JP3860025B2 - Method for water-solubilizing muscle protein by treatment with reducing sugar under low relative humidity and water-soluble sugar-added muscle protein - Google Patents

Method for water-solubilizing muscle protein by treatment with reducing sugar under low relative humidity and water-soluble sugar-added muscle protein Download PDF

Info

Publication number
JP3860025B2
JP3860025B2 JP2001373107A JP2001373107A JP3860025B2 JP 3860025 B2 JP3860025 B2 JP 3860025B2 JP 2001373107 A JP2001373107 A JP 2001373107A JP 2001373107 A JP2001373107 A JP 2001373107A JP 3860025 B2 JP3860025 B2 JP 3860025B2
Authority
JP
Japan
Prior art keywords
meat
protein
water
relative humidity
muscle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001373107A
Other languages
Japanese (ja)
Other versions
JP2003169634A (en
Inventor
宏樹 佐伯
Original Assignee
宏樹 佐伯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏樹 佐伯 filed Critical 宏樹 佐伯
Priority to JP2001373107A priority Critical patent/JP3860025B2/en
Publication of JP2003169634A publication Critical patent/JP2003169634A/en
Application granted granted Critical
Publication of JP3860025B2 publication Critical patent/JP3860025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Meat, Egg Or Seafood Products (AREA)

