in the aqueous solution or the water-insoluble liquid is not particularly limited as long as it is within a concentration range that forms a water-in-oil (W / O type) emulsion. Such a concentration range can be appropriately determined by those skilled in the art based on the component ratio between the aqueous solution and the water-insoluble liquid, the temperature, and the like.
  • the step of allowing the aqueous solution to stand may be included before the step of crosslinking.
  • the standing time can be, for example, 10 minutes to 30 minutes. It is preferable that the temperature at the time of standing is 5 degrees C or less. By setting the temperature to 5 ° C. or lower, the progress of the crosslinking reaction is delayed, it is easy to moderately increase the viscosity, and emulsification is facilitated.
  • the kind of water-insoluble liquid used in the cross-linking step is the same as in production method 2.
  • the amount of the aqueous solution with respect to the water-insoluble liquid can be, for example, 1% by volume to 30% by volume.
  • the stirring speed at the time of emulsification is not particularly limited, and may be set as appropriate as long as emulsification can be achieved.
  • the stirring speed may be 100 rpm to 1000 rpm. The faster the stirring speed, the more uniform the emulsion.
  • the temperature at the time of emulsification can be, for example, 0 ° C. to 30 ° C.
  • the stirring time can be, for example, 1 minute to 10 minutes.
  • the temperature at the time of crosslinking can be, for example, 0 ° C. to 30 ° C. Leave to crosslink.
  • the pullulan once dispersed adsorbs and does not produce a spherical gel, but in this production method, small droplets of an aqueous solution containing pullulan and a crosslinking agent are produced in a water-insoluble liquid, By emulsifying with an emulsifier, crosslinking proceeds in these droplets while being stably dispersed. Therefore, a smaller spherical pullulan gel (pullulan microgel or pullulan nanogel) is produced. You may select what has a desired particle size by centrifugation.
  • the pullulan gel may be allowed to stand and cross-linking may proceed further.
  • the emulsifier may be removed by dispersing pullulan gel in a W / O system and repeating centrifugal separation and recovery.
  • the aqueous solution further contains proteins, peptides or amino acids. Therefore, in another embodiment of the method for producing pullulan gel, the step of stirring the aqueous solution containing pullulan and the crosslinking agent represented by the general formula (2) and the protein, peptide or amino acid, and the aqueous solution after the step And carrying out cross-linking. In still another embodiment, a step of stirring an aqueous solution containing pullulan, the crosslinking agent represented by the general formula (2), and a protein, peptide, or amino acid, and stirring the aqueous solution in a water-insoluble liquid after the step.
  • a step of emulsifying by stirring and a step of cross-linking by allowing the emulsified solution to stand are included, and at least one of the aqueous solution and the water-insoluble liquid contains an emulsifier.
  • the method further includes a step of drying the pullulan gel obtained by the above-described production method and a step of immersing the dried pullulan gel in an organic solvent.
  • the types of organic solvents are as described above.
  • the drying temperature can be, for example, 4 ° C. to 40 ° C.
  • the drying time may be appropriately set according to the size and thickness of pullulan gel, and can be, for example, 30 minutes to 5 hours. Drying may be performed under atmospheric pressure, or may be performed under reduced pressure or under vacuum.
  • the dipping time may be set appropriately according to the thickness of the gel, and can be set to, for example, 1 minute to 5 hours.
  • ⁇ Manufacturing method 7> When producing a pullulan gel in which an arbitrary object is held, for example, the object may be contained in the aqueous solution.
  • the production methods 1 to 7 mentioned as the production method of pullulan gel can be appropriately combined.
  • heating is not necessary, and it can be performed even at a temperature below room temperature. Furthermore, in the production method according to the present invention, crosslinking can be performed near neutrality. Therefore, it is simple and can be produced without denaturing the protein. In the known production method of hydrogels of other polysaccharides (for example, agarose etc.), it is necessary to heat or to make the pH to the alkali side. On the other hand, in the production method of pullulan gel of the present invention, heating is performed. It is excellent in that it is unnecessary and can be produced near neutrality.
  • the dried pullulan gel according to the present invention is a dried product obtained by drying the pullulan gel described above.
  • the size and shape of the dried pullulan product are not particularly limited, and may be set as appropriate according to the purpose of use.
  • the pullulan gel to be dried may be a pullulan gel cross-linked with protein or the like, or a pullulan gel impregnated with a drug. When the pullulan gel is immersed in a liquid such as water, the pullulan gel sucks the liquid and returns to the original pullulan gel.
  • Another embodiment of the dried pullulan product is a film having a thickness of, for example, 1 ⁇ m to 500 ⁇ m.
  • a known pullulan film obtained by adding water to a pullulan and heating and press-molding is soluble in water.
  • the pullulan gel film according to the present invention is insoluble in water and becomes a sheet-like gel when immersed in water. Therefore, a pullulan gel film in which a protein is crosslinked can be washed by reacting an antibody or an antigen, and can be suitably used for protein detection.
  • the dried pullulan gel when the dried pullulan gel is immersed in a liquid in which a desired drug (for example, protein) is dissolved or dispersed, the liquid containing the drug penetrates into the dried pullulan gel and becomes a gel. This gel retains the penetrating drug and does not elute immediately. Therefore, it can be used as a sustained release gel. Therefore, the pullulan gel dried product can be used as a material for producing a sustained-release gel.
  • a desired drug for example, protein
  • ⁇ Dried protein with a cross-linked protein does not elute even if it absorbs water. Therefore, it can be suitably used for protein detection and the like.
  • One embodiment of the method for producing a dried pullulan product includes a step of drying the above-described various forms of pullulan gel.
  • the drying temperature is not particularly limited, and can be, for example, 20 ° C. to 100 ° C.
  • the drying time may be appropriately set according to the size and thickness of pullulan gel, and can be set to, for example, 1 second to 10 days. Drying may be performed under atmospheric pressure, or may be performed under reduced pressure or under vacuum. Alternatively, lyophilization may be performed, for example, at ⁇ 15 ° C. or lower, preferably ⁇ 50 ° C. or lower.
  • the pullulan gel according to the present invention can be used as a pharmaceutical composition having sustained drug release (see Examples). Moreover, the pullulan gel which concerns on this invention can be utilized as a pharmaceutical composition which has an adjuvant effect (refer an Example).
  • the pharmaceutical composition may be used in contact with the skin of a living body, or may be used after being administered in vivo.
  • Gelatin hydrogel Medgel (registered trademark)
  • BSE bovine bone
  • the pullulan gel of the present application can be safely applied to a living body because there is no such concern.
  • the pharmaceutical composition is a pullulan gel in the order of nm to ⁇ m (or up to about 1 mm) impregnated with a drug.
  • a pharmaceutical composition can be suitably administered in vivo.
  • a preferred example is pullulagel having an average particle diameter of 50 nm to 1 mm.
  • Another preferred example is pullulan gel having an average particle diameter of 5 ⁇ m to 200 ⁇ m impregnated with a drug. Since pullulan gel having this average particle diameter remains at the administration site when administered subcutaneously, the drug can be applied locally.
  • the pullulan gel according to the present invention acts as an adjuvant as shown in the examples. Therefore, the pharmaceutical composition can be a composition having sustained release of the drug and an adjuvant effect.
  • the pharmaceutical composition can be formulated, for example, as a vaccine.
  • the pharmaceutical composition is a pullulan gel on the order of mm to cm impregnated with the drug.
  • a pharmaceutical composition is suitably applied to living skin, and can be used as, for example, a wound dressing.
  • the pharmaceutical composition is a pullulan gel crosslinked with proteins, peptides or amino acids.
  • a pharmaceutical composition is considered to have an adjuvant effect as it stays without eluting proteins and is phagocytosed by macrophages and dendritic cells.
  • the pullulan gel can also be made into a hybrid gel with other polysaccharides that are easily degraded in the body.
  • the pharmaceutical composition may be bound or impregnated with a substance that stimulates and activates dendritic cells and / or NKT cells.
  • substances that activate dendritic cells include ligands for Toll-like receptors.
  • substances that activate NKT cells include ⁇ -galactosylceramide ( ⁇ -GalCer).
  • the pullulan gel method in the order of nm to ⁇ m may be produced in a water-insoluble liquid as described above, or may be a pulverized pullulan gel produced in an aqueous solution. From the viewpoint of uniformity, pullulan gel is preferably produced in a water-insoluble liquid.
  • the specific method of the drying step is as described above.
  • the dipping time in the dipping step may be set appropriately according to the size of pullulan gel, etc., and may be, for example, 1 to 10 minutes. Further, the concentration of the drug contained in the solution is not particularly limited, and can be, for example, 10 ⁇ g / mL to 5 mg / mL.
  • the drug having the desired average particle size can be obtained. Therefore, for example, if a pull lagel having an average particle diameter of 50 nm to 1 mm before drying is used, a pull lagel having an average particle diameter of 50 nm to 1 mm impregnated with a drug can be obtained.
  • the pullulan gel when a pullulan gel with a protein cross-linked is used as a pharmaceutical composition, the pullulan gel may be manufactured by the above-described manufacturing method with a protein cross-linked.
  • the protein detection kit according to the present invention includes a pullulan gel in which a protein, peptide or amino acid is crosslinked to pullulan by the structure represented by the general formula (1) or a dried product thereof.
  • Examples of the protein include antibodies, antigens, receptors, ligands for receptors, enzymes, ligands for enzymes, hormones, and functional fragments thereof.
  • the protein detected by the protein detection kit is a protein that interacts with a protein, peptide, or amino acid contained in pullulan gel.
  • a pullulan gel containing an antibody an antigen to which the antibody can bind can be detected.
  • an antibody capable of binding to the antigen can be detected.
  • Such combinations include, in addition to antibody-antigen, receptor-receptor ligand, enzyme-enzyme ligand, and the like.
  • Examples of the detection method include an ELISA method and an immunochromatography method.
  • the pullulan gel according to the present invention has a certain stability with respect to an organic solvent and an acid / alkali solution as shown in Examples. Therefore, it can withstand various operations in protein detection.
  • the protein detection kit according to the present invention may further include various reagents for immunologically detecting proteins captured by peptides, peptides or amino acids cross-linked to pullulan gel (secondary antibodies, reporter molecules, And / or buffers) and instruments (plates and pipettes), protein detection kit instructions for use, and the like.
  • the pullulan gel film of the present invention can also be used in the food field.
  • the pullulan film of the present invention is transparent and glossy, it can be used as a food brightening agent, and by coating the surface of the food, the food can be polished. Since pullulan film has edible properties, it can be eaten with food as it is.
  • the pullulanger film of this invention can also be utilized as a film for wrapping food. Since the pullulan gel film of the present invention has a low oxygen permeability, the food is prevented from being oxidized and quality deterioration is reduced.
  • the pullulan film of the present invention can be printed on the surface, and a wide range of printing inks can be used.
  • a colored pullulan film can be prepared by impregnating a pigment or the like into a pullulan gel and drying it. Moreover, various substances can be affixed on the surface of the pullulan film.
  • the pullulan gel according to the present invention is formed by crosslinking a plurality of pullulans.
  • the plurality of pullulans are preferably cross-linked by a structure represented by the following general formula (1).
  • a protein, peptide or amino acid may be further cross-linked to pullulan.
  • the protein may be an antibody, an antigen, a receptor, a ligand for the receptor, an enzyme, a ligand for the enzyme, a hormone, or a functional fragment thereof.
  • the pullulan gel according to the present invention may be impregnated with a drug.
  • the pullulan gel according to the present invention may have an average particle diameter of 50 nm to 1 mm.
  • the pullulan gel according to the present invention may contain a polysaccharide other than pullulan.
  • the present invention also provides a dried pullulan product obtained by drying the pullulan gel.
  • the present invention is also a method for producing a pullulan gel in which a plurality of pullulans are crosslinked, a step of stirring an aqueous solution containing pullulan and a crosslinking agent represented by the following general formula (2), and the aqueous solution after the step A pullulan gel production method comprising the step of cross-linking by standing.
  • a plurality of R 1 to R 3 are each independently a chlorine atom, a fluorine atom, a bromine atom or an iodine atom
  • the present invention is also a method for producing a pullulan gel in which a plurality of pullulans are crosslinked, a step of stirring an aqueous solution containing pullulan and a crosslinking agent represented by the above general formula (2), and the aqueous solution after the above steps. And a step of cross-linking by stirring in a water-insoluble liquid.
  • the present invention is also a method for producing a pullulan gel in which a plurality of pullulans are crosslinked, a step of stirring an aqueous solution containing pullulan and a crosslinking agent represented by the general formula (2), and the aqueous solution after the steps
  • a method for producing pullulan gel comprising an emulsifier is provided.
  • the crosslinking agent is preferably cyanuric chloride.
  • the aqueous solution preferably has a pH of 5.0 to pH 8.0.
  • crosslinking is preferably performed at -20 ° C to 37 ° C.
  • the pullulan gel is further cross-linked with a protein, peptide or amino acid, and the aqueous solution may further contain the protein, peptide or amino acid.
  • the present invention also provides a pullulan gel produced by the above pullulangel production method.
  • the present invention is also a method for producing a pharmaceutical composition having sustained release of a drug, the step of drying the pullulan gel produced by the method for producing a pullulan gel containing no protein, and the dried pullulan gel, And a step of immersing in a liquid containing the drug.
  • the pullulan gel may have an average particle size before drying of 50 nm to 1 mm.
  • the present invention also provides a protein detection kit further comprising a pullulan gel in which a protein, peptide or amino acid is cross-linked to pullulan or a dried product thereof.
  • Example 1 Preparation of pullulan gel-1
  • Pullulan (6 g, manufactured by Hayashibara Co., Ltd.) having an average molecular weight of 200 kDa was added to 100 mL of water, and a 5% aqueous sodium bicarbonate solution (2 mL, manufactured by Wako Pure Chemical Industries, Ltd.) was further added to adjust the pH to 7.
  • Acetone (2 mL, Wako Pure Chemical Industries) solution of cyanuric chloride (0.2 g, manufactured by Kanto Chemical Co., Inc.) was added thereto. Since the pH gradually decreased when an acetone solution of cyanuric chloride was added, a 5% sodium bicarbonate solution was appropriately added to maintain pH 7.
  • the aqueous solution was then stirred in ice (0-1 ° C.) for 3 hours at a rate of about 300 rpm. Thereafter, the stirring was stopped, and 15 mL each of the aqueous solution was put into 50 mL tubes and allowed to stand at 37 ° C., 25 ° C., 4 ° C., in ice (0-1 ° C.) and ⁇ 20 ° C. for 18 hours.
  • a pullulan gel could be prepared (the one placed at ⁇ 20 ° C. was frozen, so it was naturally thawed at room temperature to confirm gelation).
  • pullulan gels could be produced in the same manner when the amount of pullulan was 4 g, 10 g and 15 g. The higher the pullulan concentration, the harder the pullulan gel. When the amount of cyanuric chloride was 0.1 g and 0.3 g, pullulan gel could be produced in the same manner. The higher the concentration of cyanuric chloride, the harder the pullulan gel.
  • pullulan gel could be produced even when left at ⁇ 20 ° C. with a pullulan amount of 2 g.
  • Example 2 Preparation of pullulan gel-2
  • Pullulan (10 g, manufactured by Hayashibara Co., Ltd.) having an average molecular weight of 200 kDa was added to 100 mL of room temperature water and dissolved.
  • Cyanuric chloride (0.2 g, manufactured by Kanto Chemical Co., Inc.) was added thereto and stirred for about 5 minutes. 15 mL of this aqueous solution was placed in five 50 mL tubes, and the pH was adjusted to 3.5, 5.0, 7.0, 8.0, and 10.0, respectively.
  • the pH was 3.5 before adjustment, and pH 5.0, 7.0 and 8.0 were adjusted with 5% aqueous sodium bicarbonate solution, and the pH of the 5% aqueous sodium bicarbonate solution was 8.3. The conditions were adjusted with a 5% aqueous sodium carbonate solution.
  • Example 3 Preparation of pullulan gel-3
  • Pullulan (10 g, manufactured by Hayashibara Co., Ltd.) having an average molecular weight of 200 kDa was added to 100 mL of water, 5% aqueous sodium bicarbonate solution (6 mL) was further added, and powder of cyanuric chloride (0.2 g, manufactured by Nacalai Tesque) was added thereto. .
  • an appropriate amount of 5% aqueous sodium bicarbonate solution was added so that the pH was 7.0.
  • this aqueous solution was stirred at a speed of 500 rpm for 5 to 10 minutes at room temperature (about 22 ° C.).
  • Example 4 Production of pullulan gel crosslinked with protein
  • Pullulan (2 g, manufactured by Hayashibara), cyanuric chloride (40 mg, manufactured by Nacalai Tesque), and protein having an average molecular weight of 200 kDa were added to 20 mL of water.
  • the proteins used were recombinant Der f 2 (20 mg, in-house manufactured), cat HGF (20 mg, in-house manufactured), cat IFN (10 mg, in-house manufactured), and BSA (20 mg, manufactured by Wako Pure Chemical Industries, Ltd.).
  • a pullulan gel in which proteins were crosslinked could be produced.
  • the antigenic activity of Der f 2 was confirmed for pullulan gel crosslinked with Der f 2.
  • the pullulan gel was subjected to centrifugal washing three times, and the mixture was shaken with 5% skim milk at room temperature for 2 hours for blocking.
  • the pullulan gel was washed by centrifugation three times, and HRP-labeled anti-Der f 2 antibody was added, followed by shaking at room temperature for 2 hours.
  • the pullulan gel was subjected to centrifugal washing three times, and an OPD substrate solution was added thereto and allowed to stand for 5 minutes.
  • the same procedure was performed on pullulan gel that had not been cross-linked with protein. As a result, it was confirmed that only the pullulan gel crosslinked with Der f 2 developed color and retained the antigenic activity in the gel.
  • Example 5 Grinding of pullulanger
  • a pullulan gel cross-linked with cat HGF was prepared by allowing it to stand at 4 ° C. and at ⁇ 20 ° C. for freezing.
  • These pullulan gels were pulverized using a homomixer (manufactured by PRIMIX Co., Ltd., model number HOMOMIXER MARK II Model 2.5) under conditions of 1 minute at the maximum rotation speed.
  • the microscope image after pulverization of pullulan gel at 4 ° C. is shown in FIG.
  • a microscopic image after pulverization of pullulan gel at ⁇ 20 ° C. is shown in FIG.
  • Example 6 Freezing and thawing of pullulanger
  • the pullulan gel prepared by allowing to stand at 4 ° C. in the same manner as in Example 1 was frozen at ⁇ 20 ° C. After 7 days, thawing was performed, and the original pullulanger was restored.
  • Example 7 Production of dried pullulan gel
  • 1 mL of pullulan gel prepared by allowing to stand at 4 ° C. was placed in a 3 mL vial, and under the automatic operation conditions of a freeze-drying device (Tokyo Rika Kikai Co., Ltd., model number FDU-2100 + DRC-1100). It was freeze-dried to produce a dried pullulan gel.
  • Example 8 Production of protein-impregnated pullulan gel
  • the pullulan gel prepared by allowing to stand at 4 ° C. in the same manner as in Example 1 was freeze-dried under the conditions of Example 7 to prepare a dried pullulan gel.
  • 1 mL of water containing recombinant Der f 2 (1 mg) was added and allowed to stand at 25 ° C. for 5 minutes.
  • the inside of the dried product was immersed in water, the appearance returned to the gel before freeze-drying, and a protein-impregnated pullulan gel could be produced.
  • Der f 2 impregnated gel and Der f 2+ gel mixing The pullulan gel prepared by the method of Example 3 was pulverized by the method of Example 5, and this was washed by centrifugation three times with PBS, and then water outside the gel was removed. Recombinant Der f 2 (500 ⁇ g) was added to 1 mL of this gel and left standing for 3 hours after stirring as a Der f 2 impregnated gel sample, and Der f 2 (500 ⁇ g) added and stirred immediately before administration was Der f 2+ A gel mixed sample was obtained.
  • Der f 2 alone 1 mL of recombinant Der f 2 added to PBS at a concentration of 500 ⁇ g / mL was used as a Der f 2 single sample.
  • Example 10 Preparation of pullulan microgel-1
  • the microgelation of pullulan by W / O dispersion was examined. After operating by the method of Example 3 and stirring for 10 minutes and leaving to stand for 18 hours, the standing time was 10 minutes, and after confirming that the crosslinking reaction had progressed to some extent and the solution was in a state of slightly pulling the yarn, The liquid is dropped into 50 mL of oil (olive oil, panacetate 810, or sunflower oil) in the range of 1 mL to 10 mL and dispersed by stirring in the range of 100 rpm to 1,000 rpm, and in the range of 30 minutes to 3 hours. The production of spherical gels of the size was examined.
  • oil oil, panacetate 810, or sunflower oil
  • spherical pullulan gel could be produced with any oil.
  • sunflower oil having the highest viscosity is preferable, and a faster rotation speed during stirring tends to be a gel having a smaller particle diameter, and it is more preferable that the rotation speed is 500 rpm to 1,000 rpm.
  • the amount of the aqueous solution dispersed in the oil was large, a phenomenon in which the dispersed particles adsorbed during stirring was observed, and 2 to 10% by volume was more preferable.
  • the stirring was stopped in order to recover the spherical gel from the oil, the spherical gels adsorbed to form a lump. This is thought to be because the crosslinking reaction was not completed, but adsorption could be prevented by stopping the stirring after adding about half of the oil water before recovery.
  • Pullulan (2 g) is dissolved in water (20 mL), 5% aqueous sodium bicarbonate solution (1.5 mL) is added and stirred for 1 minute, cyanuric chloride (40 mg) is added and stirred for 10 minutes (about 500 rpm) and allowed to stand for 10 minutes. I put it.
  • This liquid (2 mL) was dispersed in sunflower oil (50 mL), stirred for 1 hour, water (25 mL) was added, stirring was stopped after 5 minutes, and spherical pullulan microgel in the aqueous layer was recovered. This was allowed to stand at 4 ° C.
  • a spherical pullulan microgel having a protein (BSA) cross-linked by the same method was produced, and the results were the same as those of a pullulan microgel not having a protein cross-linked ((a) to (c) in FIG. 3).
  • the particle diameter described in FIG. 3 is measured by visual measurement using a scale attached to an optical microscope.
  • Example 11 Production of pullulan film-1
  • the standing time was 30 minutes, and after confirming that the crosslinking reaction had progressed to some extent and the solution was in a state of pulling the yarn, Thinly stretched on the board. This was left to stand at 25 ° C. for 48 hours and air-dried to produce a pullulan film.
  • BSA (20 mg, manufactured by Wako Pure Chemical Industries, Ltd.) was added, and a pullulan gel in which the protein was crosslinked was prepared in the same manner.
  • a protein-impregnated pullulan gel film was prepared by immersing a pullulan film not crosslinked with protein in a BSA solution (1 mg / mL) for 10 minutes and then washing with water for 10 minutes.
  • a pullulan film manufactured by Hayashibara Co., Ltd.
  • a pullulan film was dissolved in water and stretched thinly on a polypropylene plate, which was left to stand at 25 ° C. for 48 hours and naturally dried to prepare a pullulan film.
  • the pullulan film was found to be capable of producing a film having a good appearance since the solution is more viscous than the pullulan film and can be stretched thinly and neatly (FIG. 4 (a)). Moreover, when the pullulan film was immersed in water, it absorbed water and became a sheet-like pullulan gel ((b) of FIG. 4). When this pullulan gel was observed with a microscope, it was found that the thickness was uniform ((c) of FIG. 4).
  • Example 12 Production of pullulan film-2
  • Pullulan (10 g, manufactured by Hayashibara) and sodium bicarbonate (400 mg) were added to water (90 mL) and completely dissolved. After cooling to 5 ° C. or lower in ice, add a solution of cyanuric chloride (200 mg, manufactured by Kanto Chemical Co.) in acetone (2 mL) and stir at 5 ° C. or lower until a homogeneous solution is obtained.
  • the oxygen transmission coefficient (cm 3 ⁇ mm / m 2 ⁇ day ⁇ atm) of the pullulan film was 0.045.
  • the oxygen transmission coefficient (cm 3 ⁇ mm / m 2 ⁇ day ⁇ atm) of the pullulan film produced as a comparison was 0.070.
  • Example 13 Preparation of hybrid gel-1
  • pullulan (2 g, manufactured by Hayashibara) with an average molecular weight of 200 kDa, hydroxypropyl ⁇ -cyclodextrin (1 g, manufactured by Wako Pure Chemical Industries) and 5% sodium bicarbonate (manufactured by Wako Pure Chemical Industries) was added.
  • Cyanuric chloride 40 mg, manufactured by Nacalai Tesque was added thereto, stirred for about 10 minutes (500 rpm), and then allowed to stand at 25 ° C. for 18 hours. As a result, the entire solution portion gelled and became one lump.
  • Example 14 Preparation of hybrid gel-2
  • pullulan (1.40 g, manufactured by Hayashibara)
  • dextran sodium sulfate (0.60 g, manufactured by Wako Pure Chemical Industries)
  • sodium bicarbonate 100 mg
  • a solution of cyanuric chloride 50 mg, manufactured by Kanto Chemical Co., Inc.
  • acetone 1 mL
  • Example 15 Preparation of hybrid gel-3
  • Chitosan 10 750 mg, manufactured by Wako Pure Chemical Industries, Ltd.
  • water 15 mL
  • 1 M hydrochloric acid 2.9 mL
  • Pullulan 500 mg, manufactured by Hayashibara Co., Ltd.
  • water were added thereto to a liquid volume of 25 mL
  • an acetone 0.5 mL
  • cyanuric chloride 31 mg, manufactured by Kanto Chemical Co., Inc.
  • the gel was crushed with a spatula, poured into ethanol (300 mL), filtered and vacuum dried (50 ° C.). Subsequently, the mixture was pulverized with a lab mill surplus to obtain a powdery pullulan-chitosan hybrid gel (1.00 g).
  • Example 16 Preparation of pullulan microgel-2
  • a precursor solution (5 mL) of pullulan 8% -cyanuric chloride 2.5% was prepared in the same manner as in Example 12, and sodium lauryl sulfate (250 mg) was added thereto and gently stirred.
  • a hexane (30 mL) mixture of DKS NL-15 (2.82 g, manufactured by Daiichi Kogyo Seiyaku) and DKS NL-50 (0.71 g, manufactured by Daiichi Kogyo Seiyaku) was prepared, and In addition, the mixture was vigorously stirred by vortex and emulsified.
  • the particle size of the pullulan microgel was measured (LA-950V2, manufactured by Horiba Seisakusho). As a result, it was 8.6 ⁇ m (volume basis 90% diameter) (FIG. 6).
  • the pullulan gel of the present invention can be used as a material in the medical field and research field. It can also be used in the food field.

