JPH0492463A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0492463A
JPH0492463A JP2209812A JP20981290A JPH0492463A JP H0492463 A JPH0492463 A JP H0492463A JP 2209812 A JP2209812 A JP 2209812A JP 20981290 A JP20981290 A JP 20981290A JP H0492463 A JPH0492463 A JP H0492463A
Authority
JP
Japan
Prior art keywords
film
resistance
electrode
resistance element
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2209812A
Other languages
Japanese (ja)
Inventor
Yukio Morozumi
幸男 両角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2209812A priority Critical patent/JPH0492463A/en
Publication of JPH0492463A publication Critical patent/JPH0492463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain high integration easily obtainable a high resistance value by a method wherein a high resistance element consists of a multilayered film by vapor growth of different specific resistance and electrode leading-out is performed so as to constitute resistance intervals to the growth direction of a multilayered film. CONSTITUTION:Ions of boron are implanted into an N-type silicon substance 11 of a specific resistance 10OMEGAcm to form a P-well layer 12 by high temperature drive in and to form a field insulating film 13 and a gate oxide film 14 by selective oxidation followed by forming a gate electrode 15 of a polycrystalline silicon film. Next, after oxidation treatment of the surface of the gate electrode 15, a silicon oxide film given gaseous reaction is made to grow for being made a first interlayer insulating film 19. Next, a through-hole is provided and a resistance thin film is made to grow so as to be made a high-resistance electrode 25. After forming a silicon-rich film nitride and growing an N-polycrystalline silicon film, a multilayered film having a different condition is made to grow. This multilayered film has specific resistance of the upper and lower layers is several hundred KOMEGAcm. Next, a contact hole is opened from the high-resistance element to form a passivation film 24 and to open a pad part for taking off an outer electrode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高抵抗素子が印加された微細な半導体装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a microscopic semiconductor device to which a high resistance element is applied.

〔発明の概要〕[Summary of the invention]

