JPWO2005120541A1 - Method for producing protein with enhanced antihypertensive effect - Google Patents

Method for producing protein with enhanced antihypertensive effect Download PDF

Info

Publication number
JPWO2005120541A1
JPWO2005120541A1 JP2006514573A JP2006514573A JPWO2005120541A1 JP WO2005120541 A1 JPWO2005120541 A1 JP WO2005120541A1 JP 2006514573 A JP2006514573 A JP 2006514573A JP 2006514573 A JP2006514573 A JP 2006514573A JP WO2005120541 A1 JPWO2005120541 A1 JP WO2005120541A1
Authority
JP
Japan
Prior art keywords
sugar
protein
blood pressure
meat
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006514573A
Other languages
Japanese (ja)
Inventor
宏樹 佐伯
宏樹 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2005120541A1 publication Critical patent/JPWO2005120541A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/56Materials from animals other than mammals
    • A61K35/618Molluscs, e.g. fresh-water molluscs, oysters, clams, squids, octopus, cuttlefish, snails or slugs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/56Materials from animals other than mammals
    • A61K35/60Fish, e.g. seahorses; Fish eggs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/56Materials from animals other than mammals
    • A61K35/612Crustaceans, e.g. crabs, lobsters, shrimps, krill or crayfish; Barnacles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1706Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from fish
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Marine Sciences & Fisheries (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Immunology (AREA)
  • Cardiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Insects & Arthropods (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Organic Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Mycology (AREA)
  • Food Science & Technology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

食品を酵素分解して機能性ペプチドの調製・精製には手間と費用がかかり、たとえ粗精製の段階でも比較的高価な商品となる。また、製造した機能性ペプチドがさらに消化液で分解されて効力を失う可能性もある。
肉類又はタンパク質に還元糖類を結合させることによって消化酵素に対する基質としての反応性を変化させ、それによって優れた血圧調節作用を付与する。
It takes time and cost to prepare and purify functional peptides by enzymatically decomposing foods, and it becomes a relatively expensive product even at the stage of rough purification. In addition, the produced functional peptide may be further decomposed in the digestive juice to lose its efficacy.
By binding reducing sugars to meat or protein, the reactivity as a substrate for digestive enzymes is changed, thereby imparting an excellent blood pressure regulating action.

Description

本発明は、水産加工業、食肉加工業等の食品加工分野、更には、健康食品、医薬品及び化成品の分野に関わる。   The present invention relates to the field of food processing such as fishery processing and meat processing, as well as the fields of health foods, pharmaceuticals and chemical products.

タンパク質は脂質、糖質とともに動物が生存するための基本栄養素であり、従来は生体を構成するアミノ酸の供給源として位置づけられてきた。   Proteins, together with lipids and sugars, are basic nutrients for the survival of animals and have traditionally been positioned as a source of amino acids that compose the living body.

しかし近年、タンパク質は、栄養素としての価値だけでなく生体の代謝活動等を調節するさまざまな機能を持つことが明らかとなってきている。このタンパク質の生体調節機能は多くの場合、消化管プロテアーゼの作用によって食品タンパク質から派生する生理活性ペプチドに起因すると考えられる。   However, in recent years, it has become clear that proteins have various functions that regulate not only the value as a nutrient but also the metabolic activity of the living body. The bioregulatory function of this protein is often attributed to the bioactive peptides derived from food proteins by the action of digestive tract proteases.

たとえば、血清コレステロール代謝を調節するステロイド結合性ペプチド(大豆タンパク質由来:菅野、食品の生体調節機能、pp33-41、学会出版センター、1992)、鎮痛・鎮静作用に関わる外因性オピオイドペプチド(カゼイン:YoshikawaらAgric. Biol. Chem. 48,、 3185-, 1984.(非特許文献1)、植物タンパク質:Fukudome らFEBS Lett. 296、 107-111 、 1984(非特許文献2)、 血圧上昇を抑制するアンジオテンシンI変換酵素(ACE)阻害ペプチド、牛乳カゼイン:MaruyamaらAgric. Biol. Chem., 46, 1393-1394 1982.(非特許文献3)、植物タンパク質:MiyoshiらAgric. Biol. Chem., 55, 1313-1318,1991(非特許文献4). カツオ節:末綱、日水誌65、 92-96、 1999(非特許文献5)、 ワカメ:Suetsunaら J. Nutr. Biochem, 11, 450-454,2000(非特許文献6).下記特許文献1−7 など)などが知られており、各種の健康・機能性食品に利用されている。
特開平 05-306296 カツオ内臓由来 特許第 3401280号 魚介類由来 特開平 05-331191 鰹節由来 特開平 06-345664 チーズホエー由来 特許第 3129523号 卵白アルブミン由来 特再 2001-884948 牛乳由来 特開平 06-277090 カゼイン由来 YoshikawaらAgric. Biol. Chem., 48, 3185-, 1984. Fukudome らFEBS Lett. 296, 107-111, 1984 MaruyamaらAgric. Biol. Chem., 46, 1393-1394, 1982. MiyoshiらAgric. Biol. Chem., 55, 1313-1318,1991 末綱,日水誌65, 92-96, 1999 Suetsunaら J. Nutr. Biochem
For example, a steroid-binding peptide that regulates serum cholesterol metabolism (derived from soybean protein: Sugano, bioregulatory function of food, pp33-41, Academic Publishing Center, 1992), exogenous opioid peptide (casein: Yoshikawa) involved in analgesic/sedative action. Agric. Biol. Chem. 48, 3185-, 1984. (Non-patent document 1), plant protein: Fukudome et al. FEBS Lett. 296, 107-111, 1984 (Non-patent document 2), Angiotensin that suppresses blood pressure increase I-converting enzyme (ACE) inhibitory peptide, milk casein: Maruyama et al. Agric. Biol. Chem., 46, 1393-1394 1982. (Non-patent document 3), plant protein: Miyoshi et al. Agric. Biol. Chem., 55, 1313. -1318, 1991 (Non-patent document 4). Skipjack section: Suetsuna, Nissui 65, 92-96, 1999 (Non-patent document 5), Wakame: Suetsuna et al. J. Nutr. Biochem, 11, 450-454, 2000. (Non-patent document 6). The following patent documents 1-7, etc.) are known and used for various health and functional foods.
Japanese Patent Laid-Open No. 05-306296 Patent No. 3401280 Derived from seafood JP 05-331191 Derived from bonito flakes JP 06-345664 Derived from cheese whey Patent No. 3129523 Derived from ovalbumin Tokurei 2001-884948 Milk origin JP 06-277090 Casein origin Yoshikawa et al. Agric. Biol. Chem., 48, 3185-, 1984. Fukudome et al. FEBS Lett. 296, 107-111, 1984 Maruyama et al. Agric. Biol. Chem., 46, 1393-1394, 1982. Miyoshi et al. Agric. Biol. Chem., 55, 1313-1318, 1991 Suetsuna, Nissui 65, 92-96, 1999 Suetsuna et al. J. Nutr. Biochem

従来からのタンパク質由来の消化ペプチドがもつ生体調節機能を利用するためには、2つの問題があった。   There are two problems in utilizing the bioregulatory function of conventional digestive peptides derived from proteins.

ひとつは、機能性ペプチドを栄養補助食品として摂取するためには、まず、タンパク質から、機能性ペプチドを調製する必要がある。ところが、食品を酵素分解して機能性ペプチドを調製・精製するには手間と費用がかかり、たとえ粗精製の段階でも比較的高価な商品となる。また、製造した機能性ペプチドがさらに消化液で分解されて効力を失う可能性もあった。   First, in order to ingest a functional peptide as a dietary supplement, it is necessary to first prepare a functional peptide from a protein. However, it takes time and cost to prepare and purify a functional peptide by enzymatically decomposing food, and it is a relatively expensive product even at the rough purification stage. In addition, the produced functional peptide may be further decomposed in the digestive juice to lose its efficacy.