Abstract

The present invention provides a novel method of utilizing pullulan. For example, the present invention relates to: a pullulan gel which is produced by crosslinking multiple pullulan molecules; a pullulan gel as mentioned above, in which a protein is crosslinked with the pullulan molecules; a dried product of the pullulan gel; a pharmaceutical composition; a protein detection kit; and others. The present invention also relates to: methods respectively for producing these products; and others.

Description

プルランゲルならびにその製造方法および利用Pull-langer and its production method and use
 本発明は、プルランゲルならびにその製造方法および利用に関するものである。 The present invention relates to pullulan gel and its production method and use.
 プルランは、グルコース3分子がα-1,4結合したマルトトリオースがα-1,6結合で繋がった水溶性の多糖類であり、現在、食品添加剤および医薬品補助剤として広く使われている。 Pullulan is a water-soluble polysaccharide in which three molecules of glucose are linked by α-1,4 and maltotriose is linked by α-1,6 bonds, and is currently widely used as a food additive and pharmaceutical supplement. .
 例えば、特許文献1には、薬物の肝臓へのターゲティングを目的とした、薬物と水溶性多糖プルランとからなる水溶性の結合体製剤が記載されている。この結合体製剤は、プルランと塩化シアヌルとを反応させ、次いでシアヌル化プルランと薬物とを化学結合させることによって製造される。 For example, Patent Document 1 describes a water-soluble conjugate preparation composed of a drug and a water-soluble polysaccharide pullulan for the purpose of targeting the drug to the liver. This conjugate preparation is produced by reacting pullulan with cyanuric chloride and then chemically bonding the cyanurized pullulan and the drug.
 また、非特許文献1には、疎水性のコレステロールおよびカチオン性官能基を付加したプルランのナノゲルが記載されている。このナノゲルは、疎水性であるコレステロールが水性溶媒中で互いに集まる性質を利用して、親水性であるプルランを集合させて作製したものである。 Non-Patent Document 1 describes a pullulan nanogel to which hydrophobic cholesterol and a cationic functional group are added. This nanogel is produced by assembling hydrophilic pullulan utilizing the property that hydrophobic cholesterol gathers together in an aqueous solvent.
日本国公開特許公報「特開平9-124512号公報(1997年5月13日公開)」Japanese Patent Publication “JP 9-124512 A” (published May 13, 1997)
 上述のようにプルランの様々な利用方法が研究されてきたが、プルランの水溶性の性質をもっぱら利用するものであった。プルランの新たな利用方法を提供することが望まれる。 As described above, various utilization methods of pullulan have been studied, but the water-soluble nature of pullulan has been exclusively utilized. It would be desirable to provide new ways to use pullulan.
 本発明に係るプルランゲルは、複数のプルランが架橋されてなる。 The pullulan gel according to the present invention is formed by crosslinking a plurality of pullulans.
 本発明はまた、複数のプルランが架橋されてなるプルランゲルの製造方法であって、プルランと下記一般式(2)で表される架橋剤とを含む水溶液を撹拌する工程と、上記工程後に上記水溶液を静置して架橋を行う工程とを含む、プルランゲル製造方法を提供する。 The present invention is also a method for producing a pullulan gel in which a plurality of pullulans are crosslinked, a step of stirring an aqueous solution containing pullulan and a crosslinking agent represented by the following general formula (2), and the aqueous solution after the step A pullulan gel production method comprising the step of cross-linking by standing.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式(2)において、複数あるR~Rはそれぞれ独立に塩素原子、フッ素原子、臭素原子またはヨウ素原子である)
 本発明はまた、複数のプルランが架橋されてなるプルランゲルの製造方法であって、プルランと上記一般式(2)で表される架橋剤とを含む水溶液を撹拌する工程と、上記工程後に上記水溶液を水不溶性の液体中で撹拌して架橋を行う工程とを含む、プルランゲル製造方法を提供する。
(In Formula (2), a plurality of R 1 to R 3 are each independently a chlorine atom, a fluorine atom, a bromine atom or an iodine atom)
The present invention is also a method for producing a pullulan gel in which a plurality of pullulans are crosslinked, a step of stirring an aqueous solution containing pullulan and a crosslinking agent represented by the general formula (2), and the aqueous solution after the steps And a step of cross-linking by stirring in a water-insoluble liquid.
 本発明はまた、複数のプルランが架橋されてなるプルランゲルの製造方法であって、プルランと上記一般式(2)で表される架橋剤とを含む水溶液を撹拌する工程と、上記工程後に上記水溶液を水不溶性の液体中で撹拌して乳化する工程と、乳化した溶液を静置して架橋を行う工程とを含んでおり、上記水溶液および上記水不溶性の液体のうちの少なくとも何れか一方が、乳化剤を含んでいる、プルランゲル製造方法を提供する。 The present invention is also a method for producing a pullulan gel in which a plurality of pullulans are crosslinked, a step of stirring an aqueous solution containing pullulan and a crosslinking agent represented by the general formula (2), and the aqueous solution after the steps A step of emulsifying by emulsifying in a water-insoluble liquid, and a step of performing cross-linking by allowing the emulsified solution to stand, wherein at least one of the aqueous solution and the water-insoluble liquid is: A method for producing pullulan gel comprising an emulsifier is provided.
 本発明によれば、プルランの新たな利用方法を提供することができる。 According to the present invention, a new method for using pullulan can be provided.
実施例において、粉砕したプルランゲルおよびその粒子径を示す図である。In an Example, it is a figure which shows the ground pullulan gel and its particle diameter. 実施例において、ラット血清中のDer f 2特異的IgG抗体の推移を示す図である。In an Example, it is a figure which shows transition of the Der f 2-specific IgG antibody in a rat serum. 実施例において、プルランマイクロゲルおよび各処理後の結果を示す図である。In an Example, it is a figure which shows the result after pullulan microgel and each process. 実施例において、プルランゲルフィルムを示す図である。In an Example, it is a figure which shows the pullulan film. 実施例において、各プルランゲルフィルムのタンパク質徐放性を示す図である。In an Example, it is a figure which shows the protein sustained release property of each pullulan gel film. 実施例において、プルランマイクロゲルの粒子径を示す図である。In an Example, it is a figure which shows the particle diameter of a pullulan microgel.
 〔プルランゲルおよび製造方法〕
 (プルランゲル)
 本発明に係るプルランゲルは、複数のプルランが架橋されてなる。プルランは、グルコース3分子がα-1,4結合したマルトトリオースがα-1,6結合で繋がった多糖類である。本発明に係るプルランゲルを構成するプルランの平均分子量は特に限定されず、目的に応じて適宜選択すればよいが、例えば、20kDa~1600kDaであり得る。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上かつB以下」を意味する。
[Pull Langer and production method]
(Pull Langer)
The pullulan gel according to the present invention is formed by crosslinking a plurality of pullulans. Pullulan is a polysaccharide in which maltotriose, in which three molecules of glucose are α-1,4 linked, is linked by α-1,6 bonds. The average molecular weight of the pullulan constituting the pullulan gel according to the present invention is not particularly limited and may be appropriately selected according to the purpose, but may be, for example, 20 kDa to 1600 kDa. Unless otherwise specified in this specification, “A to B” representing a numerical range means “A or more and B or less”.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 また、本発明に係るプルランゲルの一実施形態において、タンパク質、ペプチドまたはアミノ酸がプルランに架橋されていてもよい。 In one embodiment of the pullulan gel according to the present invention, the protein, peptide or amino acid may be cross-linked to pullulan.
 本発明に係るプルランゲルおいて、複数のプルランが架橋されている架橋部分の構造は特に限定されないが、例えば、複数のプルランは下記一般式(1)で表される構造によって架橋されている。 In the pullulan gel according to the present invention, the structure of the crosslinked portion where a plurality of pullulans are crosslinked is not particularly limited. For example, the plurality of pullulans are crosslinked by a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(1)において、複数ある*のうちの少なくとも2つはプルランとの架橋点である。 In the formula (1), at least two of the plurality of * are bridging points with pullulan.
 一実施形態において、プルランゲルはプルランのみが架橋されてなり、その場合、プルランとの架橋点でない*はヒドロキシ基である。具体的には、複数ある*のうちの2つはプルランとの架橋点であり、それ以外の*はヒドロキシ基であるか、あるいは、複数ある*のうちの3つともプルランとの架橋点である架橋構造を含んでいる。すなわち、プルランゲルは、2分子以上、好ましくは3分子以上のプルランが1つの架橋構造で架橋されている構造を含んでいる。なお、プルランゲル中には、複数ある*のうちの1つのみがプルランと結合している、すなわち架橋を構成していない、上記一般式(1)で表される構造が含まれていてもよい。 In one embodiment, pullulan gel is formed by crosslinking only pullulan, in which case * not a crosslinking point with pullulan is a hydroxy group. Specifically, two of the plurality of * are crosslinking points with pullulan, the other * is a hydroxy group, or three of the plurality of * are crosslinking points with pullulan. Contains some cross-linked structure. That is, the pullulan gel includes a structure in which two or more molecules, preferably three or more molecules of pullulan are crosslinked by one crosslinked structure. The pullulan gel may contain a structure represented by the above general formula (1) in which only one of a plurality of * is bonded to the pullulan, that is, does not constitute a bridge. .
 別の実施形態において、さらにタンパク質、ペプチドまたはアミノ酸がプルランに架橋されていてもよい。タンパク質、ペプチドまたはアミノ酸がプルランに架橋されている架橋部分の構造は特に限定されないが、例えば、上記一般式(1)で表される構造によって架橋されている。その場合、プルランとの架橋点でない*は、タンパク質、ペプチドまたはアミノ酸との架橋点である。すなわち、プルランゲルは、複数ある*のうちの2つはプルランとの架橋点であり、かつ、それ以外の*はタンパク質、ペプチドまたはアミノ酸との架橋点である架橋構造を含んでいる。 In another embodiment, a protein, peptide or amino acid may be further cross-linked to pullulan. The structure of the cross-linked moiety in which the protein, peptide or amino acid is cross-linked to pullulan is not particularly limited. For example, it is cross-linked by the structure represented by the general formula (1). In that case, * that is not a cross-linking point with pullulan is a cross-linking point with protein, peptide or amino acid. That is, the pullulan gel contains a cross-linked structure in which two of the plurality of * are cross-linking points with pullulan, and other * are cross-linking points with proteins, peptides or amino acids.
 本発明に係るプルランゲルでは、このような架橋構造が多数ある。そのため、一実施形態において、多数のプルランが多数の架橋構造を介して網目状に構成されている。なお、プルラン同士は直接結合していない。プルランは、ランダムな位置のヒドロキシ基で架橋されていると考えられる。そのため、プルランは、1分子中に、複数の架橋点を有していてもよい。また、タンパク質、ペプチドまたはアミノ酸が架橋されている場合、当該タンパク質、ペプチドまたはアミノ酸はプルランゲルの内部および表面に存在し得る。 The pullulan gel according to the present invention has many such crosslinked structures. For this reason, in one embodiment, a large number of pullulans are configured in a network via a large number of cross-linked structures. Note that pullulans are not directly connected to each other. Pullulan is considered to be crosslinked with hydroxy groups at random positions. Therefore, pullulan may have a plurality of crosslinking points in one molecule. In addition, when a protein, peptide or amino acid is cross-linked, the protein, peptide or amino acid may be present inside and on the surface of the pullulan gel.
 1つのプルランゲルに含まれる多数の架橋構造において、架橋の様式は1種類である必要はなく、例えば、タンパク質が架橋しているプルランゲルにおいて、多数の架橋構造の少なくとも一部にタンパク質が結合していればよい。すなわち、一実施形態において、複数の架橋構造のうちの一部では、複数の*のうちの2つがプルランとの架橋点であり、それ以外の*がタンパク質との架橋点であり、複数ある架橋構造のうちの別の一部では、複数の*のうちの2つがプルランとの架橋点であり、それ以外の*がヒドロキシ基である。また、プルランゲルは、上記の架橋構造の他に、2つのタンパク質と1つのプルランが結合した(すなわち、1つの*がプルランとの架橋点であり、2つの*がタンパク質との架橋点である)架橋構造を含んでいてもよい。また、上記の架橋構造の他に、1つのタンパク質と1つのプルランが結合した(すなわち、1つの*がプルランとの架橋点であり、1つの*がタンパク質との架橋点であり、1つの*がヒドロキシ基である)架橋構造を含んでいてもよい。 In many cross-linked structures included in one pullulan gel, there is no need for one type of cross-linking. For example, in a pullulan gel in which proteins are cross-linked, proteins are bound to at least some of the many cross-linked structures. That's fine. That is, in one embodiment, in some of the plurality of crosslinking structures, two of the plurality of * are crosslinking points with pullulan, and the other * is a crosslinking point with proteins, In another part of the structure, two of the plurality of * are cross-linking points with pullulan, and the other * is a hydroxy group. In addition, in the pullulan gel, two proteins and one pullulan are bonded in addition to the above-described crosslinking structure (that is, one * is a crosslinking point with pullulan and two * is a crosslinking point with protein). It may contain a crosslinked structure. In addition to the above-mentioned cross-linking structure, one protein and one pullulan are bonded (that is, one * is a cross-linking point with pullulan, one * is a cross-linking point with protein, and one * May be a crosslinked structure).
 タンパク質またはペプチドが架橋されている場合、当該タンパク質またはペプチドを構成するアミノ酸残基のうち、側鎖にヒドロキシ基を有するアミノ酸(セリン、チロシンおよびスレオニン等)の当該ヒドロキシ基で架橋されていると考えられる。また、側鎖にカルボキシ基を有するアミノ酸(グルタミン酸およびアスパラギン酸等)の当該カルボキシ基でも架橋され得る。ただし、これらのアミノ酸に限定されるわけではない。 When a protein or peptide is cross-linked, it is considered that the amino acid residues constituting the protein or peptide are cross-linked by the hydroxy group of amino acids having a hydroxy group in the side chain (serine, tyrosine, threonine, etc.). It is done. Moreover, the carboxy group of an amino acid (such as glutamic acid and aspartic acid) having a carboxy group in the side chain can also be crosslinked. However, it is not necessarily limited to these amino acids.
 プルランゲルに架橋されるタンパク質としては、例えば、抗体、抗原、受容体、受容体に対するリガンド、酵素、酵素に対するリガンド、およびホルモン、ならびにこれらの機能的フラグメント等が挙げられる。タンパク質は、天然タンパク質であってもよいし、非天然タンパク質であってもよい。このようなタンパク質が架橋されたプルランゲルは、例えば、後述するタンパク質検出キットとして利用することができる。 Examples of proteins that are cross-linked to pullulan gel include antibodies, antigens, receptors, ligands for receptors, enzymes, ligands for enzymes, hormones, and functional fragments thereof. The protein may be a natural protein or a non-natural protein. Such a pullulan gel in which proteins are crosslinked can be used as, for example, a protein detection kit described later.
 本明細書において「ペプチド」は、2以上のアミノ酸がペプチド結合でつながった化合物を指す。「ペプチド」には、オリゴペプチドおよびポリペプチドも包含される。 As used herein, “peptide” refers to a compound in which two or more amino acids are connected by peptide bonds. “Peptide” also includes oligopeptides and polypeptides.
 プルランゲルに架橋されるペプチドとしては、例えば、上記タンパク質の機能的フラグメント以外のフラグメントが挙げられる。このようなペプチドが架橋されたプルランゲルも、例えば、後述するタンパク質検出キットとして利用することができる。 Examples of peptides that are cross-linked to pullulan gel include fragments other than the functional fragments of the above protein. A pullulan gel in which such a peptide is cross-linked can also be used, for example, as a protein detection kit described later.
 プルランゲルに架橋されるアミノ酸は、天然型アミノ酸であってもよいし、非天然型アミノ酸であってもよい。当該アミノ酸として好ましくは、ヒドロキシ基を有するアミノ酸である。ヒドロキシ基を有するアミノ酸としては、例えば、セリン、チロシン、スレオニン、ヒドロキシプロリン、ヒドロキシリシン、およびそれらの誘導体が挙げられる。なお、アミノ酸のカルボキシ基においても架橋され得る。 The amino acid cross-linked to pullulan gel may be a natural amino acid or a non-natural amino acid. The amino acid is preferably an amino acid having a hydroxy group. Examples of amino acids having a hydroxy group include serine, tyrosine, threonine, hydroxyproline, hydroxylysine, and derivatives thereof. In addition, it can bridge | crosslink also in the carboxy group of an amino acid.
 本発明に係るプルランゲルは、ハイドロゲルであってもよいし、オルガノゲルであってもよい。オルガノゲルにおける有機溶剤としては、メタノール、エタノール、アセトンまたはクロロフォルム等が挙げられる。後述の実施例で示すように、本発明に係るプルランゲルは、水だけでなく、メタノール等の有機溶剤に対しても安定性を有している。 The pullulan gel according to the present invention may be a hydrogel or an organogel. Examples of the organic solvent in the organogel include methanol, ethanol, acetone, or chloroform. As shown in Examples described later, the pullulan gel according to the present invention is stable not only with water but also with an organic solvent such as methanol.
 プルランゲルの大きさおよび形状は特に限定されず、使用目的に応じて適宜設定すればよい。形状としては、例えば、球形、直方体、およびシート状等が挙げられる。大きさは、例えば、数十cm角の大きさであってもよいし、μmオーダーの大きさ(プルランマイクロゲル)であってもよい。さらに、nmオーダーの大きさ(プルランナノゲル)であってもよい。また、厚さが1μm~3mmのシートであってもよい。一実施形態において、平均粒径が50nm~1mmである粒子とすることが好ましい。なお、「平均粒径」は、レーザー回折・散乱法による測定方法を用いて、体積換算の平均粒径として算出することができる。 The size and shape of pullulanger are not particularly limited, and may be set as appropriate according to the purpose of use. Examples of the shape include a spherical shape, a rectangular parallelepiped, and a sheet shape. The size may be, for example, a size of several tens of cm squares or a size on the order of μm (a pullulan microgel). Further, the size may be on the order of nm (pullulan nanogel). Further, it may be a sheet having a thickness of 1 μm to 3 mm. In one embodiment, particles having an average particle diameter of 50 nm to 1 mm are preferable. The “average particle diameter” can be calculated as an average particle diameter in terms of volume using a measurement method by a laser diffraction / scattering method.
 本発明のプルランマイクロゲルおよびプルランナノゲルは、通針性を有する大きさであり得、注射によって生体へ投与することが可能である。後述の実施例で示すように、プルランゲルは皮下投与時の刺激および炎症反応を示さず、安全に生体へ投与し得る。 The pullulan microgel and pullulan nanogel of the present invention can be of a size having needle penetration and can be administered to a living body by injection. As shown in the examples described later, pullulan gel does not show irritation and inflammatory reaction when administered subcutaneously, and can be safely administered to a living body.
 本発明のプルランゲル(有色の液体または有色の薬剤等を含浸していない場合)の色は、製造の条件によって異なるが、透明~白色であり、好ましくは透明である。また、本発明のプルランゲルは、好ましくは、色が均一である。 The color of the pullulan gel of the present invention (when not impregnated with a colored liquid or a colored drug) varies depending on the production conditions, but is transparent to white, preferably transparent. The pullulan gel of the present invention is preferably uniform in color.
 また、本発明に係るプルランゲルは、薬剤が含浸されていてもよい。薬剤としては、医療用薬剤、実験用薬剤、およびワクチン等が挙げられ、例えば、上述のタンパク質およびペプチドの他、核酸(DNA、RNA等)等の生体分子およびその以外の化学物質が挙げられる。薬剤が含浸されているプルランゲルでは、薬剤はプルランと架橋されておらず、プルランゲルが保持する液体(水または有機溶剤)に溶解または懸濁されている。薬剤が含浸されているプルランゲルは、徐放性を有する材料として利用することもでき、例えば、アジュバント、創傷被覆剤、および癒着防止剤等として、医療分野で好適に用いることができる。 Moreover, the pullulan gel according to the present invention may be impregnated with a drug. Examples of the drug include medical drugs, experimental drugs, vaccines, and the like. For example, in addition to the above-described proteins and peptides, biomolecules such as nucleic acids (DNA, RNA, etc.) and other chemical substances may be mentioned. In pullulan gel impregnated with a drug, the drug is not cross-linked with pullulan and is dissolved or suspended in a liquid (water or an organic solvent) retained by the pullulan gel. The pullulan gel impregnated with a drug can also be used as a material having a sustained release property, and can be suitably used in the medical field, for example, as an adjuvant, a wound dressing, and an anti-adhesion agent.
 本発明に係るプルランゲルは、オートクレーブ(121℃、20分)に供しても、形状を維持し得る。したがって、本発明に係るプルランゲルを、例えば、生体等に適用する場合、あるいは実験等に用いる場合に、オートクレーブによる滅菌を行うことができる。オートクレーブに供する場合には、プルランゲルを水に浸漬した状態で行うことが好ましい。また、本発明のプルランゲルは、凍結・解凍させても、形状を維持することができる。したがって、冷凍保存も可能である。 The pullulan gel according to the present invention can maintain its shape even when subjected to autoclave (121 ° C., 20 minutes). Therefore, when the pullulan gel according to the present invention is applied to a living body or the like, or used for an experiment or the like, sterilization by an autoclave can be performed. When using for an autoclave, it is preferable to carry out the pullulan gel soaked in water. In addition, the pullulan gel of the present invention can maintain its shape even when it is frozen and thawed. Therefore, frozen storage is also possible.
 また、本発明に係るプルランゲルは、後述する製造方法で用いる塩化シアヌル等の有毒な物質を実質的に含んでいない。また、架橋構造自体は、生体への毒性がほとんどない。そのため、本発明に係るプルランゲルは、生体へ安全に適用することができる。 Moreover, the pullulan gel according to the present invention does not substantially contain a toxic substance such as cyanuric chloride used in the production method described later. Moreover, the crosslinked structure itself has almost no toxicity to the living body. Therefore, the pullulan gel according to the present invention can be safely applied to a living body.