Description

【0001】
【発明の属する技術分野】
本件発明は、水産加工業、食肉加工業等の食品加工分野、更には、健康食品、更には繊維、素材産業の分野に関わる。
【0002】
【従来の技術】
魚肉・畜肉は、練り製品、ソーセージ等種々の加工食品として利用されている。これは、魚肉・畜肉中のタンパク質が有するゲル形成能、乳化能、保水能などの機能特性を利用するものである。
魚肉から抽出されたタンパク質成分は、未だ食品に十分利用されていない。また、主として骨に含まれるタンパク質であるゼラチンは、古くより、煮こごりやゼリーとして利用されていたが、ゼラチンのアミノ酸組成が極めて特異なものであることから、嗜好品としての意義は多いが、その用途は限られたものであった。
【0003】
【発明が解決しようとする課題】
筋肉タンパク質は、上記のゲル形成能、乳化能、保水能等の機能特性を持つが、筋肉タンパク質は変質しやすく、機能特性の保持が困難であるという問題があった。更に、魚肉には、多量の加工残査が生じるが、この有効利用も望まれていた。
また、他方、咀嚼機能が衰えた高齢者や病人に、栄養価の高い蛋白質を摂取しやすいように、液状の高タンパク含有食品の開発も望まれてきた。
【0004】
ところが、従来、魚肉を可溶化する技術としては、タンパク質分解酵素や酸を用いた加水分解法があるが、不十分な低分子化では苦みペプチドを生成するという欠点があった。また、加水分解により、タンパク質分子の有するさまざまな加工特性は分子の断裂によって失われてしまう問題があった。
【0005】
本発明者等は、既に筋肉タンパク質にメイラード反応により糖を付加することで、機能特性を保持しつつ、タンパク質の機能を安定できないか試みたところ、糖付加した筋原線維タンパク質画分が低塩濃度でも可溶化することを既に見いだし報告している(Journal of Agricultural and Food chemistry 1997, Vol.45, No.9, pp.3419-3422, 及びJournal of Agricultural and Food Chemistry Vo.48, No.1, pp.17-21)。
【0006】
なお、メイラード反応は、還元糖とアミノ酸のαアミノ基又はεアミノ基との反応で、シッフ塩基の形成に始まり、転移反応を経て、比較的無色なアマリド化合物を生成するまでの初期反応と、更に複雑な重合反応を起し、褐色の高分子(メライノジン)を生成する中期・終期反応に分類することができる。初期反応は、比較的穏和な条件下で生じ、温度が高くかつ時間が長くなるにつれ、中期、終期反応と進行するもので、初期反応は反応系の水分含量に依存し、相対湿度が65〜70%で最大となる。中期・終期反応は酸素や金属などの触媒が共存すると促進されるといわれている(化学総説 No.43 食糧と化学 社団法人日本化学会編、学会出版センター 昭和59年2月28日発行 第107〜109頁)。
筋肉タンパク質について言うと、魚肉タンパク質中の反応性リジン残基と糖の還元末端との間のでメイラード反応により、タンパク質に糖が付加される。筋肉タンパク質の主成分であるミオシン分子には、ロッドと呼ばれる分子構造の存在が存在し、ロッド部位は水に不溶である。とくに、低イオン強度下でフィラメントを形成して凝集するので、ミオシン分子は水に不溶である。ところが糖がロッド部分に結合すると、このフィラメント形成能が失われ、さらに当該部位の親水性が増大するので、ミオシン分子は水溶化し、結果として筋肉全体が生理的条件でも溶解することとなる。
【0007】
従来は、魚肉タンパク質の糖付加は、次のような工程で行っていた。
すなわち、魚肉の背部普通筋を細切し、50mM NaClにて3回洗浄した後、ホモジナイズし、ろ過後、5000g−15分の遠心分離を数回行って魚類筋原線維タンパク質画分(Mf)を沈殿させ、50mM NaClに均質に懸濁し回収した。ミオシンは、このようにして得たMfを硫安分画法によって精製して得る。
【0008】
得られたMf及びミオシンを、グルコース又はリボースで修飾する際には、0.1〜0.6 Mグルコース又はリボースを含む50mM NaClにMf又はミオシンを懸濁し、凍結乾燥し、凍結乾燥物を、恒温恒湿度乾燥機によって30〜50℃、相対湿度65%下に保持してタンパク質を糖修飾するものである。
また、アルギン酸オリゴ糖により修飾する場合は、50mMNaCl−0.3〜0.6 Mソルビトール溶液にMf又はミオシンを懸濁し、オリゴ糖を混合し、凍結乾燥させ、タンパク質―糖混合物を30〜40℃、相対湿度65%下で、保持して修飾する。
【0009】
しかしながら、筋肉タンパク質の主成分であるミオシンは、これまで研究がおこなわれてきた乳タンパク質、血漿タンパク質、植物タンパク質などよりも巨大分子で複雑な構造をしており、熱的に不安定である。そのため、相対湿度65〜70%に保持すると、メイラード反応が進行して糠が結合しても周囲に存在する水分子の熱運動の影響を受けて変性してしまい、水溶化の度合が低いことがわかった。実際、このようにして修飾されたタンパク質は、0.1MのNaClでは、水溶化の程度は、最大55〜64%にすぎず、工業的に利用するためには、歩留まりが高いとは言えないものであった。特に、食品工業などで利用するためには、通常食品に含まれる塩分は、生理的食塩水濃度よりも低く、さらに低イオン強度下での水溶化が望まれていた。
【0010】
【課題を解決するための手段】
本件発明者等は、従来、至適であると考えられていた30〜50℃、相対湿度65%の高温高湿下で種々の糖を利用するなど条件を変えて、魚肉タンパク質のメイラード反応の研究を続けてきた。ところが、たまたま、実験装置の動作不良から、メイラード反応処理を低相対湿度下でおこしてしまったところ、意外にも、低イオン強度下の水溶性が増加していた。
そこで、0.6Mソルビトールを含むサケ筋肉の懸濁液を作成し、これに筋原線維タンパク質量と等量のアルギン酸オリゴ糖を溶解したあと脱水して、水分を8.4%とした。これをさまざまな湿度雰囲気(相対湿度5〜80%)に保持して50℃で8時間保持してタンパク質と糖を反応させた。その結果、相対湿度が35%以下では試料の水分がさらに低下して(3%以下)安定するが、相対湿度が40%を越えると逆に反応過程で環境水分が吸収されることなった。たとえば、相対湿度50%と65%の場合には、8時間後の試料水分はそれぞれ11.1%と20.7%に達した。その後、このタンパク質を0.1MNaC1に溶解して溶解度を測定したところ、反応時の相対湿度と溶解度の改変効果の間には有為な関係があることが認められた。すなわち、図1及び図2に示されるとおり、相対湿度が35%以下で、反応過程における魚肉タンパク質試料の水分が6%以下という条件で反応させたときに、高い溶解度が付与できることを見いだしたものである。
【発明の実施の形態】
本件発明は、相対湿度を抑えた条件下で、筋肉タンパク質に糖を付加することにより、低イオン強度下でも、十分な可溶性を持った水溶性のタンパク質を製造するものである。
本件発明は、種々の肉類を細切りして、筋肉タンパク質を抽出し、或いはそのまま、還元糖類と混合し、脱水し、相対湿度35%以下で30〜70℃の範囲内に保持することにより、混合物中の水分含量を0.25〜6%に維持することで、肉類又は筋肉タンパク質を低イオン強度でも、水溶性とするものである。
【0011】
本件発明で使用できる筋肉タンパク質としては、魚肉、畜肉、貝類、イカ類などあらゆる生物の筋肉タンパク質が挙げられる。更に、本件発明でいう肉類とは、筋肉タンパク質を含有する肉類で、軟体動物又は甲殻類の筋肉、魚肉、又は畜肉から選ばれた肉のことを意味する。これら肉類を細切り処理することにより、筋肉タンパク質を抽出精製する必要なく、そのまま水溶性にすることもできる。細切りとは、上記肉を種々の手段で切断することを意味し、例えば、ホモジナイズ処理及び挽肉処理などが含まれ、好適には5ミリ、更に好適には3ミリ以下の網目を通過する程度にまで細切り、あるいはミンチとすることが望ましい。
【0012】
本件発明で使用できる還元糖類としては、単糖(グルコース、リボースなど)、平均重合度20以下のオリゴ糖類で還元末端を有しているもの、例えば、アルギン酸オリゴ糖、キトサンオリゴ糖などの還元性オリゴ糖が挙げられる。
本件発明におけるタンパク質変性防止剤としては、グルコースやソルビトール等が挙げられる。これらソルビトール等タンパク質変性防止剤は、添加する還元糖がアルギン酸オリゴ糖等のタンパク質変性効果が小さいときに特に有効である。
【0013】
本件発明におけるタンパク質と糖の混合比は、望ましくは、筋肉タンパク質:糖類=1:0.1〜1:10の範囲であり、更に、軟体動物又は甲殻類の筋肉、魚肉、又は畜肉と糖との混合比も含有される筋肉タンパク質と糖の比率が同様の範囲が望ましい。
【0014】
筋肉タンパク質又は細切りした軟体動物又は甲殻類の筋肉、魚肉、又は畜肉から選ばれた肉類は、糖と混合後、脱水処理に付される。脱水処理は、種々の手段により行うことができ、例えば、相対湿度10%の低湿度下での加熱処理や、凍結乾燥、噴霧乾燥、減圧乾燥等の処理あるいはこれらの組み合わせ処理により行うことができる。又、脱水処理により、メイラード反応に好適な0.25〜6.0%の水分含量とすることもできるが、脱水処理終了時点での水分含量が6.0%を上回るものであったとしても、相対湿度35%以下で、30〜70℃に保持することにより、水分含量を0.25〜6.0%の範囲にすることもできる。
【0015】
なお、本件発明の水溶性筋肉タンパク質は、その優れた乳化性から、食品添加用乳化剤として使用できるだけではなく、水溶性であることから、他の食品への添加・混合が非常に容易となり、従来の畜肉食品中(あるいは農産食品中)に魚肉を均質に混合して、加工食品とすることも可能となる。更に、例えば、機能性のある医療向けプロテインサプライとして、ア)流動食(嚥下機能低下患者用、ベビーフード)、イ)高蛋白のスポーツ飲料、ウ)高い乳化能を利用したビタミンA,D,Eなどの脂溶性ビタミンや高度不飽和脂肪酸をこれら食品に添加できる。
【0016】
本件発明の方法で製造された、低イオン強度下で水溶性である糖付加筋肉タンパク質は、従来の高湿度下で糖付加されたものとは、タンパク質が変性しておらず、しかも筋肉タンパク質の主成分であるミオシン分子の凝集程度が少なく、結果的に加熱凝集しにくいという性質を有する点(図3)で、構造的に相違する、新規なものである。
更に本件発明の方法を実施例により、詳細に説明する。
【0017】
【実施例】
[実施例1] ホタテガイとグルコース
細切したホタテガイ貝柱100gに、その筋原線維タンパク質量(18.5%湿重量)と等しい量のグルコース(18.5g)を混合したのち、加圧と凍結乾燥によって脱水して水分含量を0.7%とした。これを50℃、相対湿度30%に12時間保持したところ、ホタテガイ筋原線維タンパク質中の60%のリジン残基がグルコースと結合した。このグルコース修飾タンパク質の0.1M NaC1に対する溶解度は89%となり、ホタテガイ貝柱の水溶性化が達成できた。なお、この一連の処理中にタンパク質の分解が全く起こっていないことをSDS−ポリアクリルアミドゲル電気泳動分析によって確認した。
[実施例2] サケ筋肉とアルギン酸オリゴ糖
サケ筋肉を2mm目のふるい〈J1S-8811〉を通過するサイズまでミートチョッパーで細切した。この魚肉100gに対してそれに含まれる筋原線維タンパク質量(15%湿重量)と等量のアルギン酸オリゴ糖(15g)とソルビトール(14.1g)を混合した後、凍結乾燥によって脱水して水分含量を0.9%とした。続いて60℃で4時間保持したところ、アルギン酸オリゴ糖分子はサケ筋肉中のリジン残基と反応してタンパク質−アルギン酸オリゴ糖複合体(以下、Meat-AOと称する)となった。このMeat-AO製造時の反応相対湿度を35%以下に制御することによって、Meat-AOの0.05M−0.1M NaC1に対する溶解度は88-93%となり、サケ筋肉の水溶性化が達成できた。なお、この一連の処理中にタンパク質の分解が全く起こっていないことを、SDS−ポリアクリルアミドゲル電気泳動分析によって確認した。
【0018】
[実施例3]牛もも肉とグルコースあるいはアルギン酸オリゴ糖