他方、生体内で機能性消化ペプチドを作り出す食品を習慣的に喫食し、体内で消化により機能性ペプチドを生じさせるためには、まず、効率的に体内で目的とする機能を発現する機能性ペプチドを生じる食品を探索しなければならない。さらに、食品として摂取する以上、効果の期待できる量を日常的に摂取できることも必要である。   On the other hand, in order to habitually eat foods that produce functional digestive peptides in vivo and produce functional peptides by digestion in the body, first, functional peptides that efficiently express the desired function in the body. You have to search for foods that produce. Furthermore, since it is taken as a food, it is necessary to be able to take an amount that can be expected to be effective on a daily basis.

このように、現有技術での消化ペプチドの調製は、克服すべき点が多く、これらの制限を一挙に解決するためには、普段から多く食べられているタンパク質性食品の生体調節機能を高める何らかの技術開発が必要と考えられる。   As described above, the preparation of digestive peptides by the existing technology has many points to be overcome, and in order to solve these restrictions all at once, it is necessary to improve the bioregulatory function of protein foods that are commonly eaten. Technology development is considered necessary.

そこで、発明者らは、動物性蛋白源として最も一般的である筋肉タンパク質に着目し、上記した機能性消化ペプチドの機能をできるだけ高め、効率的に機能性ペプチドを有効利用できないか検討をおこない、その結果、血圧調節作用を効果的に改善できる方法を開発した。   Therefore, the inventors focused on muscle proteins, which are the most common source of animal protein, and enhanced the functions of the above-mentioned functional digestive peptides as much as possible, and examined whether they could effectively utilize the functional peptides. As a result, we have developed a method that can effectively improve blood pressure regulation.

本件発明者らは、メイラード反応を介してさまざまな糖類を筋肉タンパク質に結合させ、その水溶化、安定化、乳化能の改変などを実現化させてきた。この糖修飾タンパク質は、食品としてのさまざまな用途が考えられている。   The inventors of the present invention have realized the solubilization, stabilization, modification of emulsifying ability, etc. of various saccharides by binding them to muscle proteins via the Maillard reaction. Various uses of this sugar-modified protein as food are considered.

新しい食品素材を開発・利用する際には、その安全性の確認と同時に、消化吸収性の評価を行なう必要がある。そこで、本件発明者らはこの糖修飾タンパク質の消化性を検討した。その結果、消化管で分泌される主要な消化酵素、すなわち胃で分泌されるペプシンに対してはやや消化抵抗性を有し、一方、小腸で消化されるトリプシンの作用をうけてほぼ完全に消化されるという特性を見いだした(図1)。   When developing and using a new food material, it is necessary to confirm its safety and at the same time evaluate its digestibility. Therefore, the present inventors examined the digestibility of this sugar-modified protein. As a result, it has some digestive resistance to the major digestive enzyme secreted in the digestive tract, that is, pepsin secreted in the stomach, while it is almost completely digested by the action of trypsin digested in the small intestine. I found the characteristic that it is done (Fig. 1).

この知見は、糖分子を結合させることによって筋肉タンパク質のもつ「消化されやすさ」はほとんど損なわれていないものの、消化酵素に対する感受性が変化したことを示している。すなわち、消化・吸収過程で生成する消化ペプチドが異なることが明らかである。実際、ゲル濾過分析によって(図2)、消化パターンが異なることが簡単に確認できた。これは、糖修飾によって新たな機能性消化ペプチドを体内で生成させうる可能性を示している。そこで本発明者らは、この糖修飾タンパク質の血圧調節作用を詳細に検討した。   This finding indicates that the susceptibility to digestive enzymes was changed by binding sugar molecules, although the "digestibility" of muscle proteins was hardly impaired. That is, it is clear that the digestive peptides produced during the digestion/absorption process are different. In fact, gel filtration analysis (FIG. 2) could easily confirm that the digestion patterns were different. This indicates the possibility that new functional digestive peptides can be produced in the body by sugar modification. Therefore, the present inventors have examined in detail the blood pressure regulating action of this sugar-modified protein.

その結果、図3に示すように、魚肉タンパク質本来の持っている血圧調節作用が著しく増強されているという従来に全く報告例のない新事実を見いだした。   As a result, as shown in FIG. 3, a new fact has been found that the blood pressure regulating action inherent to fish meat protein is remarkably enhanced, which has never been reported before.

さらに得られた血圧上昇抑制効果が、少なくとも8時間持続することも確認できた。この持続効果は本発明で得られた魚肉タンパク質の特徴である。   It was also confirmed that the blood pressure elevation suppressing effect obtained lasted for at least 8 hours. This lasting effect is characteristic of the fish meat protein obtained in the present invention.

本件発明により、優れた血圧調節機能を有するタンパク質又は肉類を、効率的に調製することができる。本発明のタンパク質は食品に含まれている状態で喫食することにより、消化管内で優れた血圧調節作用を有する機能性ペプチドを生成して血圧を調節する。そのため、あらかじめ消化ペプチドを調製する必要がなく、また肉類や筋肉タンパク質等という日常的に身近な食品の生体調節機能を増強したことによって、さまざまな加工食品への利用が可能であることから、特別に意識することなくその効果の恩恵を受ける食生活を提供することができる。   According to the present invention, a protein or meat having an excellent blood pressure regulating function can be efficiently prepared. When the protein of the present invention is eaten in a state of being contained in food, it produces a functional peptide having an excellent blood pressure regulating action in the digestive tract to regulate blood pressure. Therefore, it is not necessary to prepare digested peptides in advance, and by enhancing the bioregulatory function of daily familiar foods such as meat and muscle proteins, it can be used for various processed foods, You can provide a diet that benefits from its effects without being aware of it.

本明細書は本願の優先権の基礎である日本国特許出願2004-173963号の明細書および/または図面に記載される内容を包含する。   This specification includes the content described in the Japan patent application 2004-173963 and/or drawing which are the foundations of the priority of this application.