本発明は半導体装置、特に高抵抗負荷型のスタテックR
A M (Randam Access Memory
)等に於イテ、該高抵抗の抵抗値を安定確保し、電気特
性と製造歩留りの向上及び集積化を狙ったものであり、
従来、例えば高抵抗負荷型のスタテックRAMの様な半
導体装置は、第3図の如きNchMO3)ランシスタ3
2と多結晶シリコン膜でなる高抵抗素子31を有するメ
モリーセル回路を持ち、その製造方法は、例えば第2図
の如く、Pウェル層12を持ったN型シリコン基板11
に、選択酸化等でフィールド絶縁膜13を形成し、その
アクティブ領域にゲート酸化膜14、ゲート電極15、
更にホットキャリア、パンチスルーを防ぐ為のLDD(
Lightly doped drain)やD D 
D (double dlrfused drain)
構造となる様、例えばリンをイオン注入しドレイン、ソ
ースの低濃度不純物層16を形成している。次に気相成
長シリコン酸化膜をエッチバックして形成したサイドウ
オールスペーサー17を介してヒ素をイオン注入し高濃
度不純物層18のソース、ドレイン領域を作り込んだ後
、気相成長シリコン酸化膜でなる第1の層間絶縁膜19
を積層させている(第2図(a))。次に素子からの必
要領域を開孔してから、SiH4を減圧熱分解した多結
晶シリコン膜を約4000人気相成長し、更にフォトエ
ツチングで長さが8〜12μm、幅が0.8μm程度の
高抵抗素子20領域を形成し、電極引き出し部の所望領
域に不純物を拡散している(第2図(b))。続いて気
相成長シリコン酸化膜(N S C)とリン、ボロン等
を含むPSG、BPSG膜でなる第2、第3の層間絶縁
膜21.22を積層させ950〜1050℃でリフロー
等を行なう。第2の層間絶縁膜21は、PSG、BPS
G膜からの不純物の拡散を防ぐ為である。次に電極取り
出し用のコンタクトホールを開孔してから、AJ金合金
スパッタリングし、選択エツチングにより金属配線23
を形成してから、更にN2を含む雰囲気でシンターした
後、パシベーション膜24としNSG、PSG膜やプラ
ズマシリコン窒化膜を積層している(第2図(C))。
The present invention relates to a semiconductor device, particularly a high resistance load type STATEC R.
A M (Random Access Memory
) etc., it is aimed at stably securing the resistance value of the high resistance, improving electrical characteristics and manufacturing yield, and increasing integration.
Conventionally, a semiconductor device such as a high-resistance load type static RAM, for example, uses an NchMO3) run transistor 3 as shown in FIG.
2 and a high resistance element 31 made of a polycrystalline silicon film, the manufacturing method thereof is, for example, as shown in FIG.
Then, a field insulating film 13 is formed by selective oxidation or the like, and a gate oxide film 14, a gate electrode 15, and a gate electrode 15 are formed in the active region.
Furthermore, LDD (
Lightly doped drain) and D D
D (double dlrfused drain)
For example, phosphorus is ion-implanted to form a low concentration impurity layer 16 for the drain and source so as to form a structure. Next, arsenic is ion-implanted through the sidewall spacer 17 formed by etching back the vapor-phase grown silicon oxide film to form the source and drain regions of the high concentration impurity layer 18, and then the vapor-grown silicon oxide film is etched back. The first interlayer insulating film 19 becomes
(Fig. 2(a)). Next, after opening a hole in the required area from the element, a polycrystalline silicon film made by thermally decomposing SiH4 under reduced pressure is grown in about 4,000 layers, and then photoetched to form a film with a length of 8 to 12 μm and a width of about 0.8 μm. A high resistance element 20 region is formed, and impurities are diffused into a desired region of the electrode extension portion (FIG. 2(b)). Subsequently, second and third interlayer insulating films 21 and 22 made of a vapor phase grown silicon oxide film (NSC) and PSG or BPSG films containing phosphorus, boron, etc. are laminated and reflow etc. are performed at 950 to 1050°C. . The second interlayer insulating film 21 is made of PSG, BPS
This is to prevent diffusion of impurities from the G film. Next, after opening a contact hole for taking out the electrode, AJ gold alloy sputtering was performed, and metal wiring 23 was formed by selective etching.
After forming and sintering in an atmosphere containing N2, an NSG film, a PSG film, or a plasma silicon nitride film is laminated as a passivation film 24 (FIG. 2(C)).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら従来技術では、高抵抗素子20には、Si
H4あるいはこれをN2 、HeやN2キャリアーとし
減圧チャンバー内に導入し、550〜650℃で熱分解
した多結晶シリコン膜を用いているが、比抵抗は高くて
も数百にΩ(至)程度しか得られない。従ってスタツテ
イクRAMのスタンバイ電流を低くするには5006〜
ITΩ程度の安定した抵抗値を必要とし、この為高抵抗
素子の形状パターンは、前記に示した様に長くとること
が必要でこれが微細集積化の妨げとなっていた。
However, in the conventional technology, the high resistance element 20 is made of Si.
H4 or a polycrystalline silicon film that is introduced into a reduced pressure chamber as a carrier of N2, He, or N2 and thermally decomposed at 550 to 650°C is used, but the resistivity is only a few hundred ohms at most. I can only get it. Therefore, to lower the standby current of the stattake RAM, 5006~
A stable resistance value on the order of ITΩ is required, and therefore the shape pattern of the high resistance element must be long as described above, which has been an obstacle to fine integration.

しかるに本発明は、かかる問題点を解決するもので、容
易に高抵抗値が得られ、半導体装置の高集積化を目的と
したものである。
However, the present invention is intended to solve these problems, to easily obtain a high resistance value, and to increase the degree of integration of semiconductor devices.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明の半導体装置は、高抵抗素子が印加された半導体
装置に於いて、該高抵抗素子が比抵抗の異なる気相成長
による積層膜でなり、積層膜の成長方向に対して抵抗間
隔を構成する様に電極引き出しがなされている事を特徴
とする。
The semiconductor device of the present invention is a semiconductor device to which a high-resistance element is applied, in which the high-resistance element is a laminated film grown by vapor phase growth with different specific resistances, and a resistance interval is formed in the growth direction of the laminated film. The feature is that the electrodes are drawn out in such a way that the