経産牛のもも肉を屠畜後7日間4℃に保持した後、結締組織をトリミングしてから挽き肉にし(チョッパー網目サイズ:3mm目)、5倍量の生理食塩水で3回洗浄した(筋原線維タンパク質濃度は9.5%)。この洗浄肉に対してそれに含まれる筋原繊維タンパク質との重量比率でグルコースとアルギン酸オリゴ糖を1:1および1:0.1で混合した。アルギン酸オリゴ糖を添加した場合には、さらにもも肉の6%に相当する重量のソルビトール(終濃度で約0.3 M)を混合した。次いで、これらのもも肉-糖混合物を凍結乾燥によって水分含量を0.7%とした後、50℃で相対湿度5%に12時間保持し、グルコース修飾筋肉(Meat-G)あるいはアルギン酸オリゴ糖修飾筋肉(Meat-AO)を得た。通常の筋肉タンパク質は生理食塩水には溶解しないが、Meat-GとMeat-AOの0.05M NaC1に対する溶解度は79%および85%となり、牛肉の水溶性化が達成できた。なお、この一連の処理中にタンパク質の分解が全く起こっていないことを、SDS−ポリアクリルアミドゲル電気泳動分析によって確認した。
【0019】
[実施例4]サケ筋肉とアルギン酸オリゴ糖
実施例2と同様の方法で細切りした魚肉(サケ)を0.6M ソルビトール溶液に懸濁した(筋原線維タンパク質濃度1%)。これに筋原線維タンパク質と等量のアルギン酸オリゴ糖を加えたのち、凍結乾燥によって水分含量を8.4%まで脱水した。
(i)50℃で、5%相対湿度下で8時間反応させたところ、反応過程でのタンパク質-糖複合体の水分含量は1.6%となり、0.1M NaCl中での溶解度は93%であり、水溶化できた。
(ii)50℃で、35%相対湿度下で8時間反応させたところ、反応過程でのタンパク質-糖複合体の水分含量は5.4%となり、0.1M NaCl中での溶解度は93%であり、水溶化できた。
【0020】
[実施例5]サケ筋肉とアルギン酸オリゴ糖
実施例2と同様の方法で細切りした魚肉(サケ)を0.3M ソルビトール溶液に懸濁した(筋原線維タンパク質濃度1%)。これに筋原線維タンパク質と等量のアルギン酸オリゴ糖を加えたのち、凍結乾燥によって水分含量を4.9%まで脱水した。
(i)50℃で、5%相対湿度下で8時間反応させたところ、反応過程でのタンパク質-糖複合体の水分含量は0.8%となり,0.1M NaCl中での溶解度は89%であり、水溶化できた。
(ii)50℃で、35%相対湿度下で8時間反応させたところ、反応過程でのタンパク質-糖複合体の水分含量は3.0%となり、0.1M NaCl中での溶解度は88%であり、水溶化できた。
【0021】
[比較例1]
実施例2と同様の方法で細切りした魚肉(サケ)を0.6M ソルビトール溶液に懸濁した(筋原線維タンパク質濃度1%)。これに筋原線維タンパク質と等量のアルギン酸オリゴ糖を加えたのち、凍結乾燥によって水分含量を8.4%まで脱水した。
(i)50℃で、55%相対湿度下で8時間反応させたところ、反応過程でのタンパク質-糖複合体の水分含量は11.1%となり0.1M NaCl中での溶解度は73%であった。
(ii)50℃で、65%相対湿度下で8時間反応させたところ、反応過程でのタンパク質-糖複合体の水分含量は20.7%となり、0.1M NaCl中での溶解度は61%であった。
【0022】
[比較例2]
実施例2と同様の方法で細切りした魚肉(サケ)を0.3M ソルビトール溶液に懸濁した(筋原線維タンパク質濃度1%)。これに筋原線維タンパク質と等量のアルギン酸オリゴ糖を加えたのち、凍結乾燥によって水分含量を4.9%まで脱水した。
(i)50℃で、55%相対湿度下で8時間反応させたところ、反応過程でのタンパク質-糖複合体の水分含量は9.3%となり、0.1M NaCl中での溶解度は70%であった。
(ii)50℃で、65%相対湿度で8時間反応させたところ、反応過程でのタンパク質-糖複合体の水分含量は14.7%となり,0.1M NaCl中での溶解度は55%であった。
【0023】
【発明の効果】
本件発明により、低イオン強度下においても、魚肉、畜肉を始め、種々の筋肉タンパク質を低イオン強度下でも、水溶化することに成功した。
本発明の水溶性タンパク質は、魚肉、畜肉をタンパク質、種々の食品に容易に添加混合でき、食品加工用途を広げ、さらには、咀嚼機能が低下した病老人のために、タンパク質補給にも有用であり、更には、このように一旦水溶化のした後乾燥させることにより、紡糸化、シート化等種々の成型品を製造することも可能である。このような成型品は、タンパク質から構成されていることから、廃棄後も微生物により容易に分解されることから、環境保全にも優れている。
【図面の簡単な説明】
【図1】糖修飾反応過程の水分がアルギン酸オリゴ糖修飾したサケ筋原線維タンパク質の溶解度におよぼす影響。
白丸:実施例4と比較例1で示したサケ筋肉の試料をさまざまな湿度下で60℃-4時間保持した。
黒丸:実施例4と比較例1で示したサケ筋肉の試料をさまざまな湿度下で50℃-8時間保持した。
【図2】糖との反応過程における相対湿度が筋肉タンパク質の水溶化におよぼす影響.実験条件は図1と同じ。
【図3】アルギン酸オリゴ糖修飾したコイ筋原線維タンパク質の熱凝集性。
アルギン酸オリゴ糖修飾したタンパク質を0.16Mと0.5M NaCl(pH 6.7)に溶解した後、さまざまな温度で3時間加熱した後、その溶解度を測定した。未修飾のタンパク質は熱変性して凝集し、容易に不溶化することが分かる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to food processing fields such as fishery processing industry and meat processing industry, further to health foods, and further to the fields of textile and material industries.
[0002]
[Prior art]
Fish meat and livestock meat are used as various processed foods such as kneaded products and sausages. This utilizes functional properties such as gel-forming ability, emulsifying ability, and water retention ability of proteins in fish and livestock meat.
Protein components extracted from fish meat are not yet fully utilized in food. In addition, gelatin, which is a protein mainly contained in bones, has been used as a stew or jelly since ancient times, but since the amino acid composition of gelatin is extremely unique, it has many significance as a luxury product, Its use was limited.
[0003]
[Problems to be solved by the invention]
Muscle proteins have functional properties such as gel-forming ability, emulsifying ability, water retention ability, etc., but muscle proteins are prone to degeneration and have difficulty in maintaining functional properties. Furthermore, a large amount of processing residue is generated in fish meat, but this effective use has also been desired.
On the other hand, it has also been desired to develop a liquid high protein-containing food so that elderly people and sick people whose chewing function has declined can easily take proteins with high nutritional value.
[0004]
However, conventionally, as a technique for solubilizing fish meat, there is a hydrolysis method using a proteolytic enzyme or an acid, but there is a drawback that a bitter peptide is generated when the molecular weight is insufficient. In addition, various processing characteristics of protein molecules are lost due to hydrolysis due to hydrolysis.
[0005]
The present inventors have already tried to add a sugar to a muscle protein by Maillard reaction to maintain the functional characteristics and to stabilize the protein function. It has already been found and reported to be soluble at concentrations (Journal of Agricultural and Food chemistry 1997, Vol. 45, No. 9, pp. 3419-3422, and Journal of Agricultural and Food Chemistry Vo. 48, No. 1 , pp.17-21).
[0006]
The Maillard reaction is a reaction between a reducing sugar and an α-amino group or an ε-amino group of an amino acid, starting with the formation of a Schiff base, through a transfer reaction, and an initial reaction until a relatively colorless amalide compound is generated, Furthermore, it can be classified into intermediate and final reactions that cause complex polymerization reactions and produce brown polymers (melainodin). The initial reaction occurs under relatively mild conditions, and progresses to the middle and final reactions as the temperature increases and the time increases. The initial reaction depends on the water content of the reaction system, and the relative humidity is 65 to 65. 70% is the maximum. It is said that the intermediate and final reactions are promoted by the coexistence of catalysts such as oxygen and metal (Chemical Review No.43 Food and Chemistry, The Chemical Society of Japan, Society Publishing Center, February 28, 1984 issue 107) ~ 109 pages).