 本発明に係るプルランゲルは、プルラン以外の多糖類を含んでいるハイブリッドゲルであってもよい。当該多糖類は、プルランに架橋されているのではなく、プルランゲルを構成するプルランの網目構造に絡まることでプルランゲルの一部となっている。タンパク質が架橋されたプルランゲルでは、当該多糖類はタンパク質にも絡まっていてもよい。当該多糖類は、プルランゲルの内部および/または外部に存在し得る。複数の分子の多糖類が、複数の分子のプルランに絡まることにより、プルランゲル中でプルランと当該多糖類とが網目状に張り巡らされた構造であり得る。当該多糖類としては、例えば、ヒドロキシプロピルβ-シクロデキストリン、デキストラン、デキストラン硫酸ナトリウム、β-シクロデキストリン、アルギン酸ナトリウム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、キサンタンガム、アラビアガム、キトサン、およびトレハロース、ならびにこれらの誘導体等が挙げられる。当該多糖類は、1種類であってもよいし、2種類以上であってもよい。このようなハイブリッドゲルでは、多糖類単独ではゲル化しないものをプルランと組み合わせることによりゲル化できるという利点がある。例えば、ヒドロキシプロピルβ-シクロデキストリンとのハイブリッドゲルでは、高いアジュバント効果が期待される。また、例えば皮下に注射したプルランゲルは分解しづらいが、これら多糖類と組み合わせることによって分解し易くすることもできる。さらに、β-シクロデキストリンとのハイブリッドゲルでは、低分子化合物を含浸させた場合に徐放性を有し得る。 The pullulan gel according to the present invention may be a hybrid gel containing a polysaccharide other than pullulan. The polysaccharide is not cross-linked to pullulan but is part of the pullulan gel by being entangled with the network structure of the pullulan constituting the pullulan gel. In the pullulan gel in which the protein is cross-linked, the polysaccharide may be entangled in the protein. The polysaccharide may be present inside and / or outside the pullulan gel. A plurality of molecular polysaccharides are entangled with a plurality of molecular pullulans, so that pullulan and the polysaccharides are stretched in a network in a pullulan gel. Examples of the polysaccharide include hydroxypropyl β-cyclodextrin, dextran, sodium dextran sulfate, β-cyclodextrin, sodium alginate, hydroxypropylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, xanthan gum, gum arabic, chitosan , And trehalose, and derivatives thereof. The polysaccharide may be one type or two or more types. Such a hybrid gel has the advantage that it can be gelled by combining a gel that is not gelled with a polysaccharide alone with pullulan. For example, a hybrid gel with hydroxypropyl β-cyclodextrin is expected to have a high adjuvant effect. Further, for example, pullulan gel injected subcutaneously is difficult to decompose, but can be easily decomposed by combining with these polysaccharides. Furthermore, a hybrid gel with β-cyclodextrin can have a sustained release property when impregnated with a low molecular compound.
 また、本発明に係るプルランゲルは、内部に任意の物体を保持していてもよい。当該物体としては、例えば、磁性体等が挙げられる。このようなプルランゲルでは、当該物体の性質を利用した様々な用途に用いられ得る。例えば、磁性体を内部に保持している場合、タンパク質のアフィニティ精製等の使用方法がある。 Moreover, the pullulanger according to the present invention may hold an arbitrary object inside. Examples of the object include a magnetic body. Such pullulan gel can be used for various applications utilizing the properties of the object. For example, when a magnetic substance is held inside, there is a usage method such as protein affinity purification.
 (製造方法)
 <製造方法1>
 プルランゲルの製造方法の一実施形態では、プルランと下記一般式(2)で表される架橋剤とを含む水溶液を撹拌する工程と、当該工程後に当該水溶液を静置して架橋を行う工程とを含む。
(Production method)
<Manufacturing method 1>
In one embodiment of the method for producing pullulan gel, a step of stirring an aqueous solution containing pullulan and a crosslinking agent represented by the following general formula (2), and a step of cross-linking by standing the aqueous solution after the step are performed. Including.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(2)において、複数あるR~Rはそれぞれ独立に塩素原子、フッ素原子、臭素原子またはヨウ素原子である。架橋剤は、R~Rの何れもが塩素原子である塩化シアヌル(下記一般式(3))であることが好ましい。 In the formula (2), a plurality of R 1 to R 3 are each independently a chlorine atom, a fluorine atom, a bromine atom or an iodine atom. The crosslinking agent is preferably cyanuric chloride (the following general formula (3)) in which all of R 1 to R 3 are chlorine atoms.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 水溶液に含まれるプルランの濃度は、特に限定されないが、例えば、2%(w/v)~15%(w/v)とすることができる。水溶液に含まれるプルランの濃度によって、プルランゲルの硬さを調節することができ、プルランの濃度が高いほどプルランゲルは硬くなる。また、水溶液に含まれる架橋剤の濃度は、特に限定されないが、例えば、0.1%(w/v)~0.3%(w/v)とすることができる。水溶液に含まれる架橋剤の濃度によって、プルランゲルの硬さを調節することができ、架橋剤の濃度が高いほどプルランゲルは硬くなる。プルランおよび架橋剤は、市販のものを用いることができる。 The concentration of pullulan contained in the aqueous solution is not particularly limited, but may be, for example, 2% (w / v) to 15% (w / v). The hardness of the pullulan gel can be adjusted by the concentration of pullulan contained in the aqueous solution. The higher the pullulan concentration, the harder the pullulan gel. Further, the concentration of the crosslinking agent contained in the aqueous solution is not particularly limited, but may be, for example, 0.1% (w / v) to 0.3% (w / v). Depending on the concentration of the crosslinking agent contained in the aqueous solution, the hardness of the pullulan gel can be adjusted. The higher the concentration of the crosslinking agent, the harder the pullulan gel. A commercially available thing can be used for a pullulan and a crosslinking agent.
 水溶液のpHは、5.0~10.0であることが好ましく、5.0~8.0であることがより好ましく、6.0~8.0であることがさらに好ましく、6.5~7.5であることがよりさらに好ましく、pH7.0であることが特に好ましい。pHが高すぎる場合、硬さの異なる部分を有する不均一な白濁したゲルとなってしまう。また、水酸化ナトリウムを用いる場合には、プルランが化学反応を起こして数分で黄~黄褐色に発色(着色)する(後述の参考例も参照)。これは、プルラン自体の構造が変化しているためと考えられる。そのため、水酸化ナトリウムを用いて本発明のプルランゲルを製造することはできない。 The pH of the aqueous solution is preferably 5.0 to 10.0, more preferably 5.0 to 8.0, still more preferably 6.0 to 8.0, and 6.5 to More preferably, it is 7.5, and it is especially preferable that it is pH 7.0. When pH is too high, it will become a non-uniform cloudy gel which has a part from which hardness differs. When sodium hydroxide is used, pullulan undergoes a chemical reaction and develops (colors) from yellow to tan in a few minutes (see also reference examples described later). This is probably because the structure of the pullulan itself has changed. Therefore, the pullulan gel of the present invention cannot be produced using sodium hydroxide.
 撹拌する際の温度は、0℃~45℃であることが好ましく、0℃~37℃であることがより好ましい。撹拌する速度は、例えば10rpm~1000rpmとすることができ、好ましくは100rpm~500rpmである。撹拌する時間は、例えば1分~5時間とすることができ、好ましくは5分~3時間である。撹拌する時間が短時間であっても、後述の架橋を行う工程において、プルランゲルを作製することができる。 The temperature at the time of stirring is preferably 0 ° C. to 45 ° C., and more preferably 0 ° C. to 37 ° C. The stirring speed can be, for example, 10 rpm to 1000 rpm, preferably 100 rpm to 500 rpm. The stirring time can be, for example, 1 minute to 5 hours, preferably 5 minutes to 3 hours. Even if the stirring time is short, pullulan gel can be produced in the step of performing cross-linking described later.
 上記水溶液は、プルランおよび架橋剤の他に、例えば、pHを調製するための重曹(炭酸水素ナトリウム)または炭酸ナトリウム等のpH調整剤、および架橋剤を溶解させるためのアセトン等の有機溶剤等を含んでいてもよい。 In addition to pullulan and a crosslinking agent, the aqueous solution contains, for example, a pH adjusting agent such as sodium bicarbonate (sodium bicarbonate) or sodium carbonate for adjusting pH, an organic solvent such as acetone for dissolving the crosslinking agent, and the like. May be included.
 一実施形態では、有機溶剤に溶解した架橋剤をプルラン水溶液に添加し、得られた水溶液を撹拌する。別の実施形態では、粉末の架橋剤をプルラン水溶液に添加し、得られた水溶液を撹拌する。 In one embodiment, a crosslinking agent dissolved in an organic solvent is added to the aqueous pullulan solution and the resulting aqueous solution is stirred. In another embodiment, a powdered crosslinker is added to the aqueous pullulan solution and the resulting aqueous solution is stirred.
 撹拌により、水への溶解度が低い架橋剤(塩化シアヌル等)を溶解させることができ、また、プルランおよび架橋剤を溶液中で均一に存在させることができる。 By stirring, a crosslinking agent having low solubility in water (cyanuric chloride or the like) can be dissolved, and pullulan and the crosslinking agent can be uniformly present in the solution.
 撹拌後で架橋前に、この水溶液を所望の大きさおよび形状の型に入れて成型する工程を行ってもよい。 After the stirring and before cross-linking, a step of forming the aqueous solution in a mold having a desired size and shape may be performed.
 架橋を行う際の温度は、例えば-20℃~45℃とすることができ、-20℃~37℃であることが好ましく、0℃~37℃であることがより好ましく、0℃~30℃であることがさらに好ましい。架橋を行う時間は、水溶液を含む容器または型の大きさ等に応じて適宜設定すればよいが、例えば30分~18時間とすることができ、好ましくは30分~5時間であり、より好ましくは1時間~4時間である。 The temperature at the time of crosslinking can be, for example, −20 ° C. to 45 ° C., preferably −20 ° C. to 37 ° C., more preferably 0 ° C. to 37 ° C., and 0 ° C. to 30 ° C. More preferably. The time for crosslinking may be appropriately set according to the size of the container or mold containing the aqueous solution, etc., and can be, for example, 30 minutes to 18 hours, preferably 30 minutes to 5 hours, and more preferably. Is 1 to 4 hours.
 架橋剤として塩化シアヌルを用いる場合、水中で塩素原子が遊離し、プルランが結合しなかった位置ではヒドロキシ基になると考えられる。 When cyanuric chloride is used as a cross-linking agent, it is considered that a chlorine atom is liberated in water and a hydroxyl group is formed at a position where pullulan is not bonded.
 このようにして得られたプルランゲルは、所望の大きさおよび形状に切断または粉砕してもよい。プルランゲルの粉砕は、粉砕機、ホモミキサー、ワーリングブレンダー、または乳鉢等を用いて行うことができ、μmオーダー、場合によってはnmオーダーにまで粉砕することもできる。また、得られたプルランゲルを乾燥してから粉砕することもできる。 The pullulan gel thus obtained may be cut or pulverized into a desired size and shape. The pullulan gel can be pulverized using a pulverizer, a homomixer, a Waring blender, a mortar, or the like, and can be pulverized to the μm order or, in some cases, the nm order. Further, the obtained pullulan gel can be dried and then pulverized.
 また、プルランゲルに付着した架橋剤およびプルランを洗浄する工程をさらに含んでいてもよい。洗浄する工程は、例えば、水を用いて行うことができる。 Further, it may further include a step of washing the cross-linking agent and pullulan adhering to the pullulan gel. The washing step can be performed using water, for example.
 <製造方法2>
 プルランゲルの製造方法の別の実施形態では、プルランと上記一般式(2)で表される架橋剤とを含む水溶液を撹拌する工程と、当該工程後に当該水溶液を水不溶性の液体中で撹拌して架橋を行う工程とを含む。この製造方法は、特に、球状のプルランマイクロゲルおよびプルランナノゲルを製造する場合に好ましい。
<Manufacturing method 2>
In another embodiment of the method for producing pullulan gel, a step of stirring an aqueous solution containing pullulan and the crosslinking agent represented by the general formula (2), and stirring the aqueous solution in a water-insoluble liquid after the step is performed. Cross-linking. This production method is particularly preferred when producing spherical pullulan microgels and pullulan nanogels.
 プルランと架橋剤とを含む水溶液を撹拌する工程については、上述のとおりであるが、水溶液に含まれるプルランの濃度は、4%(w/v)以上であることが好ましい。 The step of stirring the aqueous solution containing pullulan and the crosslinking agent is as described above, but the concentration of pullulan contained in the aqueous solution is preferably 4% (w / v) or more.
 架橋を行う工程の前に、上記水溶液を静置する工程を含んでいてもよい。静置する時間は、例えば、1分~60分とすることができる。静置する際の温度は、例えば、4℃~37℃とすることができる。水溶液が僅かに糸を引く状態まで行うことが好ましい。 The step of allowing the aqueous solution to stand may be included before the step of crosslinking. The standing time can be, for example, 1 minute to 60 minutes. The temperature at the time of standing can be, for example, 4 ° C. to 37 ° C. It is preferable to carry out until the aqueous solution is slightly pulled.
 架橋を行う工程で用いる水不溶性の液体としては、常温で液体のものが好ましく、ヒマワリ油、オリーブオイル、パナセート810(登録商標)、および大豆油等のオイル;ヘキサン、ベンゼン、トルエン、キシレン、および酢酸エチル等の炭化水素等が挙げられるが、これらに限定されない。オイルの粘度は特に限定されないが、例えば、一般的な植物油の範囲のものを用いることができる。水不溶性の液体の粘度が高いほどプルランゲルの平均粒径が小さくなる。粒径維持の観点からは、高粘度のオイルが好ましい。 The water-insoluble liquid used in the cross-linking step is preferably a liquid at room temperature, and oils such as sunflower oil, olive oil, panacet 810 (registered trademark), and soybean oil; hexane, benzene, toluene, xylene, and Although hydrocarbons, such as ethyl acetate, are mentioned, it is not limited to these. Although the viscosity of oil is not specifically limited, For example, the thing of the range of common vegetable oil can be used. The higher the viscosity of the water-insoluble liquid, the smaller the average particle size of the pullulan gel. From the viewpoint of maintaining the particle size, high viscosity oil is preferred.
 水不溶性の液体に対する水溶液の量は、1体積%~50体積%であることが好ましく、1体積%~20体積%であることがより好ましく、1体積%~10体積%であることがさらに好ましい。架橋を行う際の撹拌速度は、特に限定されず、製造したいプルランゲルの大きさに応じて適宜設定すればよいが、例えば、100rpm~1000rpmとすることができ、500rpm~1000rpmであることが好ましい。撹拌速度が速いほど、プルランゲルの平均粒径が小さくなる。架橋を行う際の温度は、-20℃~45℃であることが好ましく、-20℃~37℃であることがより好ましく、0℃~30℃であることがさらに好ましい。撹拌する時間は、例えば30分~5時間とすることができ、好ましくは1時間~4時間である。 The amount of the aqueous solution with respect to the water-insoluble liquid is preferably 1% by volume to 50% by volume, more preferably 1% by volume to 20% by volume, and still more preferably 1% by volume to 10% by volume. . The stirring speed at the time of crosslinking is not particularly limited and may be appropriately set according to the size of the pullulan gel to be produced. For example, the stirring speed can be 100 rpm to 1000 rpm, and preferably 500 rpm to 1000 rpm. The faster the stirring speed, the smaller the average particle size of pullulan gel. The temperature at the time of crosslinking is preferably −20 ° C. to 45 ° C., more preferably −20 ° C. to 37 ° C., and further preferably 0 ° C. to 30 ° C. The stirring time can be, for example, 30 minutes to 5 hours, and preferably 1 hour to 4 hours.
 撹拌せずに静置すると一旦分散したプルラン同士が吸着し合い球状ゲルは生成されないが、この製造方法では、プルランと架橋剤とを含む水溶液の小さな液滴が水不溶性の液体中に生成し、撹拌することによって分散したままこの液滴の中で架橋が進行する。そのため、より小さな球状のプルランゲル(プルランマイクロゲルまたはプルランナノゲル)が製造される。 When left standing without stirring, the dispersed pullulans are adsorbed to each other and a spherical gel is not generated, but in this production method, small droplets of an aqueous solution containing pullulan and a crosslinking agent are generated in a water-insoluble liquid, Crosslinking proceeds in these droplets while being dispersed by stirring. Therefore, a smaller spherical pullulan gel (pullulan microgel or pullulan nanogel) is produced.
 製造したプルランゲルを水不溶性の液体から回収する方法は特に限定されないが、回収前に水を加えることが好ましい。これにより、プルランゲルが水中に浮遊し、プルランゲル同士の吸着を抑えることができる。 The method for recovering the produced pullulan gel from the water-insoluble liquid is not particularly limited, but it is preferable to add water before recovery. Thereby, pullulan gel floats in water and adsorption | suction of pullulan gels can be suppressed.
 回収後に、プルランゲルを静置し、さらに架橋を進行させてもよい。 After collection, the pullulan gel may be allowed to stand and cross-linking may proceed further.
 <製造方法3>
 プルランゲルの製造方法のさらに別の実施形態では、プルランと上記一般式(2)で表される架橋剤とを含む水溶液を撹拌する工程と、当該工程後に当該水溶液を水不溶性の液体中で撹拌して乳化する工程と乳化した溶液を静置して架橋を行う工程とを含んでおり、当該水溶液および当該水不溶性の液体のうちの少なくとも何れか一方が、乳化剤を含んでいる。この製造方法は、特に、球状のプルランマイクロゲルおよびプルランナノゲルを製造する場合に好ましい。
<Manufacturing method 3>
In still another embodiment of the method for producing pullulan gel, a step of stirring an aqueous solution containing pullulan and the crosslinking agent represented by the above general formula (2), and after the step, the aqueous solution is stirred in a water-insoluble liquid. And emulsifying the emulsified solution and the step of cross-linking the emulsified solution by standing. At least one of the aqueous solution and the water-insoluble liquid contains an emulsifier. This production method is particularly preferred when producing spherical pullulan microgels and pullulan nanogels.
 プルランと架橋剤とを含む水溶液を撹拌する工程については、上述のとおりであるが、水溶液に含まれるプルランの濃度は、4%(w/v)以上であることが好ましい。 The step of stirring the aqueous solution containing pullulan and the crosslinking agent is as described above, but the concentration of pullulan contained in the aqueous solution is preferably 4% (w / v) or more.
 乳化剤としては、ラウリル硫酸ナトリウム、DKS NL-15、およびDKS NL-50等の界面活性剤等が挙げられる。乳化剤は、プルランと架橋剤とを含む水溶液に含まれていてもよいし、水不溶性の液体に含まれていてもよいし、その両方に含まれていてもよい。水溶液または水不溶性の液体に含まれる乳化剤の濃度は、特に限定されず、油中水滴(W/O型)エマルションを形成する濃度範囲であればよい。そのような濃度範囲は、水溶液と水不溶性の液体との成分比および温度等に基づいて、当業者は適宜決定することができる。 Examples of the emulsifier include surfactants such as sodium lauryl sulfate, DKS NL-15, and DKS NL-50. The emulsifier may be contained in an aqueous solution containing pullulan and a crosslinking agent, may be contained in a water-insoluble liquid, or may be contained in both. The concentration of the emulsifier contained in the aqueous solution or the water-insoluble liquid is not particularly limited as long as it is within a concentration range that forms a water-in-oil (W / O type) emulsion. Such a concentration range can be appropriately determined by those skilled in the art based on the component ratio between the aqueous solution and the water-insoluble liquid, the temperature, and the like.
 架橋を行う工程の前に、上記水溶液を静置する工程を含んでいてもよい。静置する時間は、例えば、10分~30分とすることができる。静置する際の温度は、5℃以下であることが好ましい。5℃以下の温度とすることで、架橋反応の進行を遅らせ、粘度の上昇を程よく調節することが容易となり、乳化しやすくなる。 The step of allowing the aqueous solution to stand may be included before the step of crosslinking. The standing time can be, for example, 10 minutes to 30 minutes. It is preferable that the temperature at the time of standing is 5 degrees C or less. By setting the temperature to 5 ° C. or lower, the progress of the crosslinking reaction is delayed, it is easy to moderately increase the viscosity, and emulsification is facilitated.
 架橋を行う工程で用いる水不溶性の液体の種類については、製造方法2と同様である。 The kind of water-insoluble liquid used in the cross-linking step is the same as in production method 2.
 水不溶性の液体に対する水溶液の量は、例えば、1体積%~30体積%とすることができる。乳化する際の撹拌速度は特に限定されず、乳化を達成しうる範囲内で適宜設定すればよいが、例えば、100rpm~1000rpmとすることができる。撹拌速度が速いほど、均一な乳化液が得られる。乳化を行う際の温度は、例えば、0℃~30℃とすることができる。撹拌する時間は、例えば、1分~10分とすることができる。架橋を行う際の温度は、例えば、0℃~30℃とすることができる。架橋を行う際は静置する。 The amount of the aqueous solution with respect to the water-insoluble liquid can be, for example, 1% by volume to 30% by volume. The stirring speed at the time of emulsification is not particularly limited, and may be set as appropriate as long as emulsification can be achieved. For example, the stirring speed may be 100 rpm to 1000 rpm. The faster the stirring speed, the more uniform the emulsion. The temperature at the time of emulsification can be, for example, 0 ° C. to 30 ° C. The stirring time can be, for example, 1 minute to 10 minutes. The temperature at the time of crosslinking can be, for example, 0 ° C. to 30 ° C. Leave to crosslink.
 乳化せずに静置すると一旦分散したプルラン同士が吸着し合い球状ゲルは生成されないが、この製造方法では、プルランと架橋剤とを含む水溶液の小さな液滴が水不溶性の液体中に生成し、乳化剤で乳化することによって安定的に分散したままこの液滴の中で架橋が進行する。そのため、より小さな球状のプルランゲル(プルランマイクロゲルまたはプルランナノゲル)が製造される。遠心分離により所望の粒径を有するものを選択してもよい。 When left without being emulsified, the pullulan once dispersed adsorbs and does not produce a spherical gel, but in this production method, small droplets of an aqueous solution containing pullulan and a crosslinking agent are produced in a water-insoluble liquid, By emulsifying with an emulsifier, crosslinking proceeds in these droplets while being stably dispersed. Therefore, a smaller spherical pullulan gel (pullulan microgel or pullulan nanogel) is produced. You may select what has a desired particle size by centrifugation.
 製造したプルランゲルを水不溶性の液体から回収する方法は特に限定されないが、回収前に水を加えることが好ましい。これにより、プルランゲルが水中に浮遊し、プルランゲル同士の吸着を抑えることができる。 The method for recovering the produced pullulan gel from the water-insoluble liquid is not particularly limited, but it is preferable to add water before recovery. Thereby, pullulan gel floats in water and adsorption | suction of pullulan gels can be suppressed.
 回収後に、プルランゲルを静置し、さらに架橋を進行させてもよい。また、プルランゲルをW/O系で分散し、遠心分離回収を繰り返して、乳化剤を除去してもよい。 After collection, the pullulan gel may be allowed to stand and cross-linking may proceed further. Alternatively, the emulsifier may be removed by dispersing pullulan gel in a W / O system and repeating centrifugal separation and recovery.
 <製造方法4>
 タンパク質、ペプチドまたはアミノ酸がさらに架橋されているプルランゲルを製造する場合、上記水溶液はタンパク質、ペプチドまたはアミノ酸をさらに含んでいる。したがって、プルランゲルの製造方法の別の実施形態では、プルランと上記一般式(2)で表される架橋剤とタンパク質、ペプチドまたはアミノ酸とを含む水溶液を撹拌する工程と、当該工程後に当該水溶液を静置して架橋を行う工程とを含む。さらに別の実施形態では、プルランと上記一般式(2)で表される架橋剤とタンパク質、ペプチドまたはアミノ酸とを含む水溶液を撹拌する工程と、当該工程後に当該水溶液を水不溶性の液体中で撹拌して架橋を行う工程とを含む。またさらに別の実施形態では、プルランと上記一般式(2)で表される架橋剤とタンパク質、ペプチドまたはアミノ酸とを含む水溶液を撹拌する工程と、当該工程後に当該水溶液を水不溶性の液体中で撹拌して乳化する工程と、乳化した溶液を静置して架橋を行う工程とを含んでおり、当該水溶液および当該水不溶性の液体のうちの少なくとも何れか一方が、乳化剤を含んでいる。
<Manufacturing method 4>
When producing a pullulan gel in which proteins, peptides or amino acids are further crosslinked, the aqueous solution further contains proteins, peptides or amino acids. Therefore, in another embodiment of the method for producing pullulan gel, the step of stirring the aqueous solution containing pullulan and the crosslinking agent represented by the general formula (2) and the protein, peptide or amino acid, and the aqueous solution after the step And carrying out cross-linking. In still another embodiment, a step of stirring an aqueous solution containing pullulan, the crosslinking agent represented by the general formula (2), and a protein, peptide, or amino acid, and stirring the aqueous solution in a water-insoluble liquid after the step. And the step of cross-linking. In yet another embodiment, a step of stirring an aqueous solution containing pullulan, the crosslinking agent represented by the general formula (2), and a protein, peptide, or amino acid, and the aqueous solution in a water-insoluble liquid after the step. A step of emulsifying by stirring and a step of cross-linking by allowing the emulsified solution to stand are included, and at least one of the aqueous solution and the water-insoluble liquid contains an emulsifier.