糖修飾によって起きる筋肉タンパク質の消化酵素に対する感受性変化。 サケ筋肉の7.8%重量に相当するアルギン酸オリゴ糖を結合させた糖修飾筋肉タンパク質(リジン修飾率8.0%)をペプシンで3時間消化(pH2.0)後、さらにトリプシンで3時間消化(pH7.0)した。それぞれの消化率は、消化画分中の窒素量から算出した。この結果は、糖分子を結合させることによって筋肉タンパク質のもつ「消化されやすさ」はほとんど損なわれていないものの、消化酵素に対する感受性が変化したことを示している。Changes in susceptibility of muscle proteins to digestive enzymes caused by sugar modification. Sugar-modified muscle protein (8.0% lysine modification rate) to which alginic acid oligosaccharide corresponding to 7.8% weight of salmon muscle was bound was digested with pepsin for 3 hours (pH 2.0) and then with trypsin for 3 hours (pH 7.0). )did. The digestibility of each was calculated from the amount of nitrogen in the digested fraction. This result indicates that the susceptibility to digestive enzymes was changed by binding sugar molecules, although the "digestibility" of muscle proteins was hardly impaired. アルギン酸オリゴ糖修飾によって起きる魚肉タンパク質の消化性の変化。 サケ筋肉の7.8%重量に相当するアルギン酸オリゴ糖を結合させた糖修飾筋肉タンパク質(●:リジン修飾率8.0%)をペプシンで3時間消化(pH2.0)後、さらにトリプシンで3時間消化(pH7.0)し、その消化物の分子量分布をゲル濾過分析(Vo:排除限界分子量2500)によって調べた。通常の魚肉(○)と比べて矢印部分のペプチド分布が大きく異なっているのがわかる。Changes in digestibility of fish meat protein caused by alginate oligosaccharide modification. Sugar-modified muscle protein (●: lysine modification rate 8.0%) to which alginic acid oligosaccharide corresponding to 7.8% weight of salmon muscle was bound was digested with pepsin for 3 hours (pH 2.0) and then with trypsin for 3 hours (pH 7). Then, the molecular weight distribution of the digest was examined by gel filtration analysis (Vo: exclusion limit molecular weight 2500). It can be seen that the peptide distribution in the arrow portion is greatly different from that of normal fish meat (○). 本発明で得た糖修飾筋肉タンパク質の血圧調節機能 投与前のSHRラットの収縮期血圧(□)に対し、糖修飾筋肉タンパク質(サケ筋肉の7.8%重量に相当する糖を結合させた)を体重1kgあたり170(○)および670mg(△)経口投与すると、血圧の速やかな低下が観察された。未処理のサケ肉に同量の糖を混合した場合(●:タンパク質としての投与量670mg/kg体重)は、血圧の低下は僅かであり、本発明の効果が顕著に観察できる。Blood Pressure Modulating Function of Sugar-Modified Muscle Protein Obtained by the Present Invention Weight of sugar-modified muscle protein (bonded sugar equivalent to 7.8% weight of salmon muscle) to systolic blood pressure (□) of SHR rat before administration After oral administration of 170 (○) and 670 mg (△) per kg, a rapid decrease in blood pressure was observed. When the same amount of sugar is mixed with untreated salmon meat (●: dose of protein as 670 mg/kg body weight), the blood pressure is slightly decreased, and the effect of the present invention can be remarkably observed. 本発明で得た糖修飾筋肉タンパク質の血圧上昇抑制機能。 10週齡SHRラットに対して、糖修飾筋肉タンパク質(サケ筋肉の7.8%重量に相当する糖を結合させた)を、15日間および28日間、毎日経口投与した。まず未投与のSHRラット(○)では、加齢に伴って徐々に収縮期血圧の上昇が観察された。これに対して、体重1kgあたり70mg(△)を毎日投与した場合には、血圧上昇が抑制された。さらに、170mg(□)を毎日投与した場合には、血圧の上昇が全く起こらなかった。(*:危険率5%、**:危険率1%)The blood pressure increase suppressing function of the sugar-modified muscle protein obtained in the present invention. To 10-week old SHR rats, sugar-modified muscle protein (conjugated with sugar corresponding to 7.8% weight of salmon muscle) was orally administered daily for 15 and 28 days. First, in untreated SHR rats (◯), a gradual increase in systolic blood pressure was observed with aging. On the other hand, when 70 mg (kg) per 1 kg of body weight was administered daily, the increase in blood pressure was suppressed. Furthermore, when 170 mg (□) was administered daily, no increase in blood pressure occurred. (*: Danger rate 5%, **: Danger rate 1%)

本件発明は、肉類又はタンパク質に還元糖類を結合させることによって消化酵素に対する基質としての反応性を変化させ、それによって優れた血圧調節作用を付与するというものである。   The present invention is to change the reactivity of a digestive enzyme as a substrate by binding reducing saccharides to meat or protein, thereby imparting an excellent blood pressure regulating action.

本願発明には、例えば、(1)タンパク質を還元糖類と混合後、脱水し、30〜70℃の環境下で水分含量を0.25〜6%に維持することを特徴とする血圧降下用糖修飾タンパク質の調製方法、及び(2)タンパク質を還元糖類と混合後、脱水し、相対湿度70%以下でかつ30〜70℃の環境に保持することを特徴とする血圧降下用糖修飾タンパク質の調製方法が包含される。   In the present invention, for example, (1) a protein is mixed with a reducing saccharide and then dehydrated to maintain a water content of 0.25 to 6% under an environment of 30 to 70° C. And (2) mixing the protein with reducing sugars, dehydrating the mixture, and maintaining it in an environment with a relative humidity of 70% or less and 30 to 70°C. Included.

以下に、肉類又はタンパク質に還元糖類を結合させることによるタンパク質の血圧降下作用を増強する具体的方法を説明する。   Hereinafter, a specific method for enhancing the blood pressure lowering action of protein by binding reducing sugars to meat or protein will be described.

[タンパク質を還元糖類で修飾する方法]
肉類又はタンパク質に還元糖類を結合させる方法としては、タンパク質の反応性リジン残基と還元糖類の還元末端の間でメイラード反応を起こさせ、両者の間に共有結合を生じさせる。この際、反応を速やかに進行させるには肉類又はタンパク質と糖の混合物の水分を6%以下に調節する、又は相対湿度35%以下の環境に40℃以上で保持することが望ましい(本研究者による特許公開:2003-169634)が、タンパク質の種類によってはこれに限られず、相対湿度を70%以下の範囲とすることもできる(実施例5)。
[Method of modifying protein with reducing sugar]
As a method for binding a reducing sugar to meat or protein, a Maillard reaction is caused between the reactive lysine residue of the protein and the reducing end of the reducing sugar to form a covalent bond between the two. At this time, it is desirable to adjust the water content of the meat or the mixture of protein and sugar to 6% or less, or to keep it in an environment with relative humidity of 35% or less at 40°C or more in order to accelerate the reaction (this researcher Patent Publication: 2003-169634), but the relative humidity is not limited to this depending on the kind of protein, and the relative humidity can be 70% or less (Example 5).

水分の調節方法としては、例えば、タンパク質と糖の混合物を脱水処理するが、具体的には、相対湿度10%の低湿度下での加熱処理、又は凍結乾燥、噴霧乾燥、減圧乾燥等の処理あるいはこれらを組み合わせて処理することにより、肉類又はタンパク質と糖の混合物の水分を6%以下にすることができる。好適には凍結乾燥処理が望ましい。肉類又はタンパク質と糖の混合物の水分含量が、脱水処理終了時点で6%を上回るものであったとしても、相対湿度35%以下で、30〜70℃、より具体的には、例えば、40℃以上70℃以下に保持することにより、水分含量を6%以下の範囲にすることもできる。なお、肉類及び筋肉タンパク質は、本処理の条件下で還元糖を結合させることによって水溶化される。   As a method for controlling water content, for example, a mixture of protein and sugar is dehydrated, and specifically, heat treatment under low humidity of 10% relative humidity, or treatment such as freeze-drying, spray-drying, and vacuum drying. Alternatively, by treating them in combination, the water content of the meat or the mixture of protein and sugar can be reduced to 6% or less. Freeze-drying is preferred. Even if the water content of meat or a mixture of protein and sugar exceeds 6% at the end of the dehydration treatment, the relative humidity is 35% or less, 30 to 70°C, more specifically, 40°C, for example. By maintaining the temperature at 70° C. or lower, the water content can be controlled within the range of 6% or lower. Meat and muscle proteins are solubilized by binding reducing sugars under the conditions of this treatment.

メイラード反応の制御については、例えば、タンパク質を還元糖と1:0.5から10の範囲で混合して凍結乾燥し、水分量を0.6-3%程度に調節する。これを恒温恒湿度下40〜60℃、相対湿度35%程度に数時間〜4日間保持する。これによって、タンパク質のリジン残基と糖の還元末端の間でメイラード反応を起こさせることができる。タンパク質中のリジン修飾率が4-40%程度になった時点で冷却(氷蔵)して反応を停止することにより、目的にあった量の還元糖をタンパク質に結合させる(すなわち糖修飾する)ことができる。   Regarding the control of the Maillard reaction, for example, the protein is mixed with reducing sugar in the range of 1:0.5 to 10 and lyophilized to adjust the water content to about 0.6-3%. This is kept at a constant temperature and constant humidity of 40 to 60° C. and a relative humidity of about 35% for several hours to 4 days. This allows a Maillard reaction to occur between the lysine residue of the protein and the reducing end of the sugar. When the lysine modification ratio in the protein reaches about 4-40%, the reaction is stopped by cooling (freezing) to bind the reducing sugar in an amount suitable for the purpose (that is, sugar modification). You can

[血圧降下作用]
このようにして肉類又はタンパク質の反応性リジン残基に還元糖類を結合させると、タンパク質の高次構造に変化が生じ、そのさまざまな性質に影響がおよぶ。たとえばアルギン酸オリゴ糖を結合させた場合には、反応性リジン残基の2%以上の糖鎖が結合することによって魚肉タンパク質の消化性に変化が生じ、その結果、以下に説明する実施例1と2に示されるように血圧降下調節作用の増強効果が認められる。したがって、本願発明の方法で糖修飾された肉類又は糖修飾タンパク質は、血圧降下のために用いることができる。
[Hypotensive effect]
When the reducing sugar is bound to the reactive lysine residue of meat or protein in this way, the conformation of the protein is changed, and various properties of the protein are affected. For example, when an alginic acid oligosaccharide is linked, the digestibility of fish meat protein is changed by the binding of 2% or more sugar chains of the reactive lysine residue, and as a result, Example 1 described below is used. As shown in 2, an enhancing effect of the blood pressure lowering regulating action is recognized. Therefore, the meat or sugar-modified protein sugar-modified by the method of the present invention can be used for lowering blood pressure.

なお糖修飾反応を継続し続けると、メイラード反応生成物を介してタンパク質間の重合が起こり、結果として消化性の低下に伴って増強した血圧調節作用は徐々に減少することも確認できた(実施例2)。   It was also confirmed that if the sugar modification reaction is continued, polymerization between proteins occurs via the Maillard reaction product, resulting in a gradual decrease in the blood pressure-regulating effect that was enhanced with the decrease in digestibility (Implementation) Example 2).

[原材料]
本発明で使用できるタンパク質としては、種々のタンパク質が挙げられるが、具体的には、筋肉タンパク質、卵白アルブミン、プロタミン、大豆タンパク質などを挙げることができる。筋肉タンパク質としては、魚肉、畜肉、貝類、イカ類などあらゆる生物の筋肉タンパク質が挙げられる。これらは良く洗浄しても利用するのはもちろん、脂質や水溶性低分子成分など筋肉タンパク質以外の食品成分が含まれていても全く差し支えがない。筋肉タンパク質には、ミオシン、アクチン、トロポミオシン、トロポニン等が包含される。プロタミンとしては、例えば、魚類精巣由来のもの、具体的には、サケ精巣由来のプロタミンを挙げることができる。
[raw materials]
Examples of the protein that can be used in the present invention include various proteins, and specific examples thereof include muscle protein, ovalbumin, protamine, and soybean protein. Examples of muscle proteins include muscle proteins of all living things such as fish meat, meat, shellfish and squid. Of course, these may be used even if they are thoroughly washed, and there is no problem even if they contain food components other than muscle proteins such as lipids and water-soluble low-molecular components. Muscle proteins include myosin, actin, tropomyosin, troponin and the like. Examples of protamine include fish testis-derived protamine, and specifically salmon testis-derived protamine.

本願発明で使用できる肉類には、上記した魚肉、畜肉、貝類、イカ類などあらゆる生物の筋肉細切りした筋肉が含まれる。細切りとは、上記肉を種々の手段で切断することを意味し、例えば、ホモジナイズ処理及び挽肉処理などが含まれ、好適には5ミリ、更に好適には3ミリ以下の網目を通過する程度にまで細切り、あるいはミンチとすることが望ましい。   The meats that can be used in the present invention include muscles obtained by slicing all the muscles of the above-mentioned fish meat, livestock meat, shellfish, squid and the like. Shredded means cutting the above-mentioned meat by various means, and includes, for example, homogenization treatment and minced meat treatment, and the like, preferably to a degree of passing a mesh of 5 mm, more preferably 3 mm or less. It is desirable to chop up or mince.

本発明で使用できる還元糖類の例として実施例1、2では、平均重合度6のアルギン酸オリゴ糖についての結果を示したが、実施例3に示すように還元性を有する他の糖質(還元糖)においても同様の効果が期待できる。どの還元糖類を利用するかは、商品開発の目的とそれに伴う対費用効果によって決定すればよい。   As examples of reducing sugars that can be used in the present invention, the results of alginic acid oligosaccharides having an average degree of polymerization of 6 are shown in Examples 1 and 2, but as shown in Example 3, other reducing sugars (reducing sugars Similar effects can be expected for sugar). Which reducing sugar is used may be determined according to the purpose of product development and the cost-effectiveness associated therewith.

本件発明で使用できる還元糖類としては、単糖(グルコース、リボースなど)、平均重合度20以下のオリゴ糖類で還元末端を有しているもの、例えば、アルギン酸オリゴ糖、キトサンオリゴ糖などの還元性オリゴ糖が挙げられる。   The reducing sugars that can be used in the present invention include monosaccharides (glucose, ribose, etc.), those having an average degree of polymerization of 20 or less and having a reducing end, such as alginic acid oligosaccharides and chitosan oligosaccharides An oligosaccharide is mentioned.

本件発明で熱的に不安定なタンパク質(たとえば冷水域に棲息する魚類の筋肉タンパク質)を利用する場合には、水分調節の過程や糖修飾の過程でタンパク質の変性を抑制するために還元糖類と同時に変性防止剤を混合することが望ましい。本件発明におけるタンパク質変性防止剤としては、ソルビトールやトレハロース等が挙げられる。タンパク質変性防止剤は、添加する還元糖類のタンパク質変性防止効果が小さい場合(たとえば、アルギン酸オリゴ糖等)に特に有効である。なおグルコースのように、変性防止効果を有する還元糖類を用いる場合には、他の変性防止剤との併用は不要である。   When a thermally unstable protein (for example, a fish muscle protein that lives in cold water) is used in the present invention, a reducing sugar is used to suppress protein denaturation in the process of water regulation and sugar modification. It is desirable to mix the denaturing agent at the same time. Examples of the protein denaturation inhibitor in the present invention include sorbitol and trehalose. The protein denaturation inhibitor is particularly effective when the reducing saccharide to be added has a small protein denaturation preventing effect (eg, alginic acid oligosaccharide). When a reducing saccharide having a denaturing preventing effect such as glucose is used, it is not necessary to use it together with another denaturing preventing agent.

糖修飾タンパク質の調製過程における肉類又は筋肉タンパク質とアルギン酸オリゴ糖(還元糖)の混合比(重量)は、のぞましくは1:0.1〜1:10の範囲であるが、その組成自体には特段の指定はなく、要は糖修飾によってタンパク質の消化性に変化が生じさえすればよい。   The mixing ratio (weight) of the meat or muscle protein and the alginic acid oligosaccharide (reducing sugar) in the preparation process of the sugar-modified protein is preferably in the range of 1:0.1 to 1:10. There is no special designation, and it is essential only that the sugar modification causes a change in digestibility of the protein.

