JPH03211734A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03211734A
JPH03211734A JP667190A JP667190A JPH03211734A JP H03211734 A JPH03211734 A JP H03211734A JP 667190 A JP667190 A JP 667190A JP 667190 A JP667190 A JP 667190A JP H03211734 A JPH03211734 A JP H03211734A
Authority
JP
Japan
Prior art keywords
layer
type
aluminum
wiring layer
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP667190A
Other languages
Japanese (ja)
Inventor
Kazuo Tanaka
和雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP667190A priority Critical patent/JPH03211734A/en
Publication of JPH03211734A publication Critical patent/JPH03211734A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce and stably hold a contact resistance of an electrode layer with a wiring layer by setting net impurity concentration of different conductivity type from the first conductivity type in a first electrode layer to the specific value or below of the net impurity concentration of the first conductivity type in the layer. CONSTITUTION:An N-type polysilicon layer 101 is patterned as an electrode layer. The layer 101 and an aluminum layer 103 of a wiring layer are disposed through an insulating film, and connected through a connecting hole 102. In order to enhance normal electromigration resistance in the layer 103 and to reduce grains to be formed at the time of aluminum sputtering, impurity ions are introduced. When the ions are injected into the layer 103, P-type impurity in the layer 103 on a region in contact with the layers 101 and 103 is at least 30 percent or below of N-type impurity contained in the polysilicon 101.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体技術に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to semiconductor technology.

特に、電極層と配線層の接続方法に関するものである。In particular, it relates to a method of connecting electrode layers and wiring layers.

[従来の技術] 従来の半導体装置を、−例に取り概略を示そう。[Conventional technology] Let us give an overview of a conventional semiconductor device as an example.

半導体基板上に、N型多結晶シリコン層が電極層として
パターニングされている。N型多結晶シリコン中には通
常I X 102°[個/cm−31以上の燭、または
砒素が含まれている。 このN型多結晶シリコン層と、
配線層であるアルミニウム層は絶縁層を挟んで配置され
ており、N型多結晶シリコン層とアルミニウム層との接
続は接続孔を介して接続される。
An N-type polycrystalline silicon layer is patterned as an electrode layer on a semiconductor substrate. N-type polycrystalline silicon usually contains I x 102[deg./cm-31 or more] or arsenic. This N-type polycrystalline silicon layer,
The aluminum layer, which is a wiring layer, is arranged with an insulating layer in between, and the N-type polycrystalline silicon layer and the aluminum layer are connected through a connection hole.

以上従来の半導体装置の概略をしめした。The outline of the conventional semiconductor device has been shown above.

[発明が解決しようとする課題] 従来の半導体装置では、この配線材である、アルミニウ
ム層中には通常耐エレクトロマイグレーション性を高め
るためや、アルミニウムの堆積時に形成されるグレイン
を小さくするために、不純物イオンを導入させている。
[Problems to be Solved by the Invention] In conventional semiconductor devices, in order to improve electromigration resistance or to reduce the size of grains formed during aluminum deposition, the aluminum layer, which is the wiring material, usually contains Impurity ions are introduced.

この不純物イオン種としては、ホウ素、燐、ヒ素、アン
チモン、アルゴン、などがある。
Examples of the impurity ion species include boron, phosphorus, arsenic, antimony, and argon.

N型多結晶シリコン層と配線金属、例えばアルミニウム
とのあいだを電気的に接続させる場合。
When electrically connecting an N-type polycrystalline silicon layer and a wiring metal, such as aluminum.

接続するアルミニウム層中の不純物にはおもに次の3タ
イプがある。
There are mainly three types of impurities in the connecting aluminum layer:

タイプ■1.配線層形成過程で不純物何も導入されなか
った。
Type ■1. No impurities were introduced during the wiring layer formation process.

タイプI1..配線層形成過程にN型不純物が導入され
た。
Type I1. .. N-type impurities were introduced during the wiring layer formation process.

タイプII1.  、配線層形成過程にP形不純物が導
入された。
Type II1. , P-type impurities were introduced in the wiring layer formation process.