 具体的な説明は、それぞれ、製造方法1、製造方法2、および製造方法3と同様である。 Specific description is the same as that of manufacturing method 1, manufacturing method 2, and manufacturing method 3, respectively.
 水溶液におけるタンパク質、ペプチドまたはアミノ酸の濃度は、プルランゲルに架橋させたい量に応じて適宜設定すればよいが、例えば、10μg/mL~1mg/mLとすることができる。 The concentration of the protein, peptide or amino acid in the aqueous solution may be appropriately set according to the amount to be cross-linked to the pullulan gel, and may be, for example, 10 μg / mL to 1 mg / mL.
 <製造方法5>
 オルガノゲルを製造する場合は、上述の製造方法で得られたプルランゲルを乾燥させる工程と当該乾燥させたプルランゲルを有機溶剤に浸漬する工程とをさらに含む。
<Manufacturing method 5>
In the case of producing an organogel, the method further includes a step of drying the pullulan gel obtained by the above-described production method and a step of immersing the dried pullulan gel in an organic solvent.
 有機溶剤の種類は上述のとおりである。乾燥温度は、例えば、4℃~40℃とすることができる。乾燥時間は、プルランゲルの大きさおよび厚さ等に応じて適宜設定すればよいが、例えば、30分間~5時間とすることができる。乾燥は大気圧下で行ってもよいし、減圧または真空下で行ってもよい。浸漬時間は、ゲルの厚さ等に応じて適否設定すればよいが、例えば、1分間~5時間とすることができる。 The types of organic solvents are as described above. The drying temperature can be, for example, 4 ° C. to 40 ° C. The drying time may be appropriately set according to the size and thickness of pullulan gel, and can be, for example, 30 minutes to 5 hours. Drying may be performed under atmospheric pressure, or may be performed under reduced pressure or under vacuum. The dipping time may be set appropriately according to the thickness of the gel, and can be set to, for example, 1 minute to 5 hours.
 <製造方法6>
 プルラン以外の多糖類を含んでいるプルランゲル(ハイブリッドゲル)を製造する場合、上記水溶液に当該多糖類を含ませればよい。多糖類の種類は上述のとおりである。当該多糖類は、1種類であってもよいし、2種類以上であってもよい。水溶液中の当該多糖類の濃度は特に限定されないが、例えば、1%~10%(w/v)(2種類以上の場合には合計した濃度)とすることができる。
<Manufacturing method 6>
When producing a pullulan gel (hybrid gel) containing a polysaccharide other than pullulan, the polysaccharide may be included in the aqueous solution. The kind of polysaccharide is as above-mentioned. The polysaccharide may be one type or two or more types. The concentration of the polysaccharide in the aqueous solution is not particularly limited, and can be, for example, 1% to 10% (w / v) (total concentration in the case of two or more types).
 <製造方法7>
 内部に任意の物体を保持させたプルランゲルを製造する場合、例えば、上記水溶液に当該物体を含ませればよい。
<Manufacturing method 7>
When producing a pullulan gel in which an arbitrary object is held, for example, the object may be contained in the aqueous solution.
 なお、プルランゲルの製造方法として挙げた製造方法1~7は適宜組み合わせることができる。例えば、内部に任意の物体を保持しており、かつタンパク質を架橋したプルランマイクロゲルを製造することもできる。 In addition, the production methods 1 to 7 mentioned as the production method of pullulan gel can be appropriately combined. For example, it is possible to produce a pullulan microgel in which an arbitrary object is held and a protein is crosslinked.
 本発明に係る製造方法では、加熱が不要であり、常温以下の温度であっても行うことができる。さらに、本発明に係る製造方法では、中性付近で架橋を行うことができる。そのため、簡便である上、タンパク質を変性させずに製造することができる。他の多糖類(例えば、アガロース等)のハイドロゲルの公知の製造方法では、加熱したり、pHをアルカリ側にしたりする必要があるが、これに対して本発明のプルランゲルの製造方法では、加熱不要でかつ中性付近で製造することができるという点で非常に優れている。 In the production method according to the present invention, heating is not necessary, and it can be performed even at a temperature below room temperature. Furthermore, in the production method according to the present invention, crosslinking can be performed near neutrality. Therefore, it is simple and can be produced without denaturing the protein. In the known production method of hydrogels of other polysaccharides (for example, agarose etc.), it is necessary to heat or to make the pH to the alkali side. On the other hand, in the production method of pullulan gel of the present invention, heating is performed. It is excellent in that it is unnecessary and can be produced near neutrality.
 〔プルランゲル乾燥物およびその製造方法〕
 (プルランゲル乾燥物)
本発明に係るプルランゲル乾燥物は、上述のプルランゲルを乾燥させた乾燥物である。プルランゲル乾燥物の大きさおよび形状は特に限定されず、使用目的に応じて適宜設定すればよい。乾燥させるプルランゲルは、タンパク質等が架橋されたプルランゲル、または薬剤が含浸されたプルランゲルであってもよい。プルランゲル乾燥物は、水等の液体に浸漬すると、当該液体を吸い、元のプルランゲルに戻る。
[Dried pullulanger and method for producing the same]
(Dried pullulanger)
The dried pullulan gel according to the present invention is a dried product obtained by drying the pullulan gel described above. The size and shape of the dried pullulan product are not particularly limited, and may be set as appropriate according to the purpose of use. The pullulan gel to be dried may be a pullulan gel cross-linked with protein or the like, or a pullulan gel impregnated with a drug. When the pullulan gel is immersed in a liquid such as water, the pullulan gel sucks the liquid and returns to the original pullulan gel.
 プルランゲル乾燥物の一実施形態は、プルランマイクロゲルまたはプルランナノゲルの乾燥物である。例えば、後述する薬剤の徐放性を有する薬学的組成物として用いるプルランマイクロゲルまたはプルランナノゲルを乾燥させたものである。乾燥物はゲルよりも保存性が高いため、例えば、薬剤を含むプルランマイクロゲルまたはプルランナノゲルを製剤として使用する場合に、乾燥物として好適に保存することができる。 One embodiment of the dried pullulan gel is a dried pullulan microgel or pullulan nanogel. For example, a pullulan microgel or pullulan nanogel used as a pharmaceutical composition having a sustained release property of a drug described later is dried. Since a dried product has higher storage stability than a gel, for example, when a pullulan microgel or a pullulan nanogel containing a drug is used as a preparation, it can be suitably stored as a dried product.
 プルランゲル乾燥物の別の実施形態は、厚さが例えば1μm~500μmのフィルムである。プルランに水を加えて加熱加圧成形した公知のプルランフィルムは水に可溶であるが、本発明に係るプルランゲルフィルムは水に不溶であり、水に浸漬するとシート状のゲルになる。そのため、タンパク質が架橋されたプルランゲルのフィルムでは、抗体または抗原等を反応させて洗浄することが可能であり、タンパク質の検出に好適に利用することができる。 Another embodiment of the dried pullulan product is a film having a thickness of, for example, 1 μm to 500 μm. A known pullulan film obtained by adding water to a pullulan and heating and press-molding is soluble in water. However, the pullulan gel film according to the present invention is insoluble in water and becomes a sheet-like gel when immersed in water. Therefore, a pullulan gel film in which a protein is crosslinked can be washed by reacting an antibody or an antigen, and can be suitably used for protein detection.
 また、プルランゲル乾燥物を、所望の薬剤(例えばタンパク質)が溶解または分散している液体に浸漬すると、当該薬剤を含む液体がプルランゲル乾燥物の内部まで浸透し、ゲルになる。このゲルでは、浸透した薬剤が保持され、すぐには溶出しない。そのため、徐放性のゲルとして利用することができる。したがって、プルランゲル乾燥物は、徐放性のゲルを製造するための材料として用いることができる。 In addition, when the dried pullulan gel is immersed in a liquid in which a desired drug (for example, protein) is dissolved or dispersed, the liquid containing the drug penetrates into the dried pullulan gel and becomes a gel. This gel retains the penetrating drug and does not elute immediately. Therefore, it can be used as a sustained release gel. Therefore, the pullulan gel dried product can be used as a material for producing a sustained-release gel.
 タンパク質が架橋されたプルランゲル乾燥物では、吸水してもタンパク質が溶出しない。そのため、タンパク質の検出等に好適に用いることができる。 ∙ Dried protein with a cross-linked protein does not elute even if it absorbs water. Therefore, it can be suitably used for protein detection and the like.
 (製造方法)
 プルランゲル乾燥物の製造方法の一実施形態では、上述の種々の形態のプルランゲルを乾燥させる工程を含む。
(Production method)
One embodiment of the method for producing a dried pullulan product includes a step of drying the above-described various forms of pullulan gel.
 乾燥温度は、特に限定されないが、例えば、20℃~100℃とすることができる。乾燥時間は、プルランゲルの大きさおよび厚さ等に応じて適宜設定すればよいが、例えば、1秒~10日とすることができる。乾燥は大気圧下で行ってもよいし、減圧または真空下で行ってもよい。あるいは、凍結乾燥を行ってもよく、例えば、-15℃以下、好ましくは-50℃以下で行えばよい。 The drying temperature is not particularly limited, and can be, for example, 20 ° C. to 100 ° C. The drying time may be appropriately set according to the size and thickness of pullulan gel, and can be set to, for example, 1 second to 10 days. Drying may be performed under atmospheric pressure, or may be performed under reduced pressure or under vacuum. Alternatively, lyophilization may be performed, for example, at −15 ° C. or lower, preferably −50 ° C. or lower.
 〔薬学的組成物およびその製造方法〕
 (薬学的組成物)
 本発明に係るプルランゲルは、薬剤の徐放性を有する薬学的組成物として利用することができる(実施例を参照)。また、本発明に係るプルランゲルは、アジュバント効果を有する薬学的組成物として利用することができる(実施例を参照)。
[Pharmaceutical composition and production method thereof]
(Pharmaceutical composition)
The pullulan gel according to the present invention can be used as a pharmaceutical composition having sustained drug release (see Examples). Moreover, the pullulan gel which concerns on this invention can be utilized as a pharmaceutical composition which has an adjuvant effect (refer an Example).
 薬学的組成物は、生体の皮膚に接触させて使用するものであてもよいし、生体内に投与して使用するものであってもよい。徐放性を有するゲルとしてゼラチンハイドロゲル(メドジェル(登録商標))が公知であるが、牛骨から生成したゼラチンを用いているため、BSE等の残留の虞がある。一方、本願のプルランゲルは、そのような虞がないため、安全に生体へ適用できる。 The pharmaceutical composition may be used in contact with the skin of a living body, or may be used after being administered in vivo. Gelatin hydrogel (Medgel (registered trademark)) is known as a gel having sustained release properties. However, since gelatin produced from bovine bone is used, there is a possibility that BSE or the like may remain. On the other hand, the pullulan gel of the present application can be safely applied to a living body because there is no such concern.
 一実施形態において、薬学的組成物は、薬剤が含浸されたnm~μmオーダー(あるいは1mm程度まで)のプルランゲルである。このような薬学的組成物は、生体内への好適に投与することができる。好ましい一例は、平均粒径が50nm~1mmのプルラゲルである。別の好ましい一例は、薬剤が含浸された平均粒径が5μm~200μmのプルランゲルである。この平均粒径を有するプルランゲルは、皮下投与した際に投与部位に留まるため、局所的に薬剤を効かせることができる。また、本発明に係るプルランゲルは、実施例に示すように、アジュバントとして働く。したがって、薬学的組成物は、薬剤の徐放性を有し、かつ、アジュバント効果を有する組成物であり得る。薬学的組成物は、例えば、ワクチン等として製剤化され得る。 In one embodiment, the pharmaceutical composition is a pullulan gel in the order of nm to μm (or up to about 1 mm) impregnated with a drug. Such a pharmaceutical composition can be suitably administered in vivo. A preferred example is pullulagel having an average particle diameter of 50 nm to 1 mm. Another preferred example is pullulan gel having an average particle diameter of 5 μm to 200 μm impregnated with a drug. Since pullulan gel having this average particle diameter remains at the administration site when administered subcutaneously, the drug can be applied locally. The pullulan gel according to the present invention acts as an adjuvant as shown in the examples. Therefore, the pharmaceutical composition can be a composition having sustained release of the drug and an adjuvant effect. The pharmaceutical composition can be formulated, for example, as a vaccine.
 別の実施形態において、薬学的組成物は、薬剤が含浸されたmm~cmオーダーのプルランゲルである。このような薬学的組成物は、生体の皮膚へ好適に適用され、例えば、創傷被覆材として利用可能である。 In another embodiment, the pharmaceutical composition is a pullulan gel on the order of mm to cm impregnated with the drug. Such a pharmaceutical composition is suitably applied to living skin, and can be used as, for example, a wound dressing.
 さらに別の実施形態において、薬学的組成物は、タンパク質、ペプチドまたはアミノ酸が架橋されたプルランゲルである。このような薬学的組成物は、タンパク質等が溶出せずに留まり、マクロファージおよび樹状細胞に貪食されて、アジュバント効果を有すると考えられる。また、このような薬学的組成物に徐放性を持たせるために、当該プルランゲルを、体内で分解されやすい他の多糖類とのハイブリッドゲルとすることもできる。 In yet another embodiment, the pharmaceutical composition is a pullulan gel crosslinked with proteins, peptides or amino acids. Such a pharmaceutical composition is considered to have an adjuvant effect as it stays without eluting proteins and is phagocytosed by macrophages and dendritic cells. Moreover, in order to give such a pharmaceutical composition sustained release, the pullulan gel can also be made into a hybrid gel with other polysaccharides that are easily degraded in the body.
 また、薬学的組成物は、樹状細胞および/またはNKT細胞を刺激して活性化する物質が結合または含浸されていてもよい。樹状細胞を活性化する物質としては、例えば、Toll様受容体のリガンドが挙げられる。また、NKT細胞を活性化する物質としては、例えば、α-ガラクトシルセラミド(α-GalCer)が挙げられる。 Also, the pharmaceutical composition may be bound or impregnated with a substance that stimulates and activates dendritic cells and / or NKT cells. Examples of substances that activate dendritic cells include ligands for Toll-like receptors. Examples of substances that activate NKT cells include α-galactosylceramide (α-GalCer).
 (製造方法)
 薬学的組成物の製造方法の一実施形態では、上述の製造方法によって製造された種々の形態のプルランゲルを乾燥させる工程と、乾燥させたプルランゲルを、上述の薬剤を含む液体に浸漬する工程とを含む。
(Production method)
In one embodiment of the method for producing a pharmaceutical composition, the steps of drying various forms of pullulan gel produced by the above-mentioned production method, and the step of immersing the dried pullulan gel in a liquid containing the above-mentioned agent. Including.
 nm~μmオーダーのプルランゲルの方法は、上述のようにプルランゲルを水不溶性の液体中で製造してもよいし、水溶液の状態で製造したプルランゲルを粉砕化したものであってもよい。均一性の観点からはプルランゲルを水不溶性の液体中で製造することが好ましい。乾燥させる工程の具体的の方法は上述のとおりである。浸漬する工程における浸漬時間は、プルランゲルの大きさ等に応じて適否設定すればよいが、例えば、1分間~10分間とすることができる。また、溶液に含まれる薬剤の濃度は特に限定されないが、例えば、10μg/mL~5mg/mLとすることができる。なお、乾燥前のプルランゲルの大きさと浸漬後の大きさとは、ほとんど同じであるため、乾燥前の平均粒径を所望の平均粒径に合わせておけば、当該所望の平均粒径を有する、薬剤が含浸されたプルランゲルを得ることができる。そのため、例えば、乾燥前の平均粒径が50nm~1mmのプルラゲルを用いれば、薬剤が含浸された平均粒径が50nm~1mmのプルラゲルを得ることができる。 The pullulan gel method in the order of nm to μm may be produced in a water-insoluble liquid as described above, or may be a pulverized pullulan gel produced in an aqueous solution. From the viewpoint of uniformity, pullulan gel is preferably produced in a water-insoluble liquid. The specific method of the drying step is as described above. The dipping time in the dipping step may be set appropriately according to the size of pullulan gel, etc., and may be, for example, 1 to 10 minutes. Further, the concentration of the drug contained in the solution is not particularly limited, and can be, for example, 10 μg / mL to 5 mg / mL. In addition, since the size of pullulan gel before drying and the size after immersion are almost the same, if the average particle size before drying is adjusted to the desired average particle size, the drug having the desired average particle size Can be obtained. Therefore, for example, if a pull lagel having an average particle diameter of 50 nm to 1 mm before drying is used, a pull lagel having an average particle diameter of 50 nm to 1 mm impregnated with a drug can be obtained.
 また、タンパク質が架橋されたプルランゲルを薬学的組成物として利用する場合、プルランゲルは、上述のタンパク質が架橋された製造方法によって製造すればよい。 Further, when a pullulan gel with a protein cross-linked is used as a pharmaceutical composition, the pullulan gel may be manufactured by the above-described manufacturing method with a protein cross-linked.
 〔タンパク質検出キット〕
 本発明に係るタンパク質検出キットは、タンパク質、ペプチドまたはアミノ酸が上記一般式(1)で表される構造によってプルランに架橋されているプルランゲルまたはその乾燥物を備える。
[Protein detection kit]
The protein detection kit according to the present invention includes a pullulan gel in which a protein, peptide or amino acid is crosslinked to pullulan by the structure represented by the general formula (1) or a dried product thereof.
 上記タンパク質としては、抗体、抗原、受容体、受容体に対するリガンド、酵素、酵素に対するリガンド、およびホルモン、ならびにこれらの機能的フラグメント等が挙げられる。 Examples of the protein include antibodies, antigens, receptors, ligands for receptors, enzymes, ligands for enzymes, hormones, and functional fragments thereof.
 タンパク質検出キットによって検出されるタンパク質は、プルランゲルに含まれるタンパク質、ペプチドまたはアミノ酸と相互作用するタンパク質である。例えば、抗体を含むプルランゲルでは、当該抗体が結合可能な抗原が検出できる。一方、抗原を含むプルランゲルでは、当該抗原が結合可能な抗体が検出できる。このような組み合わせとしては、抗体-抗原の他に、受容体-受容体に対するリガンド、および酵素-酵素に対するリガンド等が挙げられる。 The protein detected by the protein detection kit is a protein that interacts with a protein, peptide, or amino acid contained in pullulan gel. For example, in a pullulan gel containing an antibody, an antigen to which the antibody can bind can be detected. On the other hand, in pullulan gel containing an antigen, an antibody capable of binding to the antigen can be detected. Such combinations include, in addition to antibody-antigen, receptor-receptor ligand, enzyme-enzyme ligand, and the like.
 検出方法としては、例えば、ELISA法、およびイムノクロマト法等が挙げられる。 Examples of the detection method include an ELISA method and an immunochromatography method.
 本発明に係るプルランゲルは、実施例に示すように、有機溶剤および酸・アルカリ溶液に対して一定の安定性を有している。そのため、タンパク質の検出における種々の操作に耐えることができる。 The pullulan gel according to the present invention has a certain stability with respect to an organic solvent and an acid / alkali solution as shown in Examples. Therefore, it can withstand various operations in protein detection.
 本発明に係るタンパク質検出キットは、さらに、必要に応じて、プルランゲルに架橋しているタンパク質、ペプチドまたはアミノ酸が捕捉したタンパク質を免疫学的に検出するための各種試薬(二次抗体、レポーター分子、およびバッファー等)および器具(プレートおよびピペット等)、タンパク質検出キットの使用説明書等のうちの少なくとも1つを備えていてもよい。 The protein detection kit according to the present invention may further include various reagents for immunologically detecting proteins captured by peptides, peptides or amino acids cross-linked to pullulan gel (secondary antibodies, reporter molecules, And / or buffers) and instruments (plates and pipettes), protein detection kit instructions for use, and the like.
 〔その他〕
 本発明のプルランゲルフィルムは、食品分野で利用することもできる。例えば、本発明のプルランゲルフィルムは透明で光沢があるため、食品の光沢剤として利用することができ、食品の表面にコーティングすることにより、食品の艶出しを行うことができる。プルランゲルフィルムは可食性を有しているため、そのまま食品とともに食べることができる。また、本発明のプルランゲルフィルムは食品を包むためのフィルムとして利用することもできる。本発明のプルランゲルフィルムは、酸素の透過率が低いため、食品の酸化を防ぎ、品質の劣化を低減する。さらに、本発明のプルランゲルフィルムは、表面に印刷することが可能であり、幅広い印刷インクを用いることができる。また、色素等をプルランゲルに含浸させて乾燥させることによって、着色したプルランゲルフィルムを作製することもできる。また、プルランゲルフィルムの表面に様々な物質を貼り付けることができる。
[Others]
The pullulan gel film of the present invention can also be used in the food field. For example, since the pullulan film of the present invention is transparent and glossy, it can be used as a food brightening agent, and by coating the surface of the food, the food can be polished. Since pullulan film has edible properties, it can be eaten with food as it is. Moreover, the pullulanger film of this invention can also be utilized as a film for wrapping food. Since the pullulan gel film of the present invention has a low oxygen permeability, the food is prevented from being oxidized and quality deterioration is reduced. Furthermore, the pullulan film of the present invention can be printed on the surface, and a wide range of printing inks can be used. In addition, a colored pullulan film can be prepared by impregnating a pigment or the like into a pullulan gel and drying it. Moreover, various substances can be affixed on the surface of the pullulan film.
 〔まとめ〕
 本発明に係るプルランゲルは、複数のプルランが架橋されてなる。
[Summary]
The pullulan gel according to the present invention is formed by crosslinking a plurality of pullulans.
 本発明に係るプルランゲルにおいて、上記複数のプルランは、下記一般式(1)で表される構造によって架橋されていることが好ましい。 In the pullulan gel according to the present invention, the plurality of pullulans are preferably cross-linked by a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式(1)において、複数ある*のうちの少なくとも2つはプルランとの架橋点である)
 本発明に係るプルランゲルにおいて、さらにタンパク質、ペプチドまたはアミノ酸がプルランに架橋されていてもよい。
(In Formula (1), at least two of the plurality of * are cross-linking points with pullulan)
In the pullulan gel according to the present invention, a protein, peptide or amino acid may be further cross-linked to pullulan.
 本発明に係るプルランゲルにおいて、上記タンパク質は、抗体、抗原、受容体、受容体に対するリガンド、酵素、酵素に対するリガンド、もしくはホルモン、またはこれらの何れかの機能的フラグメントであってもよい。 In the pullulan gel according to the present invention, the protein may be an antibody, an antigen, a receptor, a ligand for the receptor, an enzyme, a ligand for the enzyme, a hormone, or a functional fragment thereof.
 本発明に係るプルランゲルは、薬剤が含浸されていてもよい。 The pullulan gel according to the present invention may be impregnated with a drug.
 本発明に係るプルランゲルは、平均粒径が50nm~1mmであってもよい。 The pullulan gel according to the present invention may have an average particle diameter of 50 nm to 1 mm.