As for muscle protein, sugar is added to protein by Maillard reaction between a reactive lysine residue in fish meat protein and the reducing end of sugar. The myosin molecule, which is the main component of muscle protein, has a molecular structure called a rod, and the rod site is insoluble in water. In particular, myosin molecules are insoluble in water because they aggregate and form filaments under low ionic strength. However, when the sugar is bound to the rod portion, this filament-forming ability is lost and the hydrophilicity of the site is further increased, so that the myosin molecule becomes water-soluble, and as a result, the entire muscle is dissolved even under physiological conditions.
[0007]
Conventionally, the addition of sugar to fish protein has been performed in the following steps.
That is, the back muscle of fish meat is cut into small pieces, washed with 50 mM NaCl three times, homogenized, filtered, and centrifuged several times at 5000 g-15 minutes to obtain a fish myofibrillar protein fraction (Mf). Was precipitated, and suspended and recovered homogeneously in 50 mM NaCl. Myosin is obtained by purifying Mf thus obtained by the ammonium sulfate fractionation method.
[0008]
When the obtained Mf and myosin are modified with glucose or ribose, Mf or myosin is suspended in 50 mM NaCl containing 0.1 to 0.6 M glucose or ribose, freeze-dried, and the freeze-dried product is dried at constant temperature and humidity. The protein is sugar-modified by maintaining at 30-50 ° C. and 65% relative humidity.
When modifying with an alginate oligosaccharide, Mf or myosin is suspended in a 50 mM NaCl-0.3 to 0.6 M sorbitol solution, the oligosaccharide is mixed and lyophilized, and the protein-sugar mixture is heated to 30 to 40 ° C. and relative humidity 65 % To retain and modify.
[0009]
However, myosin, which is the main component of muscle protein, has a larger and more complex structure than milk protein, plasma protein, plant protein and the like that have been studied so far, and is thermally unstable. Therefore, if the relative humidity is maintained at 65 to 70%, the Maillard reaction proceeds and the soot is bound, so that it is denatured due to the thermal motion of water molecules present in the surroundings, and the degree of water solubilization is low. I understood. In fact, the protein modified in this way is 0.1M NaCl, the degree of water solubilization is only 55 to 64%, and it cannot be said that the yield is high for industrial use. Met. In particular, for use in the food industry and the like, the salt content in foods is usually lower than the physiological saline concentration, and it has been desired to make water soluble under low ionic strength.
[0010]
[Means for Solving the Problems]
The present inventors have changed the conditions of the Maillard reaction of fish protein by changing the conditions such as using various sugars under high temperature and high humidity of 30 to 50 ° C. and 65% relative humidity, which were conventionally considered optimal. I have continued research. However, accidentally, the Maillard reaction treatment was performed under low relative humidity due to the malfunction of the experimental apparatus, and unexpectedly, the water solubility under low ionic strength increased.
Therefore, a salmon muscle suspension containing 0.6 M sorbitol was prepared, and an alginate oligosaccharide equivalent to the amount of myofibrillar protein was dissolved in the suspension, followed by dehydration to obtain a water content of 8.4%. This was kept in various humidity atmospheres (relative humidity 5-80%) and kept at 50 ° C. for 8 hours to react protein and sugar. As a result, when the relative humidity was 35% or less, the water content of the sample was further reduced (3% or less) and stabilized, but when the relative humidity exceeded 40%, environmental moisture was absorbed in the reaction process. For example, when the relative humidity was 50% and 65%, the sample moisture after 8 hours reached 11.1% and 20.7%, respectively. Then, when this protein was dissolved in 0.1M NaCl and its solubility was measured, it was found that there was a significant relationship between the relative humidity during the reaction and the effect of modifying the solubility. That is, as shown in FIG. 1 and FIG. 2, it has been found that high solubility can be imparted when the reaction is carried out under the condition that the relative humidity is 35% or less and the water content of the fish protein sample in the reaction process is 6% or less. It is.
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a water-soluble protein having sufficient solubility is produced even under low ionic strength by adding a sugar to muscle protein under the condition of suppressing relative humidity.
In the present invention, various meats are minced, muscle protein is extracted, or mixed as it is with reducing sugars , dehydrated, and kept in the range of 30 to 70 ° C. at a relative humidity of 35% or less, By maintaining the water content within 0.25-6%, meat or muscle protein is water-soluble even at low ionic strength.
[0011]