一般に、アルミニウムを堆積させた後、堆積時のダメー
ジを補償するために、水素雰囲気中で500°C程度の
アニール処理をおこなっている。 配線層がアルミニウ
ム層でなく他の金属層の場合は、表面の安定化のために
、600°Cから1000°C程度の水素雰囲気中での
アニール処理を行う。
Generally, after depositing aluminum, annealing treatment is performed at about 500° C. in a hydrogen atmosphere to compensate for damage during deposition. If the wiring layer is not an aluminum layer but another metal layer, annealing treatment is performed in a hydrogen atmosphere at about 600° C. to 1000° C. to stabilize the surface.

このアニール処理によって、配線層中の不純物は電極層
中に拡散する。
By this annealing treatment, impurities in the wiring layer are diffused into the electrode layer.

従って従来例のような、N形番結晶シリコン中の配線材
料との接触部分でのN型不純物の正味の濃度は、タイプ
II >タイプI〉タイプIIIの順に小さくなってい
る。
Therefore, as in the conventional example, the net concentration of N-type impurities at the contact portion with the wiring material in N-type crystalline silicon decreases in the order of type II>type I>type III.

従来技術によれば多結晶シリコンと配線層との接続は上
記の3タイプに関わりなく行なっていた。
According to the prior art, the connection between polycrystalline silicon and the wiring layer was performed regardless of the above three types.

図3はアルミニウム配線層とN型多結晶シリコン層が接
触している部分のN型多結晶シリコン中に含まれている
正味のN型不純物に対する、アルミニウム層中に含まれ
るP型不純物の割合と接触抵抗の関係を示す図である。
Figure 3 shows the ratio of P-type impurities contained in the aluminum layer to the net N-type impurities contained in the N-type polycrystalline silicon in the area where the aluminum wiring layer and the N-type polycrystalline silicon layer are in contact. It is a figure showing the relationship of contact resistance.

特に、第3図に示したように、タイプIIIの様な場合
、シリコン中の正味のN型不純物中と配線層中の正味の
P型不純物との割合が30パーセントを越えると、接触
抵抗は急激に増加してしまう。この増大した抵抗は、素
子の寄生抵抗となってトランジスタ回路の遅延時間を増
大させるばかりか、回路によって接触抵抗が異なるため
に、回路の安定動作領域が狭められてしまうという欠点
を有していた。
In particular, as shown in Figure 3, in the case of type III, if the ratio of the net N-type impurity in the silicon to the net P-type impurity in the wiring layer exceeds 30%, the contact resistance will increase. It will increase rapidly. This increased resistance not only becomes a parasitic resistance of the element and increases the delay time of the transistor circuit, but also has the disadvantage that the stable operation area of the circuit is narrowed because the contact resistance differs depending on the circuit. .

そこで、本発明はこのような課題を解決しようとするも
ので、その目的とするところは、電極層と配線層との接
触抵抗を低く、しかも安定に保つことである。
The present invention aims to solve these problems, and its purpose is to keep the contact resistance between the electrode layer and the wiring layer low and stable.

[課題を解決するための手段] 本発明の半導体装置は、半導体装置に於いて、第1導電
型の半導体を主成分として含んでいる電極層が形成され
て成り、該電極層と金属を主成分として含む第1配線層
との間を接続をさせる構造において、該第1配線層が電
極層と接触している領域の配線層中の正味の不純物にお
いて、該第1電極層中の第1導電型と異なる導電型の正
味の不純物濃度は該第1電極層中の第1導電型の正味の
不純物濃度の30パーセント以内であることを特徴とす
る。
[Means for Solving the Problems] A semiconductor device of the present invention is a semiconductor device in which an electrode layer containing a first conductivity type semiconductor as a main component is formed, the electrode layer and a metal as a main component. In a structure in which a connection is made between a first wiring layer included as a component, in a net impurity in the wiring layer in a region where the first wiring layer is in contact with an electrode layer, the first wiring layer in the first electrode layer is The net impurity concentration of a conductivity type different from the conductivity type is within 30% of the net impurity concentration of the first conductivity type in the first electrode layer.

[実施例] 以下、本発明の半導体装置を詳細に説明する。[Example] Hereinafter, the semiconductor device of the present invention will be explained in detail.