 本発明に係るプルランゲルは、プルラン以外の多糖類を含んでいてもよい。 The pullulan gel according to the present invention may contain a polysaccharide other than pullulan.
 本発明はまた、上記プルランゲルを乾燥させたプルランゲル乾燥物を提供する。 The present invention also provides a dried pullulan product obtained by drying the pullulan gel.
 本発明はまた、複数のプルランが架橋されてなるプルランゲルの製造方法であって、プルランと下記一般式(2)で表される架橋剤とを含む水溶液を撹拌する工程と、上記工程後に上記水溶液を静置して架橋を行う工程とを含む、プルランゲル製造方法を提供する。 The present invention is also a method for producing a pullulan gel in which a plurality of pullulans are crosslinked, a step of stirring an aqueous solution containing pullulan and a crosslinking agent represented by the following general formula (2), and the aqueous solution after the step A pullulan gel production method comprising the step of cross-linking by standing.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式(2)において、複数あるR~Rはそれぞれ独立に塩素原子、フッ素原子、臭素原子またはヨウ素原子である)
 本発明はまた、複数のプルランが架橋されてなるプルランゲルの製造方法であってプルランと上記一般式(2)で表される架橋剤とを含む水溶液を撹拌する工程と、上記工程後に上記水溶液を水不溶性の液体中で撹拌して架橋を行う工程とを含む、プルランゲル製造方法を提供する。
(In Formula (2), a plurality of R 1 to R 3 are each independently a chlorine atom, a fluorine atom, a bromine atom or an iodine atom)
The present invention is also a method for producing a pullulan gel in which a plurality of pullulans are crosslinked, a step of stirring an aqueous solution containing pullulan and a crosslinking agent represented by the above general formula (2), and the aqueous solution after the above steps. And a step of cross-linking by stirring in a water-insoluble liquid.
 本発明はまた、複数のプルランが架橋されてなるプルランゲルの製造方法であって、プルランと上記一般式(2)で表される架橋剤とを含む水溶液を撹拌する工程と、上記工程後に上記水溶液を水不溶性の液体中で撹拌して乳化する工程と、乳化した溶液を静置して架橋を行う工程とを含んでおり、上記水溶液および上記水不溶性の液体のうちの少なくとも何れか一方が、乳化剤を含んでいる、プルランゲル製造方法を提供する。 The present invention is also a method for producing a pullulan gel in which a plurality of pullulans are crosslinked, a step of stirring an aqueous solution containing pullulan and a crosslinking agent represented by the general formula (2), and the aqueous solution after the steps A step of emulsifying by emulsifying in a water-insoluble liquid, and a step of performing cross-linking by allowing the emulsified solution to stand, wherein at least one of the aqueous solution and the water-insoluble liquid is: A method for producing pullulan gel comprising an emulsifier is provided.
 本発明に係るプルランゲル製造方法において、上記架橋剤は塩化シアヌルであることが好ましい。 In the pullulan gel production method according to the present invention, the crosslinking agent is preferably cyanuric chloride.
 本発明に係るプルランゲル製造方法において、上記水溶液は、pH5.0~pH8.0であることが好ましい。 In the pullulan gel production method according to the present invention, the aqueous solution preferably has a pH of 5.0 to pH 8.0.
 本発明に係るプルランゲル製造方法は、-20℃~37℃で架橋を行うことが好ましい。 In the pullulan gel production method according to the present invention, crosslinking is preferably performed at -20 ° C to 37 ° C.
 本発明に係るプルランゲル製造方法において、上記プルランゲルはタンパク質、ペプチドまたはアミノ酸がさらに架橋されており、上記水溶液は当該タンパク質、ペプチドまたはアミノ酸をさらに含んでいてもよい。 In the pullulan gel production method according to the present invention, the pullulan gel is further cross-linked with a protein, peptide or amino acid, and the aqueous solution may further contain the protein, peptide or amino acid.
 本発明はまた、上記プルランゲル製造方法によって製造されたプルランゲルを提供する。 The present invention also provides a pullulan gel produced by the above pullulangel production method.
 本発明はまた、薬剤の徐放性を有する薬学的組成物の製造方法であって、上記のタンパク質を含まないプルランゲルの製造方法によって作製されたプルランゲルを乾燥させる工程と、乾燥させたプルランゲルを、上記薬剤を含む液体に浸漬する工程とを含む、薬学的組成物製造方法を提供する。 The present invention is also a method for producing a pharmaceutical composition having sustained release of a drug, the step of drying the pullulan gel produced by the method for producing a pullulan gel containing no protein, and the dried pullulan gel, And a step of immersing in a liquid containing the drug.
 本発明に係る薬学的組成物製造方法において、上記プルランゲルは、乾燥前の平均粒径が50nm~1mmであってもよい。 In the method for producing a pharmaceutical composition according to the present invention, the pullulan gel may have an average particle size before drying of 50 nm to 1 mm.
 本発明はまた、さらにタンパク質、ペプチドまたはアミノ酸がプルランに架橋されているプルランゲルまたはその乾燥物を備える、タンパク質検出キットを提供する。 The present invention also provides a protein detection kit further comprising a pullulan gel in which a protein, peptide or amino acid is cross-linked to pullulan or a dried product thereof.
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。 Examples will be shown below, and the embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail. Further, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims, and the present invention is also applied to the embodiments obtained by appropriately combining the disclosed technical means. It is included in the technical scope of the invention. Moreover, all the literatures described in this specification are used as reference.
 〔実施例1:プルランゲルの作製-1〕
 100mLの水に、平均分子量200kDaのプルラン(6g,林原社製)を加え、さらに5%重曹水溶液(2mL,和光純薬社製)を加えてpHを7に調整した。ここに塩化シアヌル(0.2g,関東化学社製)のアセトン(2mL,和光純薬社製)溶液を加えた。塩化シアヌルのアセトン溶液を添加するとpHが徐々に低下したため、pH7を維持するよう5%重曹液を適宜添加した。次いで、氷中(0~1℃)において3時間、約300rpmの速度でこの水溶液を撹拌した。その後、撹拌を停止し、50mLチューブに水溶液を15mLずつ5本に入れ、それぞれ、37℃、25℃、4℃、氷中(0~1℃)および-20℃において18時間静置したところ、プルランゲルを作製することができた(-20℃に置いたものは凍結していたので、室温で自然解凍しゲル化を確認した)。
[Example 1: Preparation of pullulan gel-1]
Pullulan (6 g, manufactured by Hayashibara Co., Ltd.) having an average molecular weight of 200 kDa was added to 100 mL of water, and a 5% aqueous sodium bicarbonate solution (2 mL, manufactured by Wako Pure Chemical Industries, Ltd.) was further added to adjust the pH to 7. Acetone (2 mL, Wako Pure Chemical Industries) solution of cyanuric chloride (0.2 g, manufactured by Kanto Chemical Co., Inc.) was added thereto. Since the pH gradually decreased when an acetone solution of cyanuric chloride was added, a 5% sodium bicarbonate solution was appropriately added to maintain pH 7. The aqueous solution was then stirred in ice (0-1 ° C.) for 3 hours at a rate of about 300 rpm. Thereafter, the stirring was stopped, and 15 mL each of the aqueous solution was put into 50 mL tubes and allowed to stand at 37 ° C., 25 ° C., 4 ° C., in ice (0-1 ° C.) and −20 ° C. for 18 hours. A pullulan gel could be prepared (the one placed at −20 ° C. was frozen, so it was naturally thawed at room temperature to confirm gelation).
 また、プルランの量を4g、10gおよび15gにした場合にも、同様にプルランゲルを作製することができた。プルランの濃度が高いほど、プルランゲルは硬かった。塩化シアヌルの量を0.1gおよび0.3gにした場合にも、同様にプルランゲルを作製することができた。塩化シアヌルの濃度が高いほど、プルランゲルは硬かった。 Also, pullulan gels could be produced in the same manner when the amount of pullulan was 4 g, 10 g and 15 g. The higher the pullulan concentration, the harder the pullulan gel. When the amount of cyanuric chloride was 0.1 g and 0.3 g, pullulan gel could be produced in the same manner. The higher the concentration of cyanuric chloride, the harder the pullulan gel.
 また、プルランの量2gで、-20℃で静置した場合にも、プルランゲルを作製することができた。 In addition, pullulan gel could be produced even when left at −20 ° C. with a pullulan amount of 2 g.
 〔実施例2:プルランゲルの作製-2〕
 常温の水100mLに、平均分子量200kDaのプルラン(10g,林原社製)を加え溶解した。ここに塩化シアヌル(0.2g,関東化学社製)を加えて約5分間撹拌した。この水溶液を15mLずつ50mLチューブ5本に入れ、それぞれpHを3.5、5.0、7.0、8.0、および10.0に調整した。pHは、調整前でpH3.5であり、pH5.0、7.0および8.0は5%重曹水溶液で調整し、5%重曹水溶液のpHが8.3であったため、pH10.0の条件のものは、5%炭酸ナトリウム水溶液で調整した。
[Example 2: Preparation of pullulan gel-2]
Pullulan (10 g, manufactured by Hayashibara Co., Ltd.) having an average molecular weight of 200 kDa was added to 100 mL of room temperature water and dissolved. Cyanuric chloride (0.2 g, manufactured by Kanto Chemical Co., Inc.) was added thereto and stirred for about 5 minutes. 15 mL of this aqueous solution was placed in five 50 mL tubes, and the pH was adjusted to 3.5, 5.0, 7.0, 8.0, and 10.0, respectively. The pH was 3.5 before adjustment, and pH 5.0, 7.0 and 8.0 were adjusted with 5% aqueous sodium bicarbonate solution, and the pH of the 5% aqueous sodium bicarbonate solution was 8.3. The conditions were adjusted with a 5% aqueous sodium carbonate solution.
 これらの水溶液をさらに5分間撹拌した後、25℃で18時間静置したところ、pH3.5ではゲル化しておらず、pH5.0、7.0、および8.0では透明で均一なゲルとなっており、pH10.0のものはpH調整時から部分的にゲル化が見られ一部白濁した不均一なゲルとなった。 These aqueous solutions were further stirred for 5 minutes and then allowed to stand at 25 ° C. for 18 hours. As a result, they were not gelled at pH 3.5, and were transparent and uniform gels at pH 5.0, 7.0, and 8.0. In the case of pH 10.0, gelation was partially seen from the time of pH adjustment, and it became a partially turbid and non-uniform gel.
 〔実施例3:プルランゲルの作製-3〕
 100mLの水に、平均分子量200kDaのプルラン(10g,林原社製)を加え、さらに5%重曹水溶液(6mL)を加え、ここに塩化シアヌル(0.2g,ナカライテスク社製)の粉末を加えた。1分間撹拌した後、pHが7.0となるよう5%重曹水溶液を適量加えた。次いで、常温(約22℃)において5~10分間、500rpmの速度でこの水溶液を撹拌した。その後、撹拌を停止し、4℃において18時間静置したところ、プルランゲルを作製することができた。必要に応じ、このプルランゲルをグリシン溶液(5%,味の素社製)に24時間浸漬し残存活性基をマスキングした。
[Example 3: Preparation of pullulan gel-3]
Pullulan (10 g, manufactured by Hayashibara Co., Ltd.) having an average molecular weight of 200 kDa was added to 100 mL of water, 5% aqueous sodium bicarbonate solution (6 mL) was further added, and powder of cyanuric chloride (0.2 g, manufactured by Nacalai Tesque) was added thereto. . After stirring for 1 minute, an appropriate amount of 5% aqueous sodium bicarbonate solution was added so that the pH was 7.0. Next, this aqueous solution was stirred at a speed of 500 rpm for 5 to 10 minutes at room temperature (about 22 ° C.). Thereafter, stirring was stopped and the mixture was allowed to stand at 4 ° C. for 18 hours, whereby pullulan gel could be produced. If necessary, this pullulan gel was immersed in a glycine solution (5%, manufactured by Ajinomoto Co., Inc.) for 24 hours to mask the remaining active groups.
 〔実施例4:タンパク質を架橋したプルランゲルの作製〕
 20mLの水に、平均分子量200kDaのプルラン(2g,林原社製)、塩化シアヌル(40mg,ナカライテスク社製)、タンパク質を加えた。用いたタンパク質は、組み換えDer f 2(20mg,自社製)、ネコHGF(20mg,自社製)、ネコIFN(10mg,自社製)、およびBSA(20mg,和光純薬社製)である。実施例1と同様の方法で撹拌し、4℃で静置することにより、タンパク質を架橋したプルランゲルを作製することができた。
[Example 4: Production of pullulan gel crosslinked with protein]
Pullulan (2 g, manufactured by Hayashibara), cyanuric chloride (40 mg, manufactured by Nacalai Tesque), and protein having an average molecular weight of 200 kDa were added to 20 mL of water. The proteins used were recombinant Der f 2 (20 mg, in-house manufactured), cat HGF (20 mg, in-house manufactured), cat IFN (10 mg, in-house manufactured), and BSA (20 mg, manufactured by Wako Pure Chemical Industries, Ltd.). By stirring in the same manner as in Example 1 and allowing to stand at 4 ° C., a pullulan gel in which proteins were crosslinked could be produced.
 次いで、Der f 2を架橋したプルランゲルについて、Der f 2の抗原活性を確認した。方法としては、まず、プルランゲルを3回遠心洗浄し、5%スキムミルクを用いて、室温で2時間振盪し、ブロッキングした。次いで、プルランゲルを3回遠心洗浄し、HRP標識-抗Der f 2抗体を入れ、室温で2時間振盪した。その後、プルランゲルを3回遠心洗浄し、OPD基質液を入れ、5分間静置した。対照として、タンパク質を架橋していないプルランゲルに同様の操作を行った。その結果、Der f 2を架橋したプルランゲルのみ発色し、ゲル内で抗原活性を保持していることが確認された。 Next, the antigenic activity of Der f 2 was confirmed for pullulan gel crosslinked with Der f 2. As a method, first, the pullulan gel was subjected to centrifugal washing three times, and the mixture was shaken with 5% skim milk at room temperature for 2 hours for blocking. Next, the pullulan gel was washed by centrifugation three times, and HRP-labeled anti-Der f 2 antibody was added, followed by shaking at room temperature for 2 hours. Thereafter, the pullulan gel was subjected to centrifugal washing three times, and an OPD substrate solution was added thereto and allowed to stand for 5 minutes. As a control, the same procedure was performed on pullulan gel that had not been cross-linked with protein. As a result, it was confirmed that only the pullulan gel crosslinked with Der f 2 developed color and retained the antigenic activity in the gel.
 〔実施例5:プルランゲルの粉砕〕
 ネコHGFを架橋したプルランゲルを、4℃の条件下および-20℃の凍結条件下で静置して作製した。これらのプルランゲルをホモミキサー(プライミクス社製,型番HOMOMIXER MARKII Model2.5)を用いて、最大回転数で1分間の条件で粉砕した。4℃条件のプルランゲルの粉砕後の顕微鏡画像を図1の(a)に示す。-20℃条件のプルランゲルの粉砕後の顕微鏡画像を図1の(b)に示す。
[Example 5: Grinding of pullulanger]
A pullulan gel cross-linked with cat HGF was prepared by allowing it to stand at 4 ° C. and at −20 ° C. for freezing. These pullulan gels were pulverized using a homomixer (manufactured by PRIMIX Co., Ltd., model number HOMOMIXER MARK II Model 2.5) under conditions of 1 minute at the maximum rotation speed. The microscope image after pulverization of pullulan gel at 4 ° C. is shown in FIG. A microscopic image after pulverization of pullulan gel at −20 ° C. is shown in FIG.
 それぞれの粉砕ゲルの平均粒径(堀場製作所社製,型番LA-950V2)を用いて測定したところ、4℃条件のプルランゲルでは70μm、-20℃条件のプルランゲルでは200μmであった(図1の(c))。なお、粉砕装置を変更することにより、さらなる微粒子化が可能である。 When the average particle size of each pulverized gel (Horiba, Ltd., model number LA-950V2) was measured, it was 70 μm for the pullulan gel at 4 ° C. and 200 μm for the pullulan gel at −20 ° C. (FIG. 1 ( c)). Further, finer particles can be obtained by changing the grinding device.
 また、それぞれの粉砕ゲルを23Gおよび25Gの注射針に通したところ、詰まることなく通すことができた。 Moreover, when each crushed gel was passed through the 23G and 25G injection needles, they could pass through without clogging.
 また、それぞれの粉砕ゲルをCCB染色したところ、粉砕ゲルは染色されていることが確認され、粉砕を行ってもタンパク質が漏れ出ないことが確認された。 Further, when each pulverized gel was CCB-stained, it was confirmed that the pulverized gel was stained, and it was confirmed that the protein did not leak even when pulverized.
 〔実施例6:プルランゲルの凍結・解凍〕
 実施例1と同様の方法において4℃で静置して作製したプルランゲルを、-20℃で凍結させた。7日後、解凍を行ったところ、元のプルランゲルに戻った。
[Example 6: Freezing and thawing of pullulanger]
The pullulan gel prepared by allowing to stand at 4 ° C. in the same manner as in Example 1 was frozen at −20 ° C. After 7 days, thawing was performed, and the original pullulanger was restored.
 〔実施例7:プルランゲル乾燥物の作製〕
 実施例1と同様の方法において4℃で静置して作製したプルランゲルを、3mLバイアル瓶に1mL入れ、凍結乾燥装置(東京理化器械社製,型番FDU-2100+DRC-1100)の自動運転条件下で凍結乾燥し、プルランゲル乾燥物を作製した。
[Example 7: Production of dried pullulan gel]
In the same manner as in Example 1, 1 mL of pullulan gel prepared by allowing to stand at 4 ° C. was placed in a 3 mL vial, and under the automatic operation conditions of a freeze-drying device (Tokyo Rika Kikai Co., Ltd., model number FDU-2100 + DRC-1100). It was freeze-dried to produce a dried pullulan gel.
 〔実施例8:タンパク質含浸プルランゲルの作製〕
 実施例1と同様の方法において4℃で静置して作製したプルランゲルを、実施例7の条件下で凍結乾燥し、プルランゲル乾燥物を作製した。この乾燥物に、組み換えDer f 2(1mg)を含む水1mLを加え、25℃で5分間静置した。その結果、乾燥物内部まで浸水し、外観は凍結乾燥前のゲルに戻り、タンパク質含浸プルランゲルが作製できた。
[Example 8: Production of protein-impregnated pullulan gel]
The pullulan gel prepared by allowing to stand at 4 ° C. in the same manner as in Example 1 was freeze-dried under the conditions of Example 7 to prepare a dried pullulan gel. To this dried product, 1 mL of water containing recombinant Der f 2 (1 mg) was added and allowed to stand at 25 ° C. for 5 minutes. As a result, the inside of the dried product was immersed in water, the appearance returned to the gel before freeze-drying, and a protein-impregnated pullulan gel could be produced.
 〔実施例9:プルランゲルを用いた抗体産生能の確認〕
 (投与試料の作製)
 Der f 2-プルラン結合体(Der f 2-P結合体):100mLの水に、平均分子量200kDaのプルラン(2g,林原社製)を加え、さらに5%重曹水溶液(2mL,和光純薬社製)を加えて溶解した。ここに塩化シアヌル(125mg,関東化学社製)のアセトン(2mL,和光純薬社製)溶液を加えた。塩化シアヌルのアセトン溶液を添加するとpHが徐々に低下したため、pH7を維持するよう5%重曹液を適宜添加した。次いで、氷中(0~1℃)において3時間、約300rpmの速度でこの水溶液を撹拌した。また、この水溶液に組み換えDer f 2を100mg添加した。その後、37℃で18時間撹拌し続けた。この溶液にグリシン(5g,味の素社製)を加えて37℃で2時間撹拌し、残存活性基をマスキングした。この溶液からカラムクロマトグラフィーおよび限外ろ過膜を用いて、未反応のDer f 2、プルラン、塩化シアヌル等の試薬類を除去し、PBSにバッファー交換してDer f 2-プルラン結合体サンプルとした。このDer f 2-プルラン結合体は、プルラン同士は結合しておらず、PBS中にプルラン誘導体として溶解している。
[Example 9: Confirmation of antibody production ability using pullulan gel]
(Preparation of administration sample)
Der f 2-Pullane conjugate (Der f 2-P conjugate): Pullulan (2 g, Hayashibara) with an average molecular weight of 200 kDa was added to 100 mL of water, and 5% sodium bicarbonate aqueous solution (2 mL, Wako Pure Chemical Industries, Ltd.) was added. ) Was added and dissolved. To this was added a solution of cyanuric chloride (125 mg, manufactured by Kanto Chemical Co.) in acetone (2 mL, manufactured by Wako Pure Chemical Industries, Ltd.). Since the pH gradually decreased when an acetone solution of cyanuric chloride was added, a 5% sodium bicarbonate solution was appropriately added to maintain pH 7. The aqueous solution was then stirred in ice (0-1 ° C.) for 3 hours at a rate of about 300 rpm. In addition, 100 mg of recombinant Der f 2 was added to this aqueous solution. Thereafter, stirring was continued at 37 ° C. for 18 hours. Glycine (5 g, manufactured by Ajinomoto Co., Inc.) was added to this solution and stirred at 37 ° C. for 2 hours to mask the remaining active groups. From this solution, reagents such as unreacted Der f 2, pullulan and cyanuric chloride were removed using column chromatography and ultrafiltration membrane, and the buffer was exchanged with PBS to obtain a Der f 2-pullulan conjugate sample. . This Der f 2-pullulan conjugate is not bonded to each other and is dissolved in PBS as a pullulan derivative.
 Der f 2含浸ゲルおよびDer f 2+ゲル混合:実施例3の方法で作製したプルランゲルを実施例5の方法によって粉砕し、これをPBSで3回遠心洗浄後、ゲル外の水分を除去した。このゲル1mLに組み換えDer f 2(500μg)を添加し撹拌後3時間静置したものをDer f 2含浸ゲルサンプルとし、Der f 2(500μg)を投与直前に添加し撹拌したものをDer f 2+ゲル混合サンプルとした。 Der f 2 impregnated gel and Der f 2+ gel mixing: The pullulan gel prepared by the method of Example 3 was pulverized by the method of Example 5, and this was washed by centrifugation three times with PBS, and then water outside the gel was removed. Recombinant Der f 2 (500 μg) was added to 1 mL of this gel and left standing for 3 hours after stirring as a Der f 2 impregnated gel sample, and Der f 2 (500 μg) added and stirred immediately before administration was Der f 2+ A gel mixed sample was obtained.
 Der f 2単独:組み換えDer f 2をPBSに500μg/mLの濃度で添加したもの1mLをDer f 2単独サンプルとした。 Der f 2 alone: 1 mL of recombinant Der f 2 added to PBS at a concentration of 500 μg / mL was used as a Der f 2 single sample.
 (投与)
 これらのサンプルを、各群ラット2匹に頸部皮下投与(2回:開始時および7日後)した。定期的(開始時、7日後、14日後、21日後、および28日後)に採血して、血清中のDer f 2特異的IgGの推移をELISA法により吸光度の値で比較した。
(Administration)
These samples were administered subcutaneously to the neck of 2 rats in each group (twice: at the start and after 7 days). Blood was collected periodically (starting, 7, 14, 21, and 28 days after start), and the transition of Der f 2 specific IgG in serum was compared with the absorbance value by ELISA.
 その結果、Der f 2単独投与群では血清中のDer f 2特異的IgGに変化が見られなかったのに対し、Der f 2含浸ゲル投与群およびDer f 2+ゲル混合投与群では、Der f 2-プルラン結合体投与群と同等に血清中Der f 2特異的IgGが上昇した。Der f 2単独投与では抗体が産生されずにDer f 2-プルラン結合体投与で抗体が産生されることは既知の現象であり、本試験でDer f 2をプルランゲルに含浸および投与直前に混合し投与しただけで抗体が産生されることは新発見であった。また、一般的なアジュバントは投与時の刺激および投与後の炎症が見られるが、プルランゲルはラットへの投与時も刺激がなく、また、投与後の炎症も確認されなかった。 As a result, no change was observed in Der f 2 specific IgG in the serum in the Der f 2 single administration group, whereas in the Der f 2 impregnated gel administration group and Der f 2+ gel mixed administration group, Der f 2 was not changed. -Serum Der f 2-specific IgG increased as in the pullulan conjugate administration group. It is a known phenomenon that Der f 2 alone administration does not produce antibody but Der f 2-pullulan conjugate administration produces antibody. In this test, Der f 2 was impregnated into pullulan gel and mixed immediately before administration. It was a new discovery that antibodies were produced just by administration. In addition, a general adjuvant showed irritation at the time of administration and inflammation after administration, but pullulan gel was not stimulated at the time of administration to rats, and inflammation after administration was not confirmed.
 〔実施例10:プルランマイクロゲルの作製-1〕