Examples of the muscle protein that can be used in the present invention include muscle proteins of all living organisms such as fish meat, livestock meat, shellfish, and squid. Furthermore, the meat as referred to in the present invention means a meat containing muscle protein and a meat selected from mollusk or crustacean muscle, fish meat, or livestock meat. By mincing these meats, it is possible to make them water-soluble as they are without the need to extract and purify muscle proteins. Shredding means cutting the meat by various means, and includes, for example, homogenization processing and minced meat processing, preferably to the extent that it passes through a mesh of 5 mm, more preferably 3 mm or less. It is desirable to chop up to minced or mince.
[0012]
Reducing sugars that can be used in the present invention include monosaccharides (glucose, ribose, etc.), oligosaccharides having an average polymerization degree of 20 or less and those having a reducing end, for example, reducing properties such as alginic acid oligosaccharides and chitosan oligosaccharides. Examples include oligosaccharides.
Examples of the protein denaturation inhibitor in the present invention include glucose and sorbitol. These protein denaturation inhibitors such as sorbitol are particularly effective when the reducing sugar to be added has a small protein denaturation effect such as an alginate oligosaccharide.
[0013]
The mixing ratio of protein and sugar in the present invention is desirably in the range of muscle protein: saccharide = 1: 0.1 to 1:10, and further, mollusk or crustacean muscle, fish meat, or livestock meat and sugar. It is desirable that the mixing ratio of the muscle protein and sugar contained in the same range.
[0014]
Meat selected from muscle protein or minced mollusc or crustacean muscle, fish, or livestock meat is subjected to dehydration after mixing with sugar. The dehydration treatment can be performed by various means, for example, heat treatment under a low humidity of 10% relative humidity, freeze drying, spray drying, reduced pressure drying, or a combination thereof. . In addition, the water content can be adjusted to 0.25 to 6.0% suitable for the Maillard reaction by dehydration, but the relative humidity is 35% or less even if the water content at the end of the dehydration process exceeds 6.0%. And by keeping at 30-70 ° C., the water content can also be in the range of 0.25-6.0%.
[0015]
The water-soluble muscle protein of the present invention can be used not only as an emulsifier for food addition due to its excellent emulsifiability, but also because it is water-soluble, it can be very easily added to and mixed with other foods. Fish meat can be homogeneously mixed in the livestock meat food (or in agricultural food) to produce processed food. Furthermore, for example, as a functional protein supply for medical use, a) liquid food (for patients with reduced swallowing function, baby food), b) high protein sports drink, c) vitamin A, D, Fat-soluble vitamins such as E and highly unsaturated fatty acids can be added to these foods.
[0016]
The glycosylated muscle protein produced by the method of the present invention and water-soluble under low ionic strength is not denatured from the conventional glycosylated muscle protein under high humidity, and the muscle protein This is a novel structure that is structurally different in that it has the property that the degree of aggregation of the main component myosin molecule is small and, as a result, it is difficult to aggregate by heating (FIG. 3).
Further, the method of the present invention will be described in detail by way of examples.
[0017]
【Example】
[Example 1] Glucose (18.5 g) equal to the amount of myofibrillar protein (18.5% wet weight) was mixed with 100 g of scallop and scallop scallops, and then dehydrated by pressurization and freeze-drying. The water content was 0.7%. When this was kept at 50 ° C. and 30% relative humidity for 12 hours, 60% of lysine residues in scallop myofibrillar protein bound to glucose. The solubility of this glucose-modified protein in 0.1M NaC1 was 89%, and water-solubilization of scallop shells was achieved. In addition, it was confirmed by SDS-polyacrylamide gel electrophoresis analysis that no protein degradation occurred during this series of treatments.
[Example 2] Salmon muscles and alginic acid oligosaccharide salmon muscles were chopped with a meat chopper until they passed through a 2 mm sieve <J1S-8811>. After mixing 100g of this fish meat with the same amount of myofibrillar protein (15% wet weight) and alginate oligosaccharide (15g) and sorbitol (14.1g), it was dehydrated by freeze-drying to increase the water content. 0.9%. Subsequently, when kept at 60 ° C. for 4 hours, the alginate oligosaccharide molecule reacted with a lysine residue in salmon muscle to form a protein-alginate oligosaccharide complex (hereinafter referred to as Meat-AO). By controlling the reaction relative humidity during the production of Meat-AO to 35% or less, the solubility of Meat-AO in 0.05M-0.1M NaC1 was 88-93%, and the water-solubilization of salmon muscle could be achieved. In addition, it was confirmed by SDS-polyacrylamide gel electrophoresis analysis that no protein degradation occurred during this series of treatments.
[0018]