第1図は、本発明による半導体の一実施例である。FIG. 1 shows an embodiment of a semiconductor according to the present invention.

半導体基板上に、N型多結晶8932層101が電極層
としてバターニングされている。N型多結晶シリコン中
には通常lX1020[個/cm−3]以上の燗、また
は砒素が含まれている。 このN型多結晶シリコン層と
、配線層であるアルミニウム層103は絶縁膜を挟んで
配置されており、N型多結晶シリコン層とアルミニウム
層との接続は接続孔102を介して接続される。  こ
の配線層である、アルミニウム層中には通常耐エレクト
ロマイグレーション性を高めるためや、アルミニウムの
スパッタ時に形成されるグレインを小さくするために、
不純物イオンを導入させる。この不純物イオン種として
は、ホウ素、燐、ヒ素、アンチモン、アルゴン、などが
ある。本実施例では、N型多結晶シリコン層と配線層で
ある、アルミニウム層との接続であるから、アルミニウ
ム層中に不純物イオンを導入させる場合は、少なくとも
、N型多結晶シリコン層と、アルミニウム層とが接触し
ている領域上のアルミニウム層中のP型不純物濃度は、
多結晶シリコン中に含まれているN型不純物濃度の30
パーセント以下になるようなP型不純物濃度で導入した
An N-type polycrystalline 8932 layer 101 is patterned on a semiconductor substrate as an electrode layer. N-type polycrystalline silicon usually contains 1×1020 [pieces/cm −3 ] or more of arsenic or arsenic. The N-type polycrystalline silicon layer and the aluminum layer 103, which is a wiring layer, are arranged with an insulating film in between, and the N-type polycrystalline silicon layer and the aluminum layer are connected through a connection hole 102. In order to improve electromigration resistance and to reduce grains formed during aluminum sputtering, there is usually a layer in the aluminum layer that is this wiring layer.
Introduce impurity ions. Examples of the impurity ion species include boron, phosphorus, arsenic, antimony, and argon. In this embodiment, since the connection is between the N-type polycrystalline silicon layer and the aluminum layer, which is a wiring layer, when introducing impurity ions into the aluminum layer, at least the N-type polycrystalline silicon layer and the aluminum layer are connected. The P-type impurity concentration in the aluminum layer on the region in contact with is
The concentration of N-type impurities contained in polycrystalline silicon is 30
The P-type impurity concentration was introduced at a concentration of less than %.

本実施例ではは、電極層としてN型多結晶シリコン層を
例にとったが、P型多結晶シリコン層、シリコン中のN
型拡散層、シリコン中のP型板散層と配線層との接触に
ついても同様である。また配線層についてもアルミニウ
ム層を例に取って説明したが、銅、金、白金、チタン、
タングステンなどの金属、あるいは金属を主成分として
している合金でもよい。
In this example, an N-type polycrystalline silicon layer is used as an electrode layer, but a P-type polycrystalline silicon layer,
The same applies to the contact between the type diffusion layer, the P type diffusion layer in silicon, and the wiring layer. The wiring layer was also explained using an aluminum layer as an example, but copper, gold, platinum, titanium,
It may be a metal such as tungsten or an alloy containing metal as a main component.