 W/O分散によるプルランのマイクロゲル化を検討した。実施例3の方法で操作し、10分間撹拌後に18時間静置するところを静置時間10分間とし、架橋反応がある程度進行し溶液が僅かに糸を引く状態であることを確認した後、この液を1mLから10mLの範囲で50mLのオイル(オリーブオイル、パナセート810、またはヒマワリ油)に滴下して、100rpmから1,000rpmの範囲、および30分から3時間の範囲で撹拌して分散させ、マイクロサイズの球状ゲルの作製を検討した。
[Example 10: Preparation of pullulan microgel-1]
The microgelation of pullulan by W / O dispersion was examined. After operating by the method of Example 3 and stirring for 10 minutes and leaving to stand for 18 hours, the standing time was 10 minutes, and after confirming that the crosslinking reaction had progressed to some extent and the solution was in a state of slightly pulling the yarn, The liquid is dropped into 50 mL of oil (olive oil, panacetate 810, or sunflower oil) in the range of 1 mL to 10 mL and dispersed by stirring in the range of 100 rpm to 1,000 rpm, and in the range of 30 minutes to 3 hours. The production of spherical gels of the size was examined.
 その結果、何れのオイルでも球状のプルランゲルを作製することができた。なかでも粘度が最も高いひまわり油が好ましく、撹拌時の回転数は早い方が粒子径の小さいゲルになる傾向が見られ、500rpmから1,000rpmであることがより好ましかった。オイルに分散させる水溶液の量が多いと分散した粒子が撹拌中に吸着し合う現象が見られ、2体積%から10体積%がより好ましかった。また、球状のゲルをオイルの中から回収しようと撹拌を止めたところ、球状のゲル同士が吸着し塊状になった。これは、架橋反応が完了していないためと考えられるが、回収前にオイルの半量程度の水を加えてから撹拌を止めると吸着が防止できた。 As a result, spherical pullulan gel could be produced with any oil. Among these, sunflower oil having the highest viscosity is preferable, and a faster rotation speed during stirring tends to be a gel having a smaller particle diameter, and it is more preferable that the rotation speed is 500 rpm to 1,000 rpm. When the amount of the aqueous solution dispersed in the oil was large, a phenomenon in which the dispersed particles adsorbed during stirring was observed, and 2 to 10% by volume was more preferable. Further, when the stirring was stopped in order to recover the spherical gel from the oil, the spherical gels adsorbed to form a lump. This is thought to be because the crosslinking reaction was not completed, but adsorption could be prevented by stopping the stirring after adding about half of the oil water before recovery.
 プルラン(2g)を水(20mL)に溶解させ、5%重曹水溶液(1.5mL)を加え1分間撹拌した後、塩化シアヌル(40mg)を加えて10分間(約500rpm)撹拌して10分間静置した。この液(2mL)をひまわり油(50mL)に分散させ、1時間撹拌し、水(25mL)を加え5分経過後に撹拌を止め、水層にある球状のプルランマイクロゲルを回収した。これを4℃で18時間静置して架橋反応を完了させた後、水で遠心洗浄(10分振盪後,2,000rpm,5分×3回)した。このゲル粒子に等量の水を加え冷凍(-20℃,3日間)して解凍(25℃,自然解凍)したところ、ゲル粒子は球状を保っていた。次にゲル粒子に等量の水を加えオートクレーブ処理(121℃,20分間)したところ、ゲル粒子は球状を保っていた。 Pullulan (2 g) is dissolved in water (20 mL), 5% aqueous sodium bicarbonate solution (1.5 mL) is added and stirred for 1 minute, cyanuric chloride (40 mg) is added and stirred for 10 minutes (about 500 rpm) and allowed to stand for 10 minutes. I put it. This liquid (2 mL) was dispersed in sunflower oil (50 mL), stirred for 1 hour, water (25 mL) was added, stirring was stopped after 5 minutes, and spherical pullulan microgel in the aqueous layer was recovered. This was allowed to stand at 4 ° C. for 18 hours to complete the crosslinking reaction, followed by centrifugal washing with water (after shaking for 10 minutes, 2,000 rpm, 5 minutes × 3 times). When an equal amount of water was added to the gel particles and frozen (−20 ° C., 3 days) and thawed (25 ° C., spontaneous thawing), the gel particles maintained a spherical shape. Next, when an equal amount of water was added to the gel particles and autoclaved (121 ° C., 20 minutes), the gel particles maintained a spherical shape.
 同様の方法でタンパク質(BSA)を架橋させた球状のプルランマイクロゲルを作製したところ、タンパク質を架橋させていないプルランマイクロゲルと同様の結果であった(図3の(a)~(c))。なお、図3に記載の粒子径は、光学顕微鏡に付いているスケールを用いて目測で測定したものである。 A spherical pullulan microgel having a protein (BSA) cross-linked by the same method was produced, and the results were the same as those of a pullulan microgel not having a protein cross-linked ((a) to (c) in FIG. 3). . In addition, the particle diameter described in FIG. 3 is measured by visual measurement using a scale attached to an optical microscope.
 これらのゲル粒子をCBB染色したところ、タンパク質を架橋させた球状のプルランマイクロゲルのみ染色された。 When these gel particles were stained with CBB, only a spherical pullulan microgel having a crosslinked protein was stained.
 〔実施例11:プルランゲルフィルムの作製-1〕
 実施例3の方法で操作し、10分間撹拌後に18時間静置するところを静置時間30分間とし、架橋反応がある程度進行し溶液が糸を引く状態であることを確認した後、ポリプロピレン製の板上に薄く伸ばした。これを25℃で48時間静置して自然乾燥し、プルランゲルフィルムを作製した。これと同時にBSA(20mg,和光純薬社製)を添加し、タンパク質を架橋させたプルランゲルも同様の操作で作製した。もう一つの形態として、タンパク質を架橋させていないプルランゲルフィルムをBSA液(1mg/mL)に10分間浸漬した後10分間水洗した、タンパク質含浸プルランゲルフィルムを作製した。また、比較として、プルラン(林原社製)を水に溶解してポリプロピレン製の板上に薄く伸ばし、これを25℃で48時間静置して自然乾燥して、プルランフィルムを作製した。
[Example 11: Production of pullulan film-1]
After operating by the method of Example 3 and stirring for 10 minutes and allowing to stand for 18 hours, the standing time was 30 minutes, and after confirming that the crosslinking reaction had progressed to some extent and the solution was in a state of pulling the yarn, Thinly stretched on the board. This was left to stand at 25 ° C. for 48 hours and air-dried to produce a pullulan film. At the same time, BSA (20 mg, manufactured by Wako Pure Chemical Industries, Ltd.) was added, and a pullulan gel in which the protein was crosslinked was prepared in the same manner. As another form, a protein-impregnated pullulan gel film was prepared by immersing a pullulan film not crosslinked with protein in a BSA solution (1 mg / mL) for 10 minutes and then washing with water for 10 minutes. For comparison, a pullulan film (manufactured by Hayashibara Co., Ltd.) was dissolved in water and stretched thinly on a polypropylene plate, which was left to stand at 25 ° C. for 48 hours and naturally dried to prepare a pullulan film.
 プルランゲルフィルムは、プルランフィルムと比較して、溶液に粘性があり、薄くかつ綺麗に伸ばすことができるため、外観が良好なフィルムを作製することができることがわかった(図4の(a))。また、プルランゲルフィルムを水に浸漬したところ、吸水してシート状のプルランゲルとなった(図4の(b))。このプルランゲルを顕微鏡で観察したところ、厚みが均一であることがわかった(図4の(c))。 The pullulan film was found to be capable of producing a film having a good appearance since the solution is more viscous than the pullulan film and can be stretched thinly and neatly (FIG. 4 (a)). . Moreover, when the pullulan film was immersed in water, it absorbed water and became a sheet-like pullulan gel ((b) of FIG. 4). When this pullulan gel was observed with a microscope, it was found that the thickness was uniform ((c) of FIG. 4).
 上記3種類のプルランゲルフィルムをCBB染色液に浸漬したところ、タンパク質を架橋させたプルランゲルフィルム、およびタンパク質含浸プルランゲルフィルムは染色されたことから、これらのフィルムではタンパク質を含んでいる(タンパク質含浸プルランゲルフィルムでは、ゲルマトリックス内にBSAタンパク質が入り込んだ)ことが確認された(図5の(a))。また、これら3種類のプルランゲルフィルムを水中で7日間振盪したところ、タンパク質を架橋させたプルランゲルフィルムは全く変化がなく、タンパク質含浸プルランゲルフィルムは徐々に脱色されていった。一方、プルランゲルフィルムは最初から染色されていないので変化はなかったが、7日間水中で振盪しても市販のプルランフィルムのように溶解することはなかった。これらの結果から、タンパク質を架橋させたプルランゲルフィルム中のタンパク質は化学的に結合しているため溶出せず、タンパク質含浸プルランゲルフィルム中のタンパク質は徐々に溶出され、徐放性があることがわかった(図5の(b))。 When the three kinds of pullulan gel films were immersed in the CBB staining solution, the protein-crosslinked pullulan film and the protein-impregnated pullulan film were stained, and these films contained protein (protein impregnation). In the pullulan gel film, it was confirmed that BSA protein entered the gel matrix) (FIG. 5 (a)). When these three kinds of pullulan films were shaken in water for 7 days, the protein-crosslinked pullulan film was not changed at all, and the protein-impregnated pullulan film was gradually decolorized. On the other hand, since the pullulan film was not dyed from the beginning, there was no change, but even when shaken in water for 7 days, it did not dissolve like a commercially available pullulan film. From these results, it can be seen that the protein in the pullulan gel film cross-linked with the protein does not elute because it is chemically bound, and the protein in the protein-impregnated pullulan film is gradually eluted and has a sustained release property. It was understood ((b) of FIG. 5).
 プルランゲルフィルムを、メタノール、1M硫酸水溶液、1M水酸化ナトリウム水溶液に浸漬し薬品耐性を確認したところ、1M硫酸水溶液に浸漬したものは、徐々膨張し3日後に崩壊したが、メタノールおよび1M水酸化ナトリウムに浸漬したものは14日経過しても特に変化は見られなかった。 When the pullulan film was immersed in methanol, 1M sulfuric acid aqueous solution, 1M sodium hydroxide aqueous solution and chemical resistance was confirmed, the one immersed in 1M sulfuric acid aqueous solution gradually expanded and collapsed after 3 days. No change was observed in the samples immersed in sodium even after 14 days.
 〔実施例12:プルランゲルフィルムの作製-2〕
 水(90mL)にプルラン(10g,林原社製)および重曹(400mg)を加えて完全に溶解させた。氷中にて5℃以下まで冷却後、塩化シアヌル(200mg,関東化学社製)のアセトン(2mL)溶液を加え、均一溶液となるまで5℃以下で攪拌し、プルラン10%-塩化シアヌル2%のワニスを調製した。これをゲル化前にルミラーフィルム(T60,膜厚100μm,東レ社製)上にバーコーター(#80)で展開し、一昼夜常温常圧で乾燥させた。得られたプルランゲルフィルム(膜厚16μm)を剥離して、酸素透過率測定に供した。酸素透過率測定は、測定器:OX-TRAN2/21(MOCON社製)を用いて行い、測定条件は23℃,50%RHとした。
[Example 12: Production of pullulan film-2]
Pullulan (10 g, manufactured by Hayashibara) and sodium bicarbonate (400 mg) were added to water (90 mL) and completely dissolved. After cooling to 5 ° C. or lower in ice, add a solution of cyanuric chloride (200 mg, manufactured by Kanto Chemical Co.) in acetone (2 mL) and stir at 5 ° C. or lower until a homogeneous solution is obtained. Pullulan 10% -Cyanuric chloride 2% A varnish was prepared. This was developed on a Lumirror film (T60, film thickness 100 μm, manufactured by Toray Industries, Inc.) with a bar coater (# 80) before gelation and dried at room temperature and normal pressure overnight. The obtained pullulan gel film (film thickness 16 μm) was peeled off and subjected to oxygen permeability measurement. The oxygen transmission rate was measured using a measuring instrument: OX-TRAN 2/21 (manufactured by MOCON), and the measurement conditions were 23 ° C. and 50% RH.
 その結果、プルランゲルフィルムの酸素透過係数(cm3・mm/m2・day・atm)は、0.045であった。一方、比較として作製したプルランフィルムの酸素透過係数(cm3・mm/m2・day・atm)は、0.070であった。 As a result, the oxygen transmission coefficient (cm 3 · mm / m 2 · day · atm) of the pullulan film was 0.045. On the other hand, the oxygen transmission coefficient (cm 3 · mm / m 2 · day · atm) of the pullulan film produced as a comparison was 0.070.
 〔実施例13:ハイブリッドゲルの作製-1〕
 20mLの水に、平均分子量200kDaのプルラン(2g,林原社製)、ヒドロキシプロピルβ-シクロデキストリン(1g,和光純薬社製)および5%重曹(和光純薬社製)水溶液を1.5mL加え1分間(約500rpm)撹拌した。そこに塩化シアヌル(40mg,ナカライテスク社製)を加え、約10分間(500rpm)撹拌した後、25℃で18時間静置したところ溶液部分全てがゲル化し一つの塊になった。
[Example 13: Preparation of hybrid gel-1]
To 20 mL of water, 1.5 mL of pullulan (2 g, manufactured by Hayashibara) with an average molecular weight of 200 kDa, hydroxypropyl β-cyclodextrin (1 g, manufactured by Wako Pure Chemical Industries) and 5% sodium bicarbonate (manufactured by Wako Pure Chemical Industries) was added. Stir for 1 minute (about 500 rpm). Cyanuric chloride (40 mg, manufactured by Nacalai Tesque) was added thereto, stirred for about 10 minutes (500 rpm), and then allowed to stand at 25 ° C. for 18 hours. As a result, the entire solution portion gelled and became one lump.
 〔実施例14:ハイブリッドゲルの作製-2〕
 23mLの水に、プルラン(1.40g,林原社製)、デキストラン硫酸ナトリウム(0.60g,和光純薬社製)および重曹(100mg)を加えて完全に溶解した。次いで、そこに塩化シアヌル(50mg,関東化学社製)のアセトン(1mL)溶液を加え、1分間(300rpm)撹拌した後、室温で一昼夜静置してゲル化させた。水(10mL)を加えてゲルをポリトロンホモジナイザーで破砕(13,000rpm)した後、エタノール400mLに注ぎ、ろ過および真空乾燥(50℃)した。次いで、ラボミルサープラスで粉砕し、粉末状のプルラン-デキストラン硫酸ナトリウムハイブリッドゲル(1.72g)を得た。
[Example 14: Preparation of hybrid gel-2]
To 23 mL of water, pullulan (1.40 g, manufactured by Hayashibara), dextran sodium sulfate (0.60 g, manufactured by Wako Pure Chemical Industries) and sodium bicarbonate (100 mg) were added and completely dissolved. Next, a solution of cyanuric chloride (50 mg, manufactured by Kanto Chemical Co., Inc.) in acetone (1 mL) was added thereto, and the mixture was stirred for 1 minute (300 rpm), and then allowed to stand at room temperature for 24 hours to gel. Water (10 mL) was added and the gel was crushed (13,000 rpm) with a Polytron homogenizer, then poured into 400 mL of ethanol, filtered and vacuum dried (50 ° C.). Subsequently, the mixture was pulverized with Labo Mill Surplus to obtain a powdery pullulan-dextran sodium sulfate hybrid gel (1.72 g).
 〔実施例15:ハイブリッドゲルの作製-3〕
 キトサン10(750mg,和光純薬社製)を水(15mL)に分散させ、1M塩酸(2.9mL)を加えて完全に溶解させた後、重曹溶液でpH6.0に調整した。そこにプルラン(500mg,林原社製)および水を加えて液量25mLとした後、塩化シアヌル(31mg,関東化学社製)のアセトン(0.5mL)溶液を加え、1分間(300rpm)撹拌した後、室温で一昼夜静置してゲル化させた。ゲルをスパチュラで破砕した後、エタノール(300mL)に注ぎ、ろ過および真空乾燥(50℃)した。次いで、ラボミルサープラスで粉砕し、粉末状のプルラン-キトサンハイブリッドゲル(1.00g)を得た。
[Example 15: Preparation of hybrid gel-3]
Chitosan 10 (750 mg, manufactured by Wako Pure Chemical Industries, Ltd.) was dispersed in water (15 mL), 1 M hydrochloric acid (2.9 mL) was added and completely dissolved, and then adjusted to pH 6.0 with a sodium bicarbonate solution. Pullulan (500 mg, manufactured by Hayashibara Co., Ltd.) and water were added thereto to a liquid volume of 25 mL, and then an acetone (0.5 mL) solution of cyanuric chloride (31 mg, manufactured by Kanto Chemical Co., Inc.) was added and stirred for 1 minute (300 rpm). Thereafter, the mixture was allowed to stand at room temperature for 24 hours to gel. The gel was crushed with a spatula, poured into ethanol (300 mL), filtered and vacuum dried (50 ° C.). Subsequently, the mixture was pulverized with a lab mill surplus to obtain a powdery pullulan-chitosan hybrid gel (1.00 g).
 〔実施例16:プルランマイクロゲルの作製-2〕
 実施例12と同様の方法でプルラン8%-塩化シアヌル2.5%の前駆体溶液(5mL)を調製し、そこにラウリル硫酸ナトリウム(250mg)を加えて穏やかに攪拌した。これとは別にDKS NL-15(2.82g,第一工業製薬製)およびDKS NL-50(0.71g,第一工業製薬製)のヘキサン(30mL)混合液を調製した後、上記水溶液を加えて、ボルテックスで激しく攪拌し乳化させた。室温で一晩静置した後、ゲル沈殿を遠心分離回収し、ヘキサン/水=1/1混合液で分散および遠心分離回収を繰り返して乳化剤を除去した。最後に水分散させ200×gで沈殿する巨大粒子を除去してプルランマイクロゲルを得た。プルランマイクロゲルの粒子径を測定した(LA-950V2,堀場製作所製)結果、8.6μm(体積基準90%径)であった(図6)。
[Example 16: Preparation of pullulan microgel-2]
A precursor solution (5 mL) of pullulan 8% -cyanuric chloride 2.5% was prepared in the same manner as in Example 12, and sodium lauryl sulfate (250 mg) was added thereto and gently stirred. Separately, a hexane (30 mL) mixture of DKS NL-15 (2.82 g, manufactured by Daiichi Kogyo Seiyaku) and DKS NL-50 (0.71 g, manufactured by Daiichi Kogyo Seiyaku) was prepared, and In addition, the mixture was vigorously stirred by vortex and emulsified. After allowing to stand at room temperature overnight, the gel precipitate was collected by centrifugation, and the emulsifier was removed by repeating dispersion and centrifugation collection with a hexane / water = 1/1 mixed solution. Finally, the giant particles that were dispersed in water and precipitated at 200 × g were removed to obtain a pullulan microgel. The particle size of the pullulan microgel was measured (LA-950V2, manufactured by Horiba Seisakusho). As a result, it was 8.6 μm (volume basis 90% diameter) (FIG. 6).
 〔参考例1:プルラン以外の多糖類でのゲル化実験〕
 プルラン以外の多糖類でゲルを作製することが可能か実験した。プルラン以外の多糖類として、常温で水に溶解するものを用いた。用いた多糖類は、デキストラン40,000、デキストラン200,000、β-シクロデキストリン、ヒドロキシプロピルβ-シクロデキストリン、アルギン酸ナトリウム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、キサンタンガム、およびアラビアガム、の11種類である。これら各2gを水20mLに加え撹拌し溶解した。一部溶解しなかったものについては、溶解するまで水を加えそこから20mL採取した。
[Reference Example 1: Gelation experiment with polysaccharides other than pullulan]
It was tested whether it was possible to make a gel with polysaccharides other than pullulan. As polysaccharides other than pullulan, those soluble in water at room temperature were used. The polysaccharides used were dextran 40,000, dextran 200,000, β-cyclodextrin, hydroxypropyl β-cyclodextrin, sodium alginate, hydroxypropylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, xanthan gum, and Arabia There are 11 types of gums. 2 g of each was added to 20 mL of water and dissolved by stirring. About what did not melt | dissolve partially, water was added until it melt | dissolved and 20 mL was extract | collected from there.
 それぞれの水溶液に5%重曹水溶液を1.5mL加え、塩化シアヌル40mgを加えて1分間撹拌後、pHが7以上であることを確認した。さらに10分間、約500rpmで撹拌した後、25℃で18時間静置後ゲル化しているか確認したところ何れもゲル化しなかった。 1.5 mL of 5% sodium bicarbonate aqueous solution was added to each aqueous solution, 40 mg of cyanuric chloride was added, and after stirring for 1 minute, it was confirmed that the pH was 7 or more. Furthermore, after stirring at about 500 rpm for 10 minutes, it was left to stand at 25 degreeC for 18 hours, and when it was confirmed whether it gelatinized, none was gelatinized.
 〔参考例2:水酸化ナトリウム溶液を用いたゲル化-1〕
 水酸化ナトリウム水溶液(0.1M、0.5M)20mLにそれぞれプルラン(2g,林原社製)を溶解したところ、発色(淡黄色~黄褐色)が見られた。その水溶液のpHを測定したところ0.1MがpH12.6であり、0.5MがpH13.5であった。それぞれの水溶液に塩化シアヌル(60mg,ナカライテスク社製)のアセトン(400mL,和光純薬社製)溶液を加えたところ、塩化シアヌルのアセトン溶液を滴下した部分が直ちにゲル化し、撹拌しても均一にはならず、18時間静置後に確認したところ、ムラがある一部白濁したゲルとなった。このように、水酸化ナトリウムを用いる場合には、プルラン自体が何らかの化学反応を起こし、構造が変化している可能性が示唆された。
[Reference Example 2: Gelation-1 using sodium hydroxide solution]
When pullulan (2 g, manufactured by Hayashibara) was dissolved in 20 mL of an aqueous sodium hydroxide solution (0.1 M, 0.5 M), color development (light yellow to tan) was observed. When the pH of the aqueous solution was measured, 0.1M was pH 12.6 and 0.5M was pH 13.5. When an aqueous solution of cyanuric chloride (60 mg, manufactured by Nacalai Tesque) in acetone (400 mL, manufactured by Wako Pure Chemical Industries, Ltd.) was added to each aqueous solution, the portion where the acetone solution of cyanuric chloride was dropped was immediately gelled and evenly stirred. However, when it was confirmed after standing for 18 hours, it became a partially cloudy gel with unevenness. Thus, when sodium hydroxide was used, it was suggested that pullulan itself may undergo some chemical reaction and the structure may have changed.
 〔参考例3:水酸化ナトリウム溶液を用いたゲル化-2〕
 水酸化ナトリウム水溶液(0.1M、0.5M)20mLにそれぞれプルラン(2g,林原社製)を溶解したところ、発色(淡黄色~黄褐色)が見られた。対照として、本発明で用いる重曹についても同時に実施した。重曹水溶液(0.5M)20mLにプルラン(2g,林原社製)を溶解したところ、無色透明で水酸化ナトリウムを用いた時とは異なり発色しなかった。これら水溶液のpHを測定したところ、水酸化ナトリウムの方は、0.1MがpH12.2、0.5MがpH13.2であり、重曹の方はpH8.4であった。それぞれの水溶液に粉末の塩化シアヌル(60mg,ナカライテスク社製)を加え10分間撹拌したところ、重曹を用いたものは塩化シアヌルが均一に分散して溶解したが、水酸化ナトリウムを用いたものは、粉末の塩化シアヌルの周りがゲル化しダマ状になり溶け残った。その影響からか18時間静置後、0.1Mはゲル化しなかった。0.5Mはゲル化したが、色のついたゲルとなった。一方の重曹を用いたものは、無色透明なゲルとなった。水酸化ナトリウム水溶液にプルランを溶解して作製したゲルは、重曹を用いた本発明のゲルとは外観上異なるものとなった。そのため、ゲルの化学構造も異なっていると考えられる。
[Reference Example 3: Gelation-2 using sodium hydroxide solution]
When pullulan (2 g, manufactured by Hayashibara) was dissolved in 20 mL of an aqueous sodium hydroxide solution (0.1 M, 0.5 M), color development (light yellow to tan) was observed. As a control, sodium bicarbonate used in the present invention was also carried out at the same time. When pullulan (2 g, manufactured by Hayashibara Co., Ltd.) was dissolved in 20 mL of an aqueous sodium bicarbonate solution (0.5 M), it was colorless and transparent and did not develop color unlike when sodium hydroxide was used. When the pH of these aqueous solutions was measured, the sodium hydroxide had a pH of 12.2 and 0.5M had a pH of 13.2, and the sodium bicarbonate had a pH of 8.4. Powdered cyanuric chloride (60 mg, manufactured by Nacalai Tesque) was added to each aqueous solution and stirred for 10 minutes. When sodium bicarbonate was used, cyanuric chloride was uniformly dispersed and dissolved, but sodium hydroxide was used. The powdery cyanuric chloride was gelled and became lumpy and remained undissolved. From the influence, after standing for 18 hours, 0.1M did not gel. 0.5M gelled but became a colored gel. One using sodium bicarbonate became a colorless and transparent gel. A gel prepared by dissolving pullulan in an aqueous sodium hydroxide solution was different in appearance from the gel of the present invention using sodium bicarbonate. Therefore, it is considered that the chemical structure of the gel is also different.
 本発明のプルランゲルは、医療分野および研究分野等における材料として利用することができる。また、食品分野においても利用することができる。 The pullulan gel of the present invention can be used as a material in the medical field and research field. It can also be used in the food field.

Claims (19)

  1.  複数のプルランが架橋されてなるプルランゲル。 ¡Pull Langer made by cross-linking multiple pullulans.
  2.  上記複数のプルランは、下記一般式(1)で表される構造によって架橋されている、請求項1に記載のプルランゲル。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、複数ある*のうちの少なくとも2つはプルランとの架橋点である)
    The pullulan gel according to claim 1, wherein the plurality of pullulans are crosslinked by a structure represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), at least two of the plurality of * are cross-linking points with pullulan)
  3.  さらに、タンパク質、ペプチドまたはアミノ酸がプルランに架橋されている、請求項1または2に記載のプルランゲル。 Furthermore, the pullulan gel according to claim 1 or 2, wherein the protein, peptide or amino acid is cross-linked to pullulan.
  4.  上記タンパク質は、抗体、抗原、受容体、受容体に対するリガンド、酵素、酵素に対するリガンド、もしくはホルモン、またはこれらの何れかの機能的フラグメントである、請求項3に記載のプルランゲル。 The pullulan gel according to claim 3, wherein the protein is an antibody, an antigen, a receptor, a ligand for the receptor, an enzyme, a ligand for the enzyme, a hormone, or any functional fragment thereof.
  5.  薬剤が含浸されている、請求項1または2に記載のプルランゲル。 3. The pullulan gel according to claim 1 or 2, which is impregnated with a drug.
  6.  平均粒径が50nm~1mmである、請求項1~5の何れか1項に記載のプルランゲル。 The pullulan gel according to any one of claims 1 to 5, wherein the average particle diameter is 50 nm to 1 mm.
  7.  プルラン以外の多糖類を含んでいる、請求項1~6の何れか1項に記載のプルランゲル。 The pullulan gel according to any one of claims 1 to 6, comprising a polysaccharide other than pullulan.
  8.  請求項1~7の何れか1項に記載のプルランゲルを乾燥させた、プルランゲル乾燥物。 A dried pullulan gel obtained by drying the pullulan gel according to any one of claims 1 to 7.
  9.  複数のプルランが架橋されてなるプルランゲルの製造方法であって、
     プルランと下記一般式(2)で表される架橋剤とを含む水溶液を撹拌する工程と、
     上記工程後に上記水溶液を静置して架橋を行う工程とを含む、プルランゲル製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)において、複数あるR~Rはそれぞれ独立に塩素原子、フッ素原子、臭素原子またはヨウ素原子である)
    A method for producing a pullulan gel obtained by crosslinking a plurality of pullulans,
    A step of stirring an aqueous solution containing pullulan and a crosslinking agent represented by the following general formula (2);
    A method for producing pullulan gel, comprising a step of allowing the aqueous solution to stand after the step and performing crosslinking.
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (2), a plurality of R 1 to R 3 are each independently a chlorine atom, a fluorine atom, a bromine atom or an iodine atom)
  10.  複数のプルランが架橋されてなるプルランゲルの製造方法であって、
     プルランと下記一般式(2)で表される架橋剤とを含む水溶液を撹拌する工程と、
     上記工程後に上記水溶液を水不溶性の液体中で撹拌して架橋を行う工程とを含む、プルランゲル製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式(2)において、複数あるR~Rはそれぞれ独立に塩素原子、フッ素原子、臭素原子またはヨウ素原子である)
    A method for producing a pullulan gel obtained by crosslinking a plurality of pullulans,
    A step of stirring an aqueous solution containing pullulan and a crosslinking agent represented by the following general formula (2);
    And a step of performing crosslinking by stirring the aqueous solution in a water-insoluble liquid after the step.
    Figure JPOXMLDOC01-appb-C000003
    (In Formula (2), a plurality of R 1 to R 3 are each independently a chlorine atom, a fluorine atom, a bromine atom or an iodine atom)
  11.  複数のプルランが架橋されてなるプルランゲルの製造方法であって、
     プルランと下記一般式(2)で表される架橋剤とを含む水溶液を撹拌する工程と、
     上記工程後に上記水溶液を水不溶性の液体中で撹拌して乳化する工程と、
     乳化した溶液を静置して架橋を行う工程とを含んでおり、
     上記水溶液および上記水不溶性の液体のうちの少なくとも何れか一方が、乳化剤を含んでいる、プルランゲル製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式(2)において、複数あるR~Rはそれぞれ独立に塩素原子、フッ素原子、臭素原子またはヨウ素原子である)
    A method for producing a pullulan gel obtained by crosslinking a plurality of pullulans,
    A step of stirring an aqueous solution containing pullulan and a crosslinking agent represented by the following general formula (2);
    A step of emulsifying the aqueous solution by stirring in a water-insoluble liquid after the step;
    A step of allowing the emulsified solution to stand and performing crosslinking,
    A method for producing pullulan gel, wherein at least one of the aqueous solution and the water-insoluble liquid contains an emulsifier.
    Figure JPOXMLDOC01-appb-C000004
    (In Formula (2), a plurality of R 1 to R 3 are each independently a chlorine atom, a fluorine atom, a bromine atom or an iodine atom)
  12.  上記架橋剤は塩化シアヌルである、請求項9~11の何れか1項に記載のプルランゲル製造方法。 The pullulan gel production method according to any one of claims 9 to 11, wherein the crosslinking agent is cyanuric chloride.
  13.  上記水溶液は、pH5.0~pH8.0である、請求項9~12の何れか1項に記載のプルランゲル製造方法。 The pullulan gel production method according to any one of claims 9 to 12, wherein the aqueous solution has a pH of 5.0 to 8.0.
  14.  -20℃~37℃で架橋を行う、請求項9~13の何れか1項に記載のプルランゲル製造方法。 The method for producing pullulan gel according to any one of claims 9 to 13, wherein the crosslinking is performed at -20 ° C to 37 ° C.
  15.  上記プルランゲルはタンパク質、ペプチドまたはアミノ酸がさらに架橋されており、
     上記水溶液は当該タンパク質、ペプチドまたはアミノ酸をさらに含んでいる、請求項9~14の何れか1項に記載のプルランゲル製造方法。
    The pullulan gel is further crosslinked with proteins, peptides or amino acids,
    The method for producing pullulan gel according to any one of claims 9 to 14, wherein the aqueous solution further contains the protein, peptide or amino acid.
  16.  請求項9~15の何れか1項に記載のプルランゲル製造方法によって製造された、プルランゲル。 A pullulan gel produced by the pullulan gel production method according to any one of claims 9 to 15.
  17.  薬剤の徐放性を有する薬学的組成物の製造方法であって、
     請求項9~14の何れか1項に記載のプルランゲル製造方法によって作製されたプルランゲルを乾燥させる工程と、
     乾燥させたプルランゲルを、上記薬剤を含む液体に浸漬する工程とを含む、薬学的組成物製造方法。
    A method for producing a pharmaceutical composition having sustained release of a drug, comprising:
    A step of drying the pullulan gel produced by the pullulan gel production method according to any one of claims 9 to 14,
    Dipping the dried pullulan gel in a liquid containing the drug, and a method for producing a pharmaceutical composition.
  18.  上記プルランゲルは、乾燥前の平均粒径が50nm~1mmである、請求項17に記載の薬学的組成物製造方法。 The method for producing a pharmaceutical composition according to claim 17, wherein the pullulan gel has an average particle size before drying of 50 nm to 1 mm.
  19.  請求項3または4に記載のプルランゲルまたはその乾燥物を備える、タンパク質検出キット。 A protein detection kit comprising the pullulan gel according to claim 3 or 4 or a dried product thereof.
PCT/JP2015/056103 2014-03-07 2015-03-02 Pullulan gel, method for producing same, and use of same WO2015133439A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016506484A JP6211680B2 (en) 2014-03-07 2015-03-02 Pull-langer and its production method and use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014045720 2014-03-07
JP2014-045720 2014-03-07