[Example 3] Beef thigh meat and glucose or alginic acid oligosaccharide cow thigh meat was kept at 4 ° C for 7 days after slaughtering, then trimmed the clamped tissue to ground meat (chopper mesh size: 3 mm), 5 Washed 3 times with double volume of physiological saline (myofibrillar protein concentration was 9.5%). Glucose and alginate oligosaccharides were mixed 1: 1 and 1: 0.1 in a weight ratio of the washed meat to the myofibrillar protein contained therein. When the alginate oligosaccharide was added, sorbitol having a weight equivalent to 6% of the meat (final concentration of about 0.3 M) was further mixed. These meat-sugar mixtures were then freeze-dried to a moisture content of 0.7% and then held at 50 ° C. and a relative humidity of 5% for 12 hours to obtain glucose-modified muscle (Meat-G) or alginate oligosaccharide-modified muscle (Meat -AO). Although normal muscle protein does not dissolve in physiological saline, the solubility of Meat-G and Meat-AO in 0.05M NaC1 was 79% and 85%, and water solubility of beef was achieved. In addition, it was confirmed by SDS-polyacrylamide gel electrophoresis analysis that no protein degradation occurred during this series of treatments.
[0019]
[Example 4] Salmon muscle and alginate oligosaccharide Fish meat (salmon) minced in the same manner as in Example 2 was suspended in a 0.6 M sorbitol solution (myofibrillar protein concentration 1%). After adding an alginate oligosaccharide equivalent to myofibrillar protein, the water content was dehydrated to 8.4% by freeze-drying.
(I) When reacted at 50 ° C. under 5% relative humidity for 8 hours, the water content of the protein-sugar complex in the reaction process is 1.6%, and the solubility in 0.1M NaCl is 93%. Solubilized.
(Ii) When reacted at 50 ° C. under 35% relative humidity for 8 hours, the water content of the protein-sugar complex in the reaction process is 5.4%, and the solubility in 0.1M NaCl is 93%. Solubilized.
[0020]
[Example 5] Salmon muscle and alginate oligosaccharide Fish meat (salmon) minced in the same manner as in Example 2 was suspended in a 0.3 M sorbitol solution (myofibrillar protein concentration 1%). After adding an alginate oligosaccharide equivalent to myofibrillar protein, the water content was dehydrated to 4.9% by lyophilization.
(I) When the reaction was carried out at 50 ° C. and 5% relative humidity for 8 hours, the water content of the protein-sugar complex in the reaction process was 0.8%, and the solubility in 0.1M NaCl was 89%. Solubilized.
(Ii) When reacted at 50 ° C. under 35% relative humidity for 8 hours, the water content of the protein-sugar complex in the reaction process is 3.0%, and the solubility in 0.1M NaCl is 88%. Solubilized.
[0021]
[Comparative Example 1]
Fish meat (salmon) minced in the same manner as in Example 2 was suspended in a 0.6 M sorbitol solution (myofibrillar protein concentration 1%). After adding an alginate oligosaccharide equivalent to myofibrillar protein, the water content was dehydrated to 8.4% by freeze-drying.
(I) When the reaction was performed at 50 ° C. and 55% relative humidity for 8 hours, the water content of the protein-sugar complex during the reaction was 11.1%, and the solubility in 0.1M NaCl was 73%.
(Ii) When the reaction was carried out at 50 ° C. and 65% relative humidity for 8 hours, the water content of the protein-sugar complex in the reaction process was 20.7%, and the solubility in 0.1M NaCl was 61%. .
[0022]
[Comparative Example 2]
Fish meat (salmon) minced in the same manner as in Example 2 was suspended in a 0.3 M sorbitol solution (myofibrillar protein concentration 1%). After adding an alginate oligosaccharide equivalent to myofibrillar protein, the water content was dehydrated to 4.9% by lyophilization.
(I) When the reaction was performed at 50 ° C. and 55% relative humidity for 8 hours, the water content of the protein-sugar complex in the reaction process was 9.3%, and the solubility in 0.1M NaCl was 70%. .
(Ii) When the reaction was carried out at 50 ° C. and 65% relative humidity for 8 hours, the water content of the protein-sugar complex during the reaction was 14.7%, and the solubility in 0.1M NaCl was 55%.
[0023]
【The invention's effect】
According to the present invention, even under low ionic strength, various muscle proteins such as fish meat and livestock meat were successfully water-solubilized even under low ionic strength.
The water-soluble protein of the present invention can be easily added to and mixed with fish and livestock meat and various foods to expand food processing applications, and is also useful for protein supplementation for the elderly with reduced chewing function. In addition, it is also possible to produce various molded products such as spinning and sheeting by once water-solubilizing and then drying. Since such a molded article is composed of protein and is easily decomposed by microorganisms even after disposal, it is excellent in environmental conservation.
[Brief description of the drawings]
FIG. 1 shows the effect of water during the sugar modification reaction on the solubility of alginate oligosaccharide-modified salmon myofibril protein.
White circle: The salmon muscle samples shown in Example 4 and Comparative Example 1 were kept at 60 ° C. for 4 hours under various humidity.
Black circle: Salmon muscle samples shown in Example 4 and Comparative Example 1 were kept at 50 ° C. for 8 hours under various humidity conditions.
[Fig. 2] Effect of relative humidity on the water solubilization of muscle proteins during the reaction with sugar. The experimental conditions are the same as in FIG.
FIG. 3 shows thermal aggregation properties of carp myofibril protein modified with alginate oligosaccharide.
The protein modified with alginate oligosaccharide was dissolved in 0.16 M and 0.5 M NaCl (pH 6.7), heated at various temperatures for 3 hours, and the solubility was measured. It can be seen that the unmodified protein is heat-denatured to aggregate and easily insolubilized.