[用途、使用方法]
本発明の方法で調製された糖修飾タンパク質又は糖修飾肉類は、その製造過程で試薬類を用いていないので基本的に食品素材としての利用が可能であり、それゆえ、本発明の目的である、食品として喫食した際に得られるタンパク質の生体調節機能の高度な活用に合致している。
[Usage and usage]
The sugar-modified protein or sugar-modified meat prepared by the method of the present invention can be basically used as a food material since reagents are not used in the production process thereof, and is therefore the object of the present invention. , It is consistent with the advanced utilization of the bioregulatory function of proteins obtained when eaten as food.

また本発明の方法で処理された糖修飾タンパク質又は糖修飾肉類は水溶性にもできるので、消化吸収性が良く、更に、他の食品飲料材料と容易に混合できる。   Further, since the sugar-modified protein or sugar-modified meat treated by the method of the present invention can be water-soluble, it has good digestion and absorption properties and can be easily mixed with other food and beverage materials.

本願発明の血圧降下用タンパク質又は血圧降下用肉類は、血圧降下因子として作用する。本願発明の血圧降下用タンパク質又は血圧降下用肉類は、経口で、そのまま投与することが可能である。   The blood pressure-lowering protein or meat for lowering blood pressure of the present invention acts as a blood pressure-lowering factor. The antihypertensive protein or antihypertensive meat of the present invention can be orally administered as it is.

更に、本願発明の血圧降下用タンパク質又は血圧降下用肉類は、他の食品に添加して、又は混合して、食品として摂取することも、飲料に添加又は混合して飲料として摂取することも可能である。又血圧降下剤として用いる場合は、製剤様担体と混合し製剤とすることができる。例えば、錠剤、カプセル剤、顆粒剤、散剤とすることができる。添加剤としては、糖類・糖アルコール類(例えば、乳糖、ブドウ糖、マンニット、デキストリン、シクロデキストリン、庶糖)、多糖類(デンプン、カルボキシメチルセルロースナトリウム、ヒドロキシプロピルデンプン、カルボキシメチルセルロースカルシウム、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、)、ゼラチン、ガム類(アラビアゴム)、合成高分子(ポリビニルピロリドン、ポリビニルアルコール)、タルク、トラガント、ベントナイト、ビーガム、ソルビタン脂肪酸エステル、ラウリル硫酸ナトリウム、グリセリン、脂肪酸グリセリンエステル、プロピレングリコール等が挙げられる。   Furthermore, the protein for lowering blood pressure or the meat for lowering blood pressure of the present invention can be added to or mixed with other foods to be ingested as a food, or added to or mixed with a beverage to be ingested as a beverage. Is. When used as a blood pressure lowering agent, it can be mixed with a preparation-like carrier to prepare a preparation. For example, it can be a tablet, capsule, granule, or powder. As additives, sugars/sugar alcohols (for example, lactose, glucose, mannitol, dextrin, cyclodextrin, sucrose), polysaccharides (starch, sodium carboxymethyl cellulose, hydroxypropyl starch, carboxymethyl cellulose calcium, methyl cellulose, hydroxypropyl cellulose) , Hydroxypropylmethylcellulose, ), gelatin, gums (gum arabic), synthetic polymers (polyvinylpyrrolidone, polyvinyl alcohol), talc, tragacanth, bentonite, veegum, sorbitan fatty acid ester, sodium lauryl sulfate, glycerin, fatty acid glycerin ester, propylene Examples thereof include glycol.

本願の血圧降下用タンパク質又は血圧降下用肉類は、1日あたり、タンパク質量として、体重1kgあたり0.05gから2g、好適には0.1gから1g摂取することが望ましい。本願発明の血圧降下用タンパク質は、7日から21日連続して、又は、2日程度の間隔を置いて摂取することも可能である。   The blood pressure-lowering protein or the blood pressure-lowering meat of the present invention is preferably ingested in a protein amount of 0.05 g to 2 g, preferably 0.1 g to 1 g per 1 kg of body weight per day. The protein for lowering blood pressure of the present invention can be ingested continuously for 7 to 21 days or at intervals of about 2 days.

更に、本願発明は、前述した調製方法によって製造された血圧降下用タンパク質又は血圧降下用肉類を有効成分としてふくむ抗高血圧剤又は血圧降下剤も包含する。その投与方法は、上述した、血圧降下用タンパク質又は血圧降下用肉類の摂取方法と同様である。   Furthermore, the present invention also includes an antihypertensive agent or an antihypertensive agent containing the antihypertensive protein or the antihypertensive meat produced by the above-mentioned preparation method as an active ingredient. The administration method is the same as the above-mentioned intake method of the blood pressure-lowering protein or the blood pressure-lowering meat.

次に本件発明の方法を実施例によって詳細に説明する。   Next, the method of the present invention will be described in detail with reference to examples.

サケ筋肉への血圧調節機能付与(糖修飾タンパク質の安全性、糖修飾タンパク質の投与量が本発明の効果におよぼす影響)
サケ筋肉を2mm目(JIS-8811)のふるいを通過するサイズまでミートチョッパーで細切した。この魚肉100g対してそれに含まれる筋肉タンパク質量(14%湿重量)と等量のアルギン酸オリゴ糖(14g)と、タンパク質冷凍変性防止剤としてソルビトール(14g)を混合した後、凍結乾燥によって水分を4.2%に調節した。続いて60℃(相対湿度35%)で3時間保持したところ、アルギン酸オリゴ糖はサケ筋肉中の8%のリジン残基と反応して糖修飾タンパク質(重量比で7.8%に相当する糖が結合)を形成した。
Addition of blood pressure regulation function to salmon muscle (safety of sugar-modified protein, influence of dose of sugar-modified protein on the effect of the present invention)
The salmon muscle was shredded with a meat chopper to a size that passed through a 2 mm (JIS-8811) sieve. 100 g of this fish meat was mixed with alginic acid oligosaccharide (14 g) in an amount equal to the amount of muscle protein (14% wet weight) contained in it, and sorbitol (14 g) as a protein freezing denaturation inhibitor was mixed, and then the water content was 4.2% by freeze-drying. Adjusted to %. Subsequently, when kept at 60°C (35% relative humidity) for 3 hours, alginic acid oligosaccharides reacted with 8% of lysine residues in salmon muscle to react with sugar-modified protein (a sugar corresponding to 7.8% by weight was bound). ) Was formed.

この糖修飾タンパク質の消化酵素に対する感受性を調べた。まず、ペプシンで3時間消化(pH2.0)後、さらにトリプシンで3時間消化(pH7.0)した。それぞれの消化率は、消化画分中の窒素量から算出した。結果を図1に示すが、サケの筋肉タンパク質がアルギン酸オリゴ糖修飾を受けることによって、その感受性に変化が生じたことが分かる。更に、消化物の分子量分布をゲル濾過分析(Vo:排除限界分子量2500)によって調べた。結果を図2に示すが、このように、糖修飾の前後で消化物の分布が異なることを確認した。   The sensitivity of this sugar-modified protein to digestive enzymes was examined. First, after digesting with pepsin for 3 hours (pH 2.0), it was further digested with trypsin for 3 hours (pH 7.0). The digestibility of each was calculated from the amount of nitrogen in the digested fraction. The results are shown in Fig. 1, and it can be seen that the sensitivity of salmon muscle protein was modified by alginate oligosaccharide modification. Furthermore, the molecular weight distribution of the digest was examined by gel filtration analysis (Vo: exclusion limit molecular weight 2500). The results are shown in Fig. 2, and thus it was confirmed that the distribution of the digest was different before and after sugar modification.

また、この糖修飾タンパク質の消化吸収性を、4週齡の雄SDラットを用いた飼育試験で検討した。その結果、4週間の飼育中、通常の配合飼料と全く差異のない体重増加を示すことが確認できた。   Further, the digestive absorbability of this sugar-modified protein was examined in a breeding test using 4-week-old male SD rats. As a result, it was confirmed that during the 4-week breeding, there was no difference in weight gain from the normal mixed feed.

そこで、この糖修飾タンパク質の血圧調節機能を調べるため、高血圧症状を呈している10週齡の雄SHRラット(体重220〜260g)に体重あたり170mgを経口投与したところ、2時間後に収縮期血圧が24 mmHg低下し、この効果は少なくとも6時間維持された。さらに体重あたり670mgを経口投与した実験区では、収縮期血圧が最大35mmHg低下し、8時間経過後も30 mmHgの低下効果を維持し続けていた。なお、糖修飾していないタンパク質に上記試料に含まれるのと同量の糖類を混合してSHRラットに負荷したところ、収縮期血圧の低下範囲は最大で6mmHgであり、実験区との間には有為な差異が認められた(危険率1%)。以上の結果は、アルギン酸オリゴ糖修飾によって魚肉タンパク質の血圧調節機能が著しく増強されたことを示している(図3)。   Therefore, in order to investigate the blood pressure regulation function of this glycosylated protein, 170 mg/body weight was orally administered to 10-week-old male SHR rats (body weight 220-260 g) exhibiting hypertension, and systolic blood pressure was found 2 hours later. It decreased by 24 mmHg, and this effect was maintained for at least 6 hours. Furthermore, in the experimental group to which 670 mg per body weight was orally administered, the systolic blood pressure decreased by a maximum of 35 mmHg, and the effect of decreasing 30 mmHg was maintained even after 8 hours. When SHR rats were loaded with the same amount of sugar as that contained in the above sample, which was not modified with sugar, the maximum systolic blood pressure decrease range was 6 mmHg, which was between the experimental section. Showed a significant difference (risk rate 1%). The above results show that the blood pressure regulation function of fish meat protein was remarkably enhanced by the alginate oligosaccharide modification (FIG. 3).

サケ筋肉への血圧調節機能付与(2)(タンパク質に結合した還元糖類の量が本発明の効果におよぼす影響)
実施例1と同様の方法で反応時間を1.5時間、3時間、さらに48時間変化させて、糖結合量がそれぞれタンパク質重量の3.0%(P-3.0)、7.8%(P-7.8)、13.0%(P-13.0)、 20.4%(P-20.4) である糖修飾タンパク質を調製し、これらを10週齡の雄SHRラット(体重240〜260g)に体重あたり170mgを経口投与した(糖結合量は糖修飾タンパク質をいったん精製後、フェノール硫酸法によって測定した)。その結果、P-3.0、P-7.8では投与1時間後に収縮期血圧がそれぞれ16mmHgと22mmHg低下し、さらに4時間後にはいずれも最大で28mmHgの減少を示した。さらに、糖結合量を増加させたP-13.0でも全く同様の血圧上昇抑制効果が確認できた。一方、糖を修飾していないタンパク質に上記試料に含まれるのと同量の糖類を混合してSHRラットに負荷したところ、収縮期血圧は投与1時間後では全く変化せず、投与8時間後までの低下は最大で7 mmHgであった。なおP-20.4では、収縮期血圧は投与1時間後に17 mmHgまで低下したが、それ以上の減少は見られなかった。P-3.0、P-7.8、P-13.0およびP-20.4の糖によるリジン修飾率はそれぞれ4.0%、8.2%、14.8%および26.0%で、特にP-20.4ではメイラード反応の進行に伴う著しい褐変化が観察できた。他の3サンプルとは異なり、P-20.4ではSDS―ポリアクリルアミドゲル電気泳動分析によってタンパク質の重合が認められ、トリプシン―キモトリプシンによる消化率の低下(実施例1に準じて行った)が起こっていた。このようにリジン修飾率4.0%のタンパク質(P-3.0)においても糖修飾による筋肉タンパク質の血圧調節機能の増強が確認できたが、P-20.4のように褐変化して過度にメイラード反応が進行すると、その効果が徐々に損なわれることが明らかとなった。
Addition of blood pressure control function to salmon muscle (2) (Effect of the amount of reducing sugar bound to protein on the effect of the present invention)
In the same manner as in Example 1, the reaction time was changed for 1.5 hours, 3 hours, and 48 hours, and the sugar binding amounts were 3.0% (P-3.0), 7.8% (P-7.8), and 13.0% of the protein weight, respectively. (P-13.0), 20.4% (P-20.4) glycosylated proteins were prepared and these were orally administered to male SHR rats aged 10 weeks (body weight 240 to 260 g) at 170 mg per body weight (the sugar binding amount was The sugar-modified protein was once purified and then measured by the phenol-sulfuric acid method). As a result, in P-3.0 and P-7.8, the systolic blood pressure decreased by 16 mmHg and 22 mmHg, respectively, 1 hour after administration, and further, the maximum decreased by 28 mmHg after 4 hours. Furthermore, it was confirmed that P-13.0 with an increased amount of sugar bond had a completely similar blood pressure elevation inhibitory effect. On the other hand, when the same amount of saccharide as that contained in the above sample was mixed with the protein without modification of sugar and loaded into SHR rats, systolic blood pressure did not change at 1 hour after administration, and 8 hours after administration. The maximum decrease was 7 mmHg. With P-20.4, the systolic blood pressure decreased to 17 mmHg one hour after administration, but no further decrease was observed. The lysine modification rates of sugars of P-3.0, P-7.8, P-13.0 and P-20.4 were 4.0%, 8.2%, 14.8% and 26.0%, respectively, and especially in P-20.4, a remarkable browning change as the Maillard reaction progressed. Could be observed. Unlike the other 3 samples, P-20.4 showed protein polymerization by SDS-polyacrylamide gel electrophoretic analysis, resulting in a decrease in digestibility by trypsin-chymotrypsin (performed in accordance with Example 1). . In this way, it was confirmed that the protein with a lysine modification rate of 4.0% (P-3.0) enhanced the blood pressure regulation function of the muscle protein by sugar modification, but when it browned like P-20.4 and the Maillard reaction proceeded excessively. , It became clear that the effect gradually diminished.

経産牛とグルコース
と畜後7日間4℃で保管した経産牛のもも肉をトリミングしてから挽き肉にし、5倍量の生理食塩水で3回洗浄した。得られた洗浄肉100gに対してそれに含まれる筋肉タンパク質量(10.2%湿重量)の5倍重量に相当するグルコースを含む水溶液200mLを加えて練り込み、薄く延ばして凍結乾燥した(水分含量1.4%)。続いて50℃(相対湿度5%)で12時間保持したところ、タンパク質中のリジン残基の61%がグルコースと反応した。この糖修飾タンパク質の血圧調節機能を調べるため、高血圧症状を呈している10週齡の雄SHRラット(体重230〜288g)に体重あたり700 mgを経口投与したところ、2時間後に収縮期血圧が21mmHg低下し、この効果は少なくとも6時間持続した。一方、糖修飾していないタンパク質に上記試料に含まれるのと同量の糖類を混合してSHRラットに負荷しても、収縮期血圧は有為な低下を示さなかった。この結果より、グルコース修飾による経産牛肉タンパク質の血圧調節機能の増強が確認できた。
Cows, glucose, and cows of cows that had been stored at 4°C for 7 days after slaughter were trimmed into minced meat, which was washed three times with 5 times the amount of physiological saline. To 100 g of the washed meat obtained, 200 mL of an aqueous solution containing glucose corresponding to 5 times the weight of the muscle protein content (10.2% wet weight) was added, kneaded, spread thinly and freeze-dried (water content 1.4% ). Then, when it was kept at 50° C. (5% relative humidity) for 12 hours, 61% of the lysine residues in the protein reacted with glucose. In order to investigate the blood pressure regulation function of this glycosylated protein, 700 mg/body weight was orally administered to 10-week-old male SHR rats (body weight 230-288 g) exhibiting hypertension, and systolic blood pressure was 21 mmHg after 2 hours. Decreased and this effect lasted for at least 6 hours. On the other hand, even when the unmodified protein was mixed with the same amount of sugar as that contained in the above sample and loaded on SHR rats, the systolic blood pressure did not show a significant decrease. From this result, it was confirmed that the blood glucose control function of the cow beef protein was enhanced by glucose modification.

連続長期投与の影響(加齢に伴う血圧上昇の抑制効果)
SHRラットは成長に伴って徐々に血圧が上昇していくモデル動物である。10週齡の雄SHRラットを4週間飼育するにあたり、実施例2と同じ糖修飾魚肉(P-7.8)を体重あたり70および170 mgを1日1回経口投与し、血圧の変化を調査した。その結果、図4に示すように、通常のSHRラットの収縮期血圧が4週間で13 mmHg増加したのに対し、糖修飾魚肉を投与しつづけたラットでは、血圧上昇を有意に抑制することができた。さらに,このような継続投与をおこなっても,糖修飾魚肉の投与直後に起きる血圧の低下効果は全く損なわれなかった。
Effect of continuous long-term administration (suppressive effect on blood pressure increase with aging)
The SHR rat is a model animal in which blood pressure gradually rises as it grows. When the male SHR rats aged 10 weeks were bred for 4 weeks, the same sugar-modified fish meat (P-7.8) as in Example 2 was orally administered at 70 and 170 mg per body weight once a day, and changes in blood pressure were investigated. As a result, as shown in FIG. 4, the systolic blood pressure of normal SHR rats increased by 13 mmHg in 4 weeks, whereas in rats continuously administered with sugar-modified fish meat, the blood pressure elevation was significantly suppressed. did it. Furthermore, even if such continuous administration was performed, the blood pressure lowering effect immediately after administration of the sugar-modified fish meat was not impaired.

卵タンパク質への血圧調節機能付与
卵白アルブミン(主成分はオボアルブミン)は白色レグホンの卵白をpH 5.6で酸沈殿した後、遠心分離で回収し、10mMNaCl に懸濁後HClで中和し回収した。このタンパク質溶液を100mg/mlに調製し、続いて0.1M マルトースを溶解して凍結乾燥した。そして、直ちに60℃、相対湿度65%に4日間保持して卵白アルブミン分子にマルトースを結合させた。さらに硫安分画によってこの糖修飾タンパク質から未反応のマルトースを除去した。
Addition of blood pressure control function to egg protein
Ovalbumin (mainly ovalbumin) was obtained by acid precipitation of white leghorn egg white at pH 5.6, and then recovered by centrifugation, suspended in 10 mM NaCl, neutralized with HCl, and recovered. This protein solution was prepared at 100 mg/ml, and then 0.1 M maltose was dissolved and freeze-dried. Then, it was immediately kept at 60° C. and 65% relative humidity for 4 days to bind maltose to the ovalbumin molecule. Furthermore, unreacted maltose was removed from this sugar-modified protein by ammonium sulfate fractionation.

上記によって得た卵白アルブミンは53%の有効性リジンが減少しており、1/500重量比のペプシン処理を行ったところ、タンパク質の分解様式が異なっていることをSDS-ポリアクリルアミドゲル電気泳動分析によって確認した。そこで、この糖修飾タンパク質の血圧調節機能を調べるため、高血圧症状を呈している10週齡の雄SHRラット(体重240〜260g)に体重あたり1000mgを経口投与したところ、2時間後に収縮期血圧が22 mmHg低下し、この効果は少なくとも6時間維持された。糖修飾していない卵白アルブミンに上記試料に含まれるのとほぼ同量のマルトースを混合してSHRラットに負荷しても収縮期血圧の低下範囲は最大で8mmHgであり、実験区との間には有為な差異が認められた(危険率1%)。   SDS-polyacrylamide gel electrophoresis analysis showed that the ovalbumin obtained above had 53% less effective lysine, and that it was treated with pepsin at a 1/500 weight ratio and the protein degradation pattern was different. Confirmed by. Therefore, in order to investigate the blood pressure regulation function of this glycosylated protein, 1000 mg/body weight was orally administered to 10-week-old male SHR rats (body weight 240 to 260 g) exhibiting hypertension, and systolic blood pressure was found 2 hours later. It decreased by 22 mmHg, and this effect was maintained for at least 6 hours. Even when maltose in an amount similar to that contained in the above sample was mixed with unmodified sugar ovalbumin, the maximum systolic blood pressure decrease range was 8 mmHg even when loaded on SHR rats. Showed a significant difference (risk rate 1%).

以上の結果は、糖修飾によって卵白アルブミンに血圧調節機能が付加されたことを示している。   The above results indicate that the blood pressure control function was added to ovalbumin by sugar modification.

本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。   All publications, patents and patent applications cited in this specification are incorporated herein by reference as they are.

Claims (17)