〔実 施 例〕〔Example〕

本発明の一実施例として、周辺CMO3でセルはNch
MOSトランジスタと高抵抗負荷型のスタッティクRA
Mを製造したか、その工程に基づいて第1図で詳細に説
明する。比抵抗10Ω(7)のN型シリコン基板11上
にボロンをイオン注入し高温ドライブインしてPウェル
層12をつくり、選択酸化によりフィールド絶縁膜13
とゲート酸化膜14を形成した後、しきい値電圧の調整
の為イオン注入でチャンネルドープ等を行なってから、
多結晶シリコン膜のゲート電極15を形成した。
As an embodiment of the present invention, in the peripheral CMO3, the cells are Nch
MOS transistor and high resistance load type static RA
The process by which M was manufactured will be explained in detail with reference to FIG. Boron ions are implanted onto an N-type silicon substrate 11 with a specific resistance of 10Ω (7), a P-well layer 12 is formed by high-temperature drive-in, and a field insulating film 13 is formed by selective oxidation.
After forming the gate oxide film 14, channel doping etc. are performed by ion implantation to adjust the threshold voltage, and then
A gate electrode 15 of polycrystalline silicon film was formed.

Nchにはリン、Pchにはボロンをイオン注入した低
濃度不純物層16、更に気相反応させたシリコン酸化膜
のスペーサー17を介してソース、ドレインの高濃度不
純物層18にNchはAsを5 X 1.0 ”am−
2、PchはBF2を3X10”(至)−2イオン注入
しである。次にゲート電極15の表面を850℃で酸化
処理後、200OAの気相反応させたシリコン酸化膜を
成長し第1の層間絶縁膜19とした(第1図(a))。
A low concentration impurity layer 16 in which phosphorus is ion-implanted for Nch and boron is ion-implanted for Pch, and As is 5X for Nch into high concentration impurity layer 18 of the source and drain via a spacer 17 of silicon oxide film subjected to vapor phase reaction. 1.0”am-
2. Pch is ion implanted with BF2 of 3×10” (to). Next, the surface of the gate electrode 15 is oxidized at 850°C, and a silicon oxide film of 200 OA is grown by vapor phase reaction. An interlayer insulating film 19 was formed (FIG. 1(a)).

次に0.8μm口のスルーホールを設け、高抵抗素子2
5とする抵抗薄膜を成長させた。この薄膜成長は、平行
平板の減圧チャンバー内で、まずSiH4を導入し5t
orr、380℃で13.56MHzの高周波を印加し
500への多結晶シリコン膜、続いてこれにNH3を約
20cc/min添加し40秒間流しシリコンリッチの
窒化膜を形成後、NH3の導入をやめ30秒多結晶シリ
コン膜を成長してから、高周波を停止し条件の異なる積
層膜を計250OA成長した。この積層薄膜は、モニタ
ーで単独評価して見る、上、下層の比抵抗は数百KQc
ynで屈折率は約2.9あり、NH,入れた中間層は1
5MΩ印で屈折率は約2.45であった。
Next, a through hole with a diameter of 0.8 μm was provided, and the high resistance element 2
A resistive thin film of No. 5 was grown. This thin film growth was performed by first introducing SiH4 into a parallel plate vacuum chamber, and then
After applying a high frequency of 13.56 MHz at 380° C. to form a polycrystalline silicon film, NH3 was added at a rate of about 20 cc/min for 40 seconds to form a silicon-rich nitride film, and then the introduction of NH3 was stopped. After growing a polycrystalline silicon film for 30 seconds, the high frequency was stopped and a total of 250 OA of laminated films under different conditions were grown. This laminated thin film has a specific resistance of several hundred KQc for the upper and lower layers when evaluated individually on a monitor.
The refractive index of yn is about 2.9, and the intermediate layer of NH is 1.
The refractive index was approximately 2.45 at the 5 MΩ mark.

この値は、NH3の分圧を変化させてやる事により制御
可能である。続いてフォトレジストをマスクにCF4を
含む混合ガスで該積層膜をドライエツチングし、1.6
μm口の高抵抗素子25をバターニングしである。(第
1図(b))。次に気相成長BPSG膜でなる層間絶縁
膜22を積層させ900℃でリフローを行なった後、高
抵抗素子からコンタクトホールを開孔し、Ai)−Cu
合金をスパッタリングし、フォトリで所望形状にパタユ
ング後、CΩ2を含むガスでドライエツチングし金属配
線23を施した。その後、パシベーション膜24を積層
し、外部電極取り出し用のバット部を開孔した(第1図
(C))。
This value can be controlled by changing the partial pressure of NH3. Next, the laminated film was dry-etched using a mixed gas containing CF4 using the photoresist as a mask.
The high resistance element 25 with a μm diameter is patterned. (Figure 1(b)). Next, an interlayer insulating film 22 made of a vapor-grown BPSG film is laminated and reflowed at 900°C, and a contact hole is opened from the high resistance element.
The alloy was sputtered and patterned into a desired shape using photolithography, and then dry etched with a gas containing CΩ2 to form metal wiring 23. Thereafter, a passivation film 24 was laminated, and a hole was opened in the butt part for taking out the external electrode (FIG. 1(C)).