[発明の効果] 以上本発明によれば、電極層と、配線層との接続抵抗を
低くしかも変動値も少なく形成することができたために
、半導体装置全体での最大動作周波数が5パーセント増
大したばかりではなく、回路の動作マージンも5パーセ
ント広げることができた。
[Effects of the Invention] According to the present invention, the connection resistance between the electrode layer and the wiring layer can be made low and the fluctuation value can be reduced, so that the maximum operating frequency of the entire semiconductor device is increased by 5%. Not only that, but we were also able to widen the circuit's operating margin by 5%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は、本発明の半導体装置の一実施例を示す
平面図であり、第1図(b)は、第1図(a)のA−8
間の断面図を示している。 第2図はアルミニウム配線層とN型多結晶シリコン層が
接触している部分のN型多結晶シリコン中に含まれてい
る正味のN型不純物に対する、アルミニウム層中に含ま
れる正味のP型不純物の割合と接触抵抗の関係を示す図
である。 ]01 02 03 04 05 ・N型多結晶シリコン層 ・多結晶シリコンと配線層との接続孔 ・配線層 ・P型不純物を含む配線層 ・多結晶シリコンと配線層との接続領 域 以上
FIG. 1(a) is a plan view showing one embodiment of the semiconductor device of the present invention, and FIG. 1(b) is a plan view showing A-8 in FIG. 1(a).
A cross-sectional view is shown between the two. Figure 2 shows the net P-type impurity contained in the aluminum layer relative to the net N-type impurity contained in the N-type polycrystalline silicon in the area where the aluminum wiring layer and the N-type polycrystalline silicon layer are in contact. It is a figure showing the relationship between the ratio and contact resistance. ]01 02 03 04 05 ・N-type polycrystalline silicon layer ・Connection hole between polycrystalline silicon and wiring layer ・Wiring layer ・Wiring layer containing P-type impurities ・Connection area between polycrystalline silicon and wiring layer and above

Claims (1)

【特許請求の範囲】[Claims] 半導体装置に於いて、第1導電型の半導体を主成分とし
て含んでいる電極層が形成されて成り、該電極層と金属
を主成分として含む第1配線層との間を接続をさせる構
造において、該第1配線層が電極層と接触している領域
の配線層中の正味の不純物において、該第1電極層中の
第1導電型と異なる導電型の正味の不純物濃度は該第1
電極層中の第1導電型の正味の不純物濃度の30パーセ
ント以内であることを特徴とする半導体装置。
In a semiconductor device, an electrode layer containing a semiconductor of a first conductivity type as a main component is formed, and a structure is provided in which a connection is made between the electrode layer and a first wiring layer containing a metal as a main component. , in the net impurity concentration in the wiring layer in the region where the first wiring layer is in contact with the electrode layer, the net impurity concentration of a conductivity type different from the first conductivity type in the first electrode layer is
A semiconductor device characterized in that the net impurity concentration of the first conductivity type in the electrode layer is within 30%.
JP667190A 1990-01-16 1990-01-16 Semiconductor device Pending JPH03211734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP667190A JPH03211734A (en) 1990-01-16 1990-01-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP667190A JPH03211734A (en) 1990-01-16 1990-01-16 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03211734A true JPH03211734A (en) 1991-09-17

Family

ID=11644837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP667190A Pending JPH03211734A (en) 1990-01-16 1990-01-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03211734A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268291B1 (en) 1995-12-29 2001-07-31 International Business Machines Corporation Method for forming electromigration-resistant structures by doping

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268291B1 (en) 1995-12-29 2001-07-31 International Business Machines Corporation Method for forming electromigration-resistant structures by doping

Similar Documents

Publication Publication Date Title
US5275872A (en) Polycrystalline silicon thin film transistor
JPH088224B2 (en) Method of forming contact and internal connection line of integrated circuit
JPH06232129A (en) Electronic circuit
JPH06302542A (en) Low-resistance contact structure for semiconductor device and forming method therefor
JP3626773B2 (en) Conductive layer of semiconductor device, MOSFET, and manufacturing method thereof
EP0077737A2 (en) Low capacitance field effect transistor
JPH05243555A (en) Semiconductor device and its manufacture
US4883772A (en) Process for making a self-aligned silicide shunt
JPH03211734A (en) Semiconductor device
JPS61164241A (en) Semiconductor device
JPH02288361A (en) Semiconductor device
JPS61225838A (en) Forming method for electrode wirings
JPH0564469B2 (en)
JPS63283161A (en) Semiconductor device and manufacture thereof
EP0264309A1 (en) Self-aligned base shunt for transistor
JP2654805B2 (en) Semiconductor device
JPS61156837A (en) Manufacture of semiconductor device
JPH03166728A (en) Semiconductor device
JPS60780A (en) Manufacture of field effect transistor
JP2000100972A (en) Semiconductor device
JPH01281761A (en) Semiconductor device
JPH0237726A (en) Manufacture of semiconductor element
JPS60192363A (en) Manufacture of schottky barrier junction
JPH01283953A (en) Semiconductor device
JPH0492463A (en) Semiconductor device