タンパク質を還元糖類と混合後、脱水し、30〜70℃の環境下で水分含量を0.25〜6%に維持することを含む血圧降下用糖修飾タンパク質の調製方法。   A method for preparing a sugar-modified protein for lowering blood pressure, which comprises mixing a protein with a reducing sugar, dehydrating the mixture, and maintaining the water content at 0.25 to 6% under an environment of 30 to 70°C. タンパク質を還元糖類と混合後、脱水し、相対湿度70%以下でかつ30〜70℃の環境に保持することを含む、血圧降下用糖修飾タンパク質の調製方法。   A method for preparing a sugar-modified protein for lowering blood pressure, which comprises mixing a protein with a reducing saccharide, dehydrating the mixture, and maintaining the mixture in an environment having a relative humidity of 70% or less and 30 to 70°C. タンパク質が、アルブミン、ミオシン、プロタミン、大豆タンパク質又は筋肉タンパク質から選ばれる請求項1又は2の血圧降下用糖修飾タンパク質の調製方法。   The method for preparing a sugar-modified protein for lowering blood pressure according to claim 1 or 2, wherein the protein is selected from albumin, myosin, protamine, soybean protein and muscle protein. 脱水を水分含量が10%以下となるまで行う請求項1〜3いずれか1項記載の方法。   The method according to any one of claims 1 to 3, wherein dehydration is performed until the water content becomes 10% or less. 還元糖類が、還元性単糖、又は還元性オリゴ糖である請求項1〜4いずれか1項記載の方法。   The method according to claim 1, wherein the reducing saccharide is a reducing monosaccharide or a reducing oligosaccharide. 請求項1から5いずれか1項記載の方法で調製された血圧降下用糖修飾タンパク質。   A sugar-modified protein for lowering blood pressure, which is prepared by the method according to claim 1. 軟体動物又は甲殻類の筋肉、魚肉、又は畜肉から選ばれた肉類を細切りし、還元糖類と混合後、脱水し、相対湿度70%以下でかつ30〜70℃の環境に保持することを含む、血圧降下用糖修飾肉類の調製方法。   Muscles of molluscs or crustaceans, minced meat selected from fish meat, or livestock meat, mixed with reducing sugars, dehydrated, including maintaining in an environment of relative humidity 70% or less and 30 ~ 70 ℃, A method for preparing sugar-modified meat for lowering blood pressure. 軟体動物又は甲殻類の筋肉、魚肉、又は畜肉由来の筋肉タンパク質を還元糖類と混合後、脱水し、相対湿度70%以下でかつ30〜70℃の環境に保持することを含むによる血圧降下用糖修飾肉類の調製方法。   Sugar-reducing sugar that comprises mixing muscle protein derived from mollusc or crustacean muscle, fish meat, or livestock meat with reducing sugars, dehydrating the mixture, and maintaining it in an environment with a relative humidity of 70% or less and 30 to 70°C. Method for preparing modified meat. 脱水を水分含量が10%以下になるまで行う請求項7又は8記載の方法。   The method according to claim 7 or 8, wherein dehydration is performed until the water content becomes 10% or less. 還元糖類が、還元性単糖、または、還元性オリゴ糖である請求項7〜9いずれか1項記載の方法。   10. The method according to claim 7, wherein the reducing sugar is a reducing monosaccharide or a reducing oligosaccharide. 請求項7〜10いずれか1項記載の方法で調製された血圧降下用糖修飾肉類。   Sugar-modified meat for lowering blood pressure prepared by the method according to claim 7. 請求項6記載の血圧降下用糖修飾タンパク質を含む飲食品。   A food or drink containing the sugar-modified protein for lowering blood pressure according to claim 6. 請求項11記載の血圧降下用糖修飾肉類を含む飲食品。   A food or drink comprising the sugar-modified meat for lowering blood pressure according to claim 11. 請求項6記載の血圧降下用糖修飾タンパク質又は請求項11記載の血圧降下用糖修飾肉類を有効成分として含む抗高血圧剤。   An antihypertensive agent comprising the sugar-modified protein for lowering blood pressure according to claim 6 or the sugar-modified meat for lowering blood pressure according to claim 11 as an active ingredient. タンパク質と糖のメイラード反応で生じる糖修飾タンパク質を有効成分として含む抗高血圧剤。   An antihypertensive agent containing, as an active ingredient, a sugar-modified protein produced by a Maillard reaction of a protein and sugar. 肉類と糖のメイラード反応で生じる糖修飾肉類を有効成分として含む抗高血圧剤。   An antihypertensive agent containing sugar-modified meat produced by the Maillard reaction of meat and sugar as an active ingredient. 血圧降下に有効である旨の表示を付した請求項12又は13記載の飲食品。   The food or drink according to claim 12 or 13, which is labeled with an indication that it is effective in lowering blood pressure.
JP2006514573A 2004-06-11 2005-06-10 Method for producing protein with enhanced antihypertensive effect Pending JPWO2005120541A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004173963 2004-06-11
JP2004173963 2004-06-11
PCT/JP2005/010643 WO2005120541A1 (en) 2004-06-11 2005-06-10 Process for producing protein having its antihypertensive activity enhanced

Publications (1)

Publication Number Publication Date
JPWO2005120541A1 true JPWO2005120541A1 (en) 2008-09-18

Family

ID=35502829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006514573A Pending JPWO2005120541A1 (en) 2004-06-11 2005-06-10 Method for producing protein with enhanced antihypertensive effect

Country Status (2)

Country Link
JP (1) JPWO2005120541A1 (en)
WO (1) WO2005120541A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009126856A (en) * 2007-11-28 2009-06-11 Fancl Corp New blood neutral fat increase inhibitor
JP5916051B2 (en) * 2011-04-24 2016-05-11 国立大学法人北海道大学 Anti-inflammatory agent and method for producing anti-inflammatory agent
JP6414821B2 (en) * 2015-02-27 2018-10-31 学校法人北里研究所 Peptide-based materials with excellent functionality and palatability, and food / pet food using the same
CN110172491B (en) * 2019-04-30 2021-04-20 世堃堂(广东)生物科技有限公司 Multi-element biological protein peptide and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06506589A (en) * 1991-04-22 1994-07-28 エフェメックス リミテッド Gel-like products and their manufacturing methods
JP2000325047A (en) * 1999-05-24 2000-11-28 Taiyo Kagaku Co Ltd Fat substitute
JP2003169634A (en) * 2001-12-06 2003-06-17 Hokkaido Technology Licence Office Co Ltd Method for solubilizing muscular protein in water by treating muscular protein with reducing sugar under low relative humidity and water-soluble sugar-added muscular protein

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4115301B2 (en) * 2003-03-04 2008-07-09 合同会社希少糖生産技術研究所 Maillard reaction modified egg white protein using rare sugar psicose and its use in food
JP2005187401A (en) * 2003-12-25 2005-07-14 Nisshin Oillio Group Ltd Protein-chitosan complex and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06506589A (en) * 1991-04-22 1994-07-28 エフェメックス リミテッド Gel-like products and their manufacturing methods
JP2000325047A (en) * 1999-05-24 2000-11-28 Taiyo Kagaku Co Ltd Fat substitute
JP2003169634A (en) * 2001-12-06 2003-06-17 Hokkaido Technology Licence Office Co Ltd Method for solubilizing muscular protein in water by treating muscular protein with reducing sugar under low relative humidity and water-soluble sugar-added muscular protein

Also Published As

Publication number Publication date
WO2005120541A1 (en) 2005-12-22

Similar Documents

Publication Publication Date Title
JP5689222B2 (en) Collagen peptide composition and food and drink containing the same
JP5890175B2 (en) Collagen peptide composition having high blood transferability and food and drink containing the same
JP6414821B2 (en) Peptide-based materials with excellent functionality and palatability, and food / pet food using the same
JP4970694B2 (en) Persistent muscle fatigue improver
JPH0458946B2 (en)
JPH0745521B2 (en) Antihypertensive agent having antihypertensive effect
JP5326489B2 (en) Food and pet food ingredients with improved health and functional properties using collagen as a raw material
EP1281323B1 (en) Compositions containing peptide and electrolyte excretion promoter and foods containing the same
JP4740531B2 (en) Bone resorption inhibitor
JPWO2005120541A1 (en) Method for producing protein with enhanced antihypertensive effect
JP4596513B2 (en) Nutritional composition
WO2017133039A1 (en) Livestock feed and preparation method
Dybka et al. Collagen hydrolysates as a new diet supplement
JP2764276B2 (en) Functional novel peptides and their use
JPH07194316A (en) Calcium absorbefacient composition and calcium absorbefacient additive containing water-soluble chitosan
JP2944008B2 (en) Parenteral lipid metabolism improver
JP3860025B2 (en) Method for water-solubilizing muscle protein by treatment with reducing sugar under low relative humidity and water-soluble sugar-added muscle protein
JPH10117728A (en) Calcium absorption promoter
JP3372499B2 (en) Foods and drinks with mineral absorption promoting action
JP2001314170A (en) Anticholesterol food containing material derived from wheat young leaf
RU2412619C1 (en) Method for preparation of functional food product with chondroprotective action
JP2002065205A (en) Beauty health food containing material derived from young leaf of wheat
JPH07194314A (en) Calcium absorbefacient water-soluble fraction and composition and calcium absorbefacient additive containing the same
JP3993907B2 (en) Calcium absorption promoter
JP5120971B2 (en) Bone resorption inhibitor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809