Publications (1)

Publication Number Publication Date
WO2015133439A1 true WO2015133439A1 (en) 2015-09-11

Family

ID=54055245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056103 WO2015133439A1 (en) 2014-03-07 2015-03-02 Pullulan gel, method for producing same, and use of same

Country Status (2)

Country Link
JP (1) JP6211680B2 (en)
WO (1) WO2015133439A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016188446A1 (en) * 2015-05-28 2016-12-01 YI, Yuan Crosslinked polymer, hydrogel or water-based fracturing fluid comprising the same, and methods of making and using thereof
WO2017154998A1 (en) * 2016-03-09 2017-09-14 国立大学法人北海道大学 Bioabsorbable sheet or film
CN112280061A (en) * 2020-11-19 2021-01-29 南京瑞贝西生物科技有限公司 Preparation method of magnetic polysaccharide-based hydrogel
CN113502322A (en) * 2021-06-15 2021-10-15 苏州天隆生物科技有限公司 PCR freeze-drying reagent and preparation method thereof
US11319566B2 (en) 2017-04-14 2022-05-03 Capsugel Belgium Nv Process for making pullulan
US11576870B2 (en) 2017-04-14 2023-02-14 Capsugel Belgium Nv Pullulan capsules

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151281A (en) * 1975-06-20 1976-12-25 Sumitomo Chem Co Ltd Hydrophilic gel and process for producing thereof
JPS53121887A (en) * 1977-04-01 1978-10-24 Sumitomo Chem Co Ltd Preparation of ionic pullulan gel
JPS6394155A (en) * 1986-10-07 1988-04-25 Hitachi Chem Co Ltd Packing material for liquid chromatography
JPH03215498A (en) * 1990-01-12 1991-09-20 Nakano Vinegar Co Ltd Protein-polysaccharides complex material
JP2002532573A (en) * 1998-12-16 2002-10-02 エスシーエイ・ハイジーン・プロダクツ・ゼイスト・ベー・ブイ Acidic superabsorbent polysaccharide
JP2004530016A (en) * 2001-04-26 2004-09-30 コーオペラティーベ、ベルコープ‐アン、プロドゥクティーベレニギング、バン、アルダペルメール、アン、デリバーテン、アベベ、ベー.アー. Starch crosslinking
JP2005270891A (en) * 2004-03-26 2005-10-06 Tetsuo Kondo Wet crushing method of polysaccharide
JP2009507234A (en) * 2005-09-07 2009-02-19 エフ.ホフマン−ラ ロシュ アーゲー Single receptor assay for immunosuppressants
WO2010114029A1 (en) * 2009-03-31 2010-10-07 日本たばこ産業株式会社 Method for detecting antibody against sith-1 in biological sample
WO2010119994A1 (en) * 2009-04-17 2010-10-21 帝人株式会社 Polysaccharide derivative and hydrogel thereof
WO2012081616A1 (en) * 2010-12-14 2012-06-21 Jsr株式会社 Method for producing polymer particles, and polymer particles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51149883A (en) * 1975-06-19 1976-12-23 Sumitomo Chem Co Ltd Hydrophilic gel
JPS6232124A (en) * 1985-08-02 1987-02-12 Yoshiaki Motozato Production of spherical pullulan particle
JPH09124512A (en) * 1995-10-26 1997-05-13 Res Inst For Prod Dev Water-soluble medicine-pullulan combination preparation for targeting liver

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151281A (en) * 1975-06-20 1976-12-25 Sumitomo Chem Co Ltd Hydrophilic gel and process for producing thereof
JPS53121887A (en) * 1977-04-01 1978-10-24 Sumitomo Chem Co Ltd Preparation of ionic pullulan gel
JPS6394155A (en) * 1986-10-07 1988-04-25 Hitachi Chem Co Ltd Packing material for liquid chromatography
JPH03215498A (en) * 1990-01-12 1991-09-20 Nakano Vinegar Co Ltd Protein-polysaccharides complex material
JP2002532573A (en) * 1998-12-16 2002-10-02 エスシーエイ・ハイジーン・プロダクツ・ゼイスト・ベー・ブイ Acidic superabsorbent polysaccharide
JP2004530016A (en) * 2001-04-26 2004-09-30 コーオペラティーベ、ベルコープ‐アン、プロドゥクティーベレニギング、バン、アルダペルメール、アン、デリバーテン、アベベ、ベー.アー. Starch crosslinking
JP2005270891A (en) * 2004-03-26 2005-10-06 Tetsuo Kondo Wet crushing method of polysaccharide
JP2009507234A (en) * 2005-09-07 2009-02-19 エフ.ホフマン−ラ ロシュ アーゲー Single receptor assay for immunosuppressants
WO2010114029A1 (en) * 2009-03-31 2010-10-07 日本たばこ産業株式会社 Method for detecting antibody against sith-1 in biological sample
WO2010119994A1 (en) * 2009-04-17 2010-10-21 帝人株式会社 Polysaccharide derivative and hydrogel thereof
WO2012081616A1 (en) * 2010-12-14 2012-06-21 Jsr株式会社 Method for producing polymer particles, and polymer particles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BHATNAGAR,R. ET AL.: "A new boron-selective resin derived from guar gum", TALANTA, vol. 24, no. 7, 1977, pages 466 - 467, XP055222691 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016188446A1 (en) * 2015-05-28 2016-12-01 YI, Yuan Crosslinked polymer, hydrogel or water-based fracturing fluid comprising the same, and methods of making and using thereof
US20180273649A1 (en) 2015-05-28 2018-09-27 Yuan Yi Crosslinked polymer, hydrogel or water-based fracturing fluid comprising the same, and methods of making and using thereof
US10308726B2 (en) 2015-05-28 2019-06-04 Yuan Yi Crosslinked polymer, hydrogel or water-based fracturing fluid comprising the same, and methods of making and using thereof
WO2017154998A1 (en) * 2016-03-09 2017-09-14 国立大学法人北海道大学 Bioabsorbable sheet or film
US11319566B2 (en) 2017-04-14 2022-05-03 Capsugel Belgium Nv Process for making pullulan
US11576870B2 (en) 2017-04-14 2023-02-14 Capsugel Belgium Nv Pullulan capsules
US11878079B2 (en) 2017-04-14 2024-01-23 Capsugel Belgium Nv Pullulan capsules
CN112280061A (en) * 2020-11-19 2021-01-29 南京瑞贝西生物科技有限公司 Preparation method of magnetic polysaccharide-based hydrogel
CN113502322A (en) * 2021-06-15 2021-10-15 苏州天隆生物科技有限公司 PCR freeze-drying reagent and preparation method thereof

Also Published As

Publication number Publication date
JPWO2015133439A1 (en) 2017-04-06
JP6211680B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
JP6211680B2 (en) Pull-langer and its production method and use
Grijalvo et al. Biodegradable liposome-encapsulated hydrogels for biomedical applications: A marriage of convenience
Zhu et al. Nanogels fabricated by lysozyme and sodium carboxymethyl cellulose for 5-fluorouracil controlled release
Wang et al. Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug
Malmsten et al. Biomacromolecules in microgels—Opportunities and challenges for drug delivery
Zhang et al. Preparation and evaluation of alginate–chitosan microspheres for oral delivery of insulin
Sahil et al. Microsphere: A review
Sarker et al. Protein nanocage as a pH-switchable Pickering emulsifier
Wei et al. Hollow quaternized chitosan microspheres increase the therapeutic effect of orally administered insulin
CN107410829B (en) Method for improving emulsification stability of polysaccharide/protein compound
CN102138904B (en) Self-solidified microspheres and preparation method and application thereof
Zhai et al. Preparation and characterization of alginate microspheres for sustained protein delivery within tissue scaffolds
Chander et al. Protein-based nanohydrogels for bioactive delivery
Li et al. Alginate calcium microbeads containing chitosan nanoparticles for controlled insulin release
KR101550941B1 (en) Lipid coated hydrogel and the process for preparing thereof
Jătariu et al. Double crosslinked interpenetrated network in nanoparticle form for drug targeting—Preparation, characterization and biodistribution studies
Moebus et al. Cubic phase-forming dry powders for controlled drug delivery on mucosal surfaces
Ali et al. Chitosan-Shea butter solid nanoparticles assemblies for the preparation of a novel nanoparticles in microparticles system containing curcumin
Rim et al. Characterization of gelatin/gellan gum/glycol chitosan ternary hydrogel for retinal pigment epithelial tissue reconstruction materials
Zheng et al. pH‐sensitive alginate/soy protein microspheres as drug transporter
CN103588998B (en) Reduction response polysaccharide PEI nanogel, preparation and preparation method thereof
Khodaverdi et al. Casein-based hydrogel carrying insulin: preparation, in vitro evaluation and in vivo assessment
JP2018510883A (en) Dissolvable microniddle for protein or peptide delivery
Dierendonck et al. Interaction between polymeric multilayer capsules and immune cells
Silva et al. Therapeutic deep eutectic solvents assisted the encapsulation of curcumin in alginate-chitosan hydrogel beads

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15757974

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506484

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15757974

Country of ref document: EP

Kind code of ref document: A1