Claims (9)

軟体動物又は甲殻類の筋肉、魚肉、又は畜肉から選ばれた肉類を細切り(こまぎり、以下同じ)し、還元糖類と混合後、脱水し、相対湿度35%以下で30〜70℃の環境下で水分含量を0.25〜6.0%にし、前記環境下で前記水分含量に維持することによる肉類の水溶化方法。Minced meat selected from mollusk or crustacean muscle, fish meat or livestock meat (sawmill, the same shall apply hereinafter) , mixed with reducing sugars, dehydrated, and in an environment of 30-70 ° C with a relative humidity of 35% or less The water content is reduced to 0.25 to 6.0% and the water content is maintained in the environment. 軟体動物又は甲殻類の筋肉、魚肉、又は畜肉由来の筋肉タンパク質を還元糖類と混合後、脱水し、相対湿度35%以下で30〜70℃の環境下に水分含量を0.25〜6.0%にし、前記環境下で前記水分含量に維持することによる筋肉タンパク質の水溶化方法。  After mixing muscle protein from mollusk or crustacean muscle, fish meat, or livestock meat with reducing sugars, dehydrated to a moisture content of 0.25-6.0% in an environment of 30-70 ° C. at a relative humidity of 35% or less, A method for water-solubilizing muscle protein by maintaining the water content in an environment. 還元糖類が還元性の単糖、又は還元性のオリゴ糖である請求項1又は2記載の方法。The method according to claim 1 or 2 , wherein the reducing saccharide is a reducing monosaccharide or a reducing oligosaccharide. 還元糖類が、グルコース、リボース、キトサンオリゴ糖、又はアルギン酸オリゴ糖のいずれかである請求項1〜いずれか1項記載の方法。The method according to any one of claims 1 to 3 , wherein the reducing saccharide is any one of glucose, ribose, chitosan oligosaccharide, and alginic acid oligosaccharide. 軟体動物又は甲殻類の筋肉、魚肉、又は畜肉から選ばれる肉類を細切りし、還元糖類と混合後、脱水し、相対湿度35%以下でかつ30〜70℃の環境で水分含量を0.25〜6.0%となるように保持することにより水溶化された肉類。  Minced meat selected from mollusk or crustacean muscle, fish meat, or livestock meat, mixed with reducing sugars, dehydrated, water content 0.25-6.0% in an environment with a relative humidity of 35% or less and 30-70 ° C Meat that has been water-solubilized by holding so that it becomes. 還元糖類が、還元性単糖、または、還元性オリゴ糖である請求項記載の水溶化された肉類。6. The water-soluble meat according to claim 5 , wherein the reducing saccharide is a reducing monosaccharide or a reducing oligosaccharide. 還元糖類が、グルコース、リボース、キトサンオリゴ糖、又はアルギン酸オリゴ糖のいずれかである請求項記載の水溶化された肉類。6. The water-soluble meat according to claim 5 , wherein the reducing saccharide is any one of glucose, ribose, chitosan oligosaccharide, or alginic acid oligosaccharide. 還元糖類とタンパク質変性防止剤を混合後に、脱水する請求項1〜いずれか1項記載の方法。The method according to any one of claims 1 to 4 , wherein the reducing saccharide and the protein denaturation inhibitor are mixed and then dehydrated. 請求項記載の方法により水溶化された肉類。Meat solubilized by the method according to claim 8 .
JP2001373107A 2001-12-06 2001-12-06 Method for water-solubilizing muscle protein by treatment with reducing sugar under low relative humidity and water-soluble sugar-added muscle protein Expired - Fee Related JP3860025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001373107A JP3860025B2 (en) 2001-12-06 2001-12-06 Method for water-solubilizing muscle protein by treatment with reducing sugar under low relative humidity and water-soluble sugar-added muscle protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001373107A JP3860025B2 (en) 2001-12-06 2001-12-06 Method for water-solubilizing muscle protein by treatment with reducing sugar under low relative humidity and water-soluble sugar-added muscle protein