以上の様にして製造された半導体装置の高抵抗素子の抵
抗値は、約1,5TΩが安定して得られる様になり、従
来は高抵抗素子が多結晶シリコン膜単層で高抵抗を得る
為長く引き回すことを必要としたが、115程度に縮少
することができた。
The resistance value of the high-resistance element of the semiconductor device manufactured in the above manner can now be stably obtained at about 1.5 TΩ. Conventionally, the high-resistance element obtained high resistance with a single layer of polycrystalline silicon film. Although it required a long route, it was possible to reduce the number to about 115.

又、従来は、横方向にノンドープの多結晶シリコン領域
を形成していた為、PSGやBPSG膜をこの高抵抗素
子の上に直接積層することができず、下にNSC膜を敷
く必要があったが、本発明の構造では、高抵抗素子の表
面に直接積層し不純物の供給源とさせる事ができ、又中
間層のNH3が添加された薄膜がリン等の拡散バリアー
となり、これからも工程の簡略化が図れた。
Furthermore, in the past, since non-doped polycrystalline silicon regions were formed in the lateral direction, it was not possible to directly stack a PSG or BPSG film on top of this high-resistance element, and it was necessary to lay an NSC film underneath. However, with the structure of the present invention, it can be directly laminated on the surface of a high-resistance element and serve as a source of impurities, and the thin film doped with NH3 in the intermediate layer serves as a diffusion barrier for phosphorus and other substances, and will continue to be used in the process. Simplification was achieved.

尚、高抵抗素子となる薄膜形成にあたって、NH3の代
わりにN20.02.03を用い、又SiH4の代わり
に、Si2H6や5i(CO2H1)4用いたものも実
験したが高抵抗を得られ、分圧、温度、時間を変化させ
ることでその値を制御する事ができ、同様なデバイス効
果があった。
In addition, when forming a thin film to become a high resistance element, experiments were conducted using N20.02.03 instead of NH3, and Si2H6 or 5i(CO2H1)4 instead of SiH4, but high resistance was obtained. The value could be controlled by changing pressure, temperature, and time, and a similar device effect was achieved.

又、本発明はMO5SCMO5−LS Iに限らず、B
i−CMO5ICにも適用でき、高抵抗の積層膜成長は
プラズマ炉だけでなく減圧熱分解炉でもよく又多結晶シ
リコンゲート電極に限らず、T i、Mo、W、P を
等の高融点金属やそのシリサイド、ポリサイド構造にも
応用できる。
Further, the present invention is not limited to MO5SCMO5-LSI, but also B
It can also be applied to i-CMO5IC, and high-resistance multilayer film growth can be performed not only in a plasma furnace but also in a reduced-pressure pyrolysis furnace. It can also be applied to its silicide and polycide structures.

〔発明の効果〕〔Effect of the invention〕

以上の様に本発明によれば、高抵抗素子を多結晶シリコ
ンの単層構造から、高抵抗薄膜を含む気相積層膜とし、
この積層方向に電極間隔をとる事により、高抵抗素子の
抵抗値を容易に確保し、電気特性の安定化と工程簡略化
及び集積化された微細半導体装置の安定供給に寄与する
ものである。′
As described above, according to the present invention, the high resistance element is changed from a single layer structure of polycrystalline silicon to a vapor phase laminated film including a high resistance thin film,
By setting the electrode spacing in the stacking direction, the resistance value of the high-resistance element can be easily secured, contributing to stabilization of electrical characteristics, process simplification, and stable supply of integrated fine semiconductor devices. ′

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(c)は、本発明による半導体装置製造
の一実施例を示す概略断面図である。 第2図(a)〜(c)は、従来の半導体装置の製造工程
を示す概略断面図である。 第3図は、メモリーセルの回路ブロック図である。 11 ・ ・ ・ ・ 12 ・ ・ ・ ・ 13 ・ ・ φ ・ 14 ・ ・ ・ ・ 15・ ・ ・ ・ 16 ・ ・ ・ ・ 17・ ・ ・ ・ 18・ ・ ・ ・ 19 ・ ・ ・ − 20,25・ 21.22φ 23 ・ ・ ・ ・ 24 ・ ・ ・ ・ シリコン基板 Pウェル層 フィールド絶縁膜 ゲート酸化膜 ゲート電極 低濃度不純物層 スペーサ 高濃度不純物層 第1の層間絶縁膜 高抵抗素子 層間絶縁膜 金属配線 パシベーション膜 以 上 メう1刀
FIGS. 1(a) to 1(c) are schematic cross-sectional views showing one embodiment of manufacturing a semiconductor device according to the present invention. FIGS. 2(a) to 2(c) are schematic cross-sectional views showing the manufacturing process of a conventional semiconductor device. FIG. 3 is a circuit block diagram of a memory cell. 11 ・ ・ ・ ・ 12 ・ ・ ・ ・ 13 ・ ・ φ ・ 14 ・ ・ ・ 15・ ・ ・ 16 ・ ・ ・ ・ 17 .22φ 23 ・ ・ ・ ・ 24 ・ ・ ・ ・ Silicon substrate P-well layer Field insulation film Gate oxide film Gate electrode Low concentration impurity layer Spacer High concentration impurity layer First interlayer insulation film High resistance element Interlayer insulation film Metal wiring passivation film More than one sword

Claims (1)

【特許請求の範囲】[Claims] 高抵抗素子が印加された半導体装置に於いて、該高抵抗
素子が比抵抗の異なる気相成長による積層膜でなり、積
層膜の成長方向に対して抵抗間隔を構成する様に電極引
き出しがなされている事を特徴とする半導体装置。
In a semiconductor device to which a high-resistance element is applied, the high-resistance element is a laminated film grown by vapor phase growth with different specific resistances, and electrodes are drawn out so as to form a resistance interval in the growth direction of the laminated film. A semiconductor device characterized by:
JP2209812A 1990-08-08 1990-08-08 Semiconductor device Pending JPH0492463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2209812A JPH0492463A (en) 1990-08-08 1990-08-08 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2209812A JPH0492463A (en) 1990-08-08 1990-08-08 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0492463A true JPH0492463A (en) 1992-03-25

Family

ID=16579017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2209812A Pending JPH0492463A (en) 1990-08-08 1990-08-08 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0492463A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251173A (en) * 2001-06-05 2007-09-27 Renesas Technology Corp Manufacturing method for semiconductor device
US7407193B2 (en) 2004-03-18 2008-08-05 Takata Corporation Seat belt buckle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251173A (en) * 2001-06-05 2007-09-27 Renesas Technology Corp Manufacturing method for semiconductor device
US7407193B2 (en) 2004-03-18 2008-08-05 Takata Corporation Seat belt buckle

Similar Documents

Publication Publication Date Title
US5275872A (en) Polycrystalline silicon thin film transistor
JP3414662B2 (en) SRAM cell and method of manufacturing the same
JPH0883915A (en) Thin film transistor and its formation
US6329251B1 (en) Microelectronic fabrication method employing self-aligned selectively deposited silicon layer
US6287929B1 (en) Method of forming a bipolar transistor for suppressing variation in base width
JP2658569B2 (en) Thin film transistor and method of manufacturing the same
JPH07183486A (en) Semiconductor device and its manufacture
JPH0492463A (en) Semiconductor device
JPH03265143A (en) Manufacture of thin film transistor
JPH1093077A (en) Semiconductor device and manufacturing method thereof
JP2904341B2 (en) Semiconductor device and manufacturing method thereof
KR100297142B1 (en) Semiconductor substrate with semi-insulating polysilicon gettering site layer and process of fabrication thereof
JPS61154172A (en) Manufacture of semiconductor device
JPH07106337A (en) Semiconductor device and manufacture thereof
JPH01260857A (en) Semiconductor device and manufacture thereof
JP2914052B2 (en) Semiconductor device and manufacturing method thereof
JPH0612822B2 (en) Semiconductor device
JP2659798B2 (en) Semiconductor device
JPS6154661A (en) Manufacture of semiconductor device
JPH056980A (en) Semiconductor device and manufacture thereof
JPS6127680A (en) Manufacture of semiconductor memory
JPH05304250A (en) Fabrication of semiconductor device
JPH0555577A (en) Manufacture of thin film transistor
KR19980057095A (en) Gate electrode formation method of semiconductor device
JPH0541517A (en) Semiconductor device including mos field-effect transistor and its manufacture