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006035547A Division JP2006136342A (en) 2006-02-13 2006-02-13 Method for solubilizing muscular protein in water by treating with reducing sugar at low relative humidity and water-soluble sugar-added muscular protein

Publications (2)

Publication Number Publication Date
JP2003169634A JP2003169634A (en) 2003-06-17
JP3860025B2 true JP3860025B2 (en) 2006-12-20

Family

ID=19181882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001373107A Expired - Fee Related JP3860025B2 (en) 2001-12-06 2001-12-06 Method for water-solubilizing muscle protein by treatment with reducing sugar under low relative humidity and water-soluble sugar-added muscle protein

Country Status (1)

Country Link
JP (1) JP3860025B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005120541A1 (en) * 2004-06-11 2005-12-22 Hiroki Saeki Process for producing protein having its antihypertensive activity enhanced
JP2009126856A (en) * 2007-11-28 2009-06-11 Fancl Corp New blood neutral fat increase inhibitor
WO2015146955A1 (en) * 2014-03-26 2015-10-01 日本水産株式会社 Method for modifying marine protein material
CN112772857B (en) * 2020-12-24 2023-04-18 江苏益客食品集团股份有限公司 Preparation method of flavor-enhanced sauced duck meat product

Also Published As

Publication number Publication date
JP2003169634A (en) 2003-06-17

Similar Documents

Publication Publication Date Title
Lynch et al. Harnessing the potential of blood proteins as functional ingredients: A review of the state of the art in blood processing
AU2020200381B2 (en) Chitin, hydrolysate and method for the production of one or more desired products from insects by means of enzymatic hydrolysis
RU2225694C2 (en) Protein composition and method for isolating protein composition out of muscular tissue
JP2013034478A (en) Collagen peptide composition and food or beverage containing the same
JP2003238597A (en) Collagen peptide derived from fish and method for producing the same, and food and drink, and cosmetic containing the collagen peptide
NZ281818A (en) Separating/making meat products (protein, pigment, broth, bone meal, fat) from carcass by-products
EP0419529A1 (en) Improvements in and relating to protein products.
Sanmartin et al. Recent advances in the recovery and improvement of functional proteins from fish processing by‐products: use of protein Glycation as an alternative method
US20220007676A1 (en) Process for Obtaining Lean Protein
JP3860025B2 (en) Method for water-solubilizing muscle protein by treatment with reducing sugar under low relative humidity and water-soluble sugar-added muscle protein
EP0522800B1 (en) Protein concentrates
JPS648992B2 (en)
RU2609635C1 (en) Method for production of collagen protein from animal raw materials, collagen products and methods for use thereof
US4406831A (en) Meat protein product and process
JPWO2005120541A1 (en) Method for producing protein with enhanced antihypertensive effect
JPH1017310A (en) Collagen, production of hydroxyapatite and its product
JP2006136342A (en) Method for solubilizing muscular protein in water by treating with reducing sugar at low relative humidity and water-soluble sugar-added muscular protein
JP2003284586A (en) Method for producing collagen peptide and method for producing product utilizing the same
JP4130560B2 (en) Water soluble meat preparation
EP0064104B1 (en) Meat protein product and process
KR100970819B1 (en) A method for preparing a collagen isolated from the skin of Thunnus obesus
JPH0630616B2 (en) Method for producing water-soluble elastin and molding composition containing collagen and elastin
RU2303881C2 (en) Method for obtaining of meat product using sludge-and-bone residue
Al-Abadi et al. Production of hydrolyzed collagen from common carp Cyprinus carpio L. scales by synergistic enzyme systems
Koli et al. Development of fish byproducts by using fish and shellfish waste for up-liftment of socio-economic status of fisher folk

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030613

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20030613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20030613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041021

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050914

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees