JPH0320977B2 - - Google Patents

Info

Publication number
JPH0320977B2
JPH0320977B2 JP58194550A JP19455083A JPH0320977B2 JP H0320977 B2 JPH0320977 B2 JP H0320977B2 JP 58194550 A JP58194550 A JP 58194550A JP 19455083 A JP19455083 A JP 19455083A JP H0320977 B2 JPH0320977 B2 JP H0320977B2
Authority
JP
Japan
Prior art keywords
gate
branch
signal
input
closing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58194550A
Other languages
Japanese (ja)
Other versions
JPS6087629A (en
Inventor
Kenji Morisada
Kazuyuki Doi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichikon KK
Original Assignee
Nichikon KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichikon KK filed Critical Nichikon KK
Priority to JP58194550A priority Critical patent/JPS6087629A/en
Publication of JPS6087629A publication Critical patent/JPS6087629A/en
Publication of JPH0320977B2 publication Critical patent/JPH0320977B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】 本発明はフリツカー発生負荷を有する回路にお
いて、負荷と並列に接続したフリツカー補償装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flicker compensator connected in parallel with a load in a circuit having a flicker-generating load.

従来例のフリツカー補償装置の回路構成を第1
図に示す。1a,1b,1cは進相用コンデン
サ、2a,2b,2cは直列リアクトル、3a,
3b,3c,4a,4b,4cはサイリスタで逆
並列に接続され、開閉制御を行う。
The circuit configuration of the conventional Fritzker compensator is shown in the first example.
As shown in the figure. 1a, 1b, 1c are phase advancing capacitors, 2a, 2b, 2c are series reactors, 3a,
3b, 3c, 4a, 4b, and 4c are thyristors connected in antiparallel to perform opening/closing control.

1a,2a,3a,4aをNo.1分路とし、同様
な構成で、1b,2b,3b,4b,1c,2
c,3c,4cにてNo.2、No.3分路となり、各々
の容量は1:2:4の比として、各分路の組合せ
により7段制御を行うものであり、その制御は負
荷7の電流を変流器(CT)6より電流積分回路
10に導かれる。計器用変圧器(PT)5と、移
相回路12とタイミング回路13よりサンプリン
グ回路11にパルス信号を送出し、検出回路14
である値を保持し、投入分路選択用の選択回路1
5より投入指令を送出し、ゲート回路18a,1
8b,18cで受ける。10は電流積分回路であ
る。サイリスタ端子電圧が0V付近にてパルス信
号を送出する同期検出回路16a,16b,16
cからの信号もゲート回路18a,18b,18
cで受け、他の過電流検出回路17a,17b,
17cの信号の論理積が成立したときのみゲート
回路より信号を送出し、ゲートアンプ19a,1
9b,19cよりのサイリスタトリガーし、各進
相電流を流し、電圧降下を補償する。
1a, 2a, 3a, 4a are No. 1 branches, and with the same configuration, 1b, 2b, 3b, 4b, 1c, 2
c, 3c, and 4c form the No. 2 and No. 3 shunts, and the capacity of each shunt is in the ratio of 1:2:4, and seven-stage control is performed by combining each shunt, and the control is based on the load. 7 is guided from a current transformer (CT) 6 to a current integrating circuit 10. A pulse signal is sent to the sampling circuit 11 from the potential transformer (PT) 5, the phase shift circuit 12, and the timing circuit 13, and the detection circuit 14
Selection circuit 1 for selecting input branch
A closing command is sent from 5, and the gate circuits 18a, 1
Receive at 8b, 18c. 10 is a current integration circuit. Synchronous detection circuits 16a, 16b, 16 that send out pulse signals when the thyristor terminal voltage is around 0V
The signals from c are also connected to the gate circuits 18a, 18b, 18
c and other overcurrent detection circuits 17a, 17b,
A signal is sent from the gate circuit only when the logical product of the signals 17c is established, and the gate amplifiers 19a and 1
The thyristors 9b and 19c are triggered to flow each phase leading current to compensate for the voltage drop.

次に従来例の動作を第2図により説明する。 Next, the operation of the conventional example will be explained with reference to FIG.

制御部では応答遅れはないものと仮定し、コン
デンサ1a,1b,1cの充電電圧は−√2E(V)
となる。このとき、 負荷電流(図中)により検出回路14より投
入信号を選択回路15に送出するが、進相用コ
ンデンサ(以下SCという)充電電圧の極性によ
り半サイクル遅れの図中点にてNo.1分路がON
する。
Assuming that there is no response delay in the control section, the charging voltage of capacitors 1a, 1b, and 1c is -√2E(V)
becomes. At this time, the detection circuit 14 sends a closing signal to the selection circuit 15 due to the load current (in the figure), but the No. 1 branch is ON
do.

また負荷電流が図中点にて増加し、No.1分路
よりNo.2分路に投入信号が切り換わつたとき、No.
1分路はOFFするが、No.2分路はSC充電電圧の
極性のため、半サイクル遅れにてONする。この
ためにSC電流は半サイクル間なしとなり、切れ
目発生の欠点を有していた。
Also, when the load current increases at the middle point in the figure and the input signal switches from the No. 1 branch to the No. 2 branch, the No.
Branch 1 turns OFF, but branch No. 2 turns ON with a half-cycle delay due to the polarity of the SC charging voltage. This resulted in no SC current for half a cycle, which had the disadvantage of generating a break.

図中点で負荷電流がOFFすると、SC電流も
OFFできるため、電圧変動としては2回の電圧
降下を有することになる。
When the load current turns off at the middle point in the diagram, the SC current also
Since it can be turned off, the voltage fluctuation will have two voltage drops.

このように両サイリスタ方式においても、SC
充電電圧の極性により投入時に応答遅れを有し、
また充電の極性によつては応答遅れなしにするこ
とも可能であるが、分路切り換わり時に切れ目が
発生する欠点を有していた。
In this way, SC
There is a response delay when turning on due to the polarity of the charging voltage,
Furthermore, depending on the polarity of charging, it is possible to eliminate response delay, but it has the disadvantage that a break occurs when switching the shunt.

これは負荷電流検出後適正容量を選択し、各分
路に投入指令を送出するのみで、切り換え時に他
分路の投入状況を判定せずに投入指令を切り換え
るために、切れ目発生が起るものである。
This is because the appropriate capacity is selected after detecting the load current, and a closing command is sent to each shunt, but the closing command is switched without determining the closing status of other shunts at the time of switching, which causes a disconnection. It is.

このために応答遅れが小さくなつても、切れ目
発生によりフリツカー改善効果があまり向上しな
い欠点があつた。
For this reason, even if the response delay was reduced, the flicker reduction effect did not improve much due to the occurrence of breaks.

本発明は両サイリスタ方式の投入分路の切り換
わり時に発生する電流の切れ目の欠点をなくすた
めに、投入分路切り換わり時に、切り換わり後そ
の分路の投入可否を判定してから次段への投入信
号を切り換えることにより、切れ目発生の欠点を
なくし、フリツカー改善効果の高いフリツカー補
償装置を提供するものである。
In order to eliminate the drawback of the current break that occurs when switching the closing shunt in the dual thyristor system, the present invention determines whether or not the shunt can be turned on after switching when switching the closing shunt before proceeding to the next stage. The purpose of the present invention is to provide a flicker compensating device which eliminates the drawback of occurrence of a cut and is highly effective in improving flicker by switching the input signal.

以下、本発明のフリツカー補償装置を第3図〜
第5図に示す実施例により説明する。
Below, the Fritzker compensator of the present invention is shown in Figs.
This will be explained using the embodiment shown in FIG.

第3図はフリツカー補償装置の回路説明図で、
1a,2a,3aは進相用コンデンサ、2a,2
b,2cは直列リアクトル、3a,3b,3c,
4a,4b,4cはサイリスタで逆並列接続され
ている。
Figure 3 is a circuit diagram of the Fritzker compensator.
1a, 2a, 3a are phase advance capacitors, 2a, 2
b, 2c are series reactors, 3a, 3b, 3c,
4a, 4b, and 4c are thyristors connected in antiparallel.

さらにコンデンサ投入時に過渡現象を起こさせ
ないために、サイリスタ両端電圧が0V付近にて
パルス信号を発生する同期検出回路16a,16
b,16cが各サイリスタ3a,4a,3b,4
b,3c,4cに各々接続されている。
Furthermore, in order to prevent a transient phenomenon from occurring when the capacitor is turned on, the synchronous detection circuits 16a and 16 generate a pulse signal when the voltage across the thyristor is around 0V.
b, 16c are each thyristor 3a, 4a, 3b, 4
b, 3c, and 4c, respectively.

この1a,2a,3a,4aをNo.1分路とし、
これと同一構成で他に2分路1b,2b,3b,
4b,1c,2c,3c,4cを有し、各々No.2
分路、No.3分路とする。各々の容量は1:2:4
の比とし、各分路の組合せにより7段階の容量が
得られる。
These 1a, 2a, 3a, and 4a are designated as No. 1 branch,
With the same configuration, there are 2 other branches 1b, 2b, 3b,
4b, 1c, 2c, 3c, 4c, each No. 2
Branch, No. 3 branch. Each capacity is 1:2:4
Seven levels of capacity can be obtained by combining each shunt.

制御部として負荷7の電流を変流器(CT)6
にて検出し、電流積分回路10、サンプリング回
路11にて直流電圧に変換する。また計器用変圧
器(PT)5と移相回路12とタイミング回路1
3よりサンプリング回路11への投入信号によ
り、検出回路14に検出値を保持させ、選択回路
15により投入分路が選択され信号を送出し、判
定回路20a,20b,20cへ送られる。判定
回路20a,20b,20cはその分路以外の同
期検出回路16a,16b,16cから信号を受
けており、投入段切り換わり時に他分路の投入可
否を判定させている。判定回路20a,20b,
20cよりゲート回路18a,18b,18cへ
投入信号が送られ、その分路の同期検出回路16
a,16b,16cからの信号もゲート回路18
a,18b,18cに送られる。また過電流検出
回路17a,17b,17cの信号もゲート回路
18a,18b,18cに送られる。
Current transformer (CT) 6 controls the current of load 7 as a control unit.
The voltage is detected by the current integrating circuit 10 and the sampling circuit 11 converts it into a DC voltage. Also, a potential transformer (PT) 5, a phase shift circuit 12, and a timing circuit 1
3 to the sampling circuit 11 causes the detection circuit 14 to hold the detected value, and the selection circuit 15 selects the input branch and sends out a signal, which is sent to the determination circuits 20a, 20b, and 20c. The determination circuits 20a, 20b, and 20c receive signals from the synchronization detection circuits 16a, 16b, and 16c other than the shunts, and determine whether or not the other shunts can be turned on when switching the closing stage. Judgment circuits 20a, 20b,
A closing signal is sent from 20c to the gate circuits 18a, 18b, 18c, and the synchronization detection circuit 16 of the branch
Signals from a, 16b, 16c are also sent to the gate circuit 18
a, 18b, and 18c. Further, signals from overcurrent detection circuits 17a, 17b, and 17c are also sent to gate circuits 18a, 18b, and 18c.

ゲート回路18a,18b,18cでは投入信
号、同期検出回路16a,16b,16cの信号
などの論理積が成立したとき、ゲートアンプ19
a,19b,19cに投入信号として送られ、サ
イリスタをトリガーする。
In the gate circuits 18a, 18b, 18c, when the logical product of the input signal, the signals of the synchronization detection circuits 16a, 16b, 16c, etc. is established, the gate amplifier 19
a, 19b, and 19c as a closing signal to trigger the thyristor.

次にNo.1分路の判定回路20aの具体的な回路
例を第4図により説明する。
Next, a specific circuit example of the No. 1 branch judgment circuit 20a will be explained with reference to FIG.

No.1分路の投入信号は、第1のORゲート21
の入力側と、単安定マルチバイブレータ22のト
リガー入力側へ各々入力される。第2のORゲー
ト23には、No.1分路以外の全ての投入信号が入
力される。
The input signal of No. 1 branch is the first OR gate 21
and the trigger input side of the monostable multivibrator 22, respectively. All input signals other than the No. 1 branch are input to the second OR gate 23.

また第2のANDゲート24aには、No.2分路
の投入信号と同期信号D2が入力される。
Further, the input signal of the No. 2 branch and the synchronization signal D2 are input to the second AND gate 24a.

また第3のANDゲート24bには、No.3分路
の投入信号と同期信号D3が入力される。
Further, the input signal of the No. 3 branch and the synchronization signal D3 are input to the third AND gate 24b.

第2、第3のANDゲート24a,24bの出
力は、第3のORゲート25に入力され、ORゲ
ート25の出力は、単安定マルチバイブレータ2
2のリセツト端子に接続される。
The outputs of the second and third AND gates 24a and 24b are input to the third OR gate 25, and the output of the OR gate 25 is input to the monostable multivibrator 2.
Connected to the second reset terminal.

また第2のORゲート23の出力と単安定マル
チバイブレータ22の出力が第1のANDゲート
26に入力され、その出力は第1のORゲート2
1に入力され、第1のORゲート21の出力が判
定回路20aの出力となる。
In addition, the output of the second OR gate 23 and the output of the monostable multivibrator 22 are input to the first AND gate 26, and the output is input to the first OR gate 26.
1, and the output of the first OR gate 21 becomes the output of the determination circuit 20a.

なお、単安定マルチバイブレータ22の代りに
フリツプフロツプを使用しても同様な機能を出せ
る。
Note that the same function can be achieved by using a flip-flop instead of the monostable multivibrator 22.

第4図中、S1はNo.1分路の投入信号、S2は
No.2の投入信号、S3はNo.3分路の投入信号、D
2はNo.2分路の同期信号、No.3分路の同期信号、
SS1は第4図の出力信号である。
In Figure 4, S1 is the input signal for No. 1 branch, and S2 is
No. 2 input signal, S3 is No. 3 branch input signal, D
2 is the synchronization signal of the No. 2 branch, the synchronization signal of the No. 3 branch,
SS1 is the output signal in FIG.

また、、…は後述する第5図における
それぞれA,B,C…Hに示す波形が現われるラ
インである。
. . . are lines on which the waveforms shown as A, B, C, . . . , H, respectively, in FIG. 5, which will be described later, appear.

次に動作原理を、第5図により説明する。 Next, the principle of operation will be explained with reference to FIG.

例えば、No.1分路の投入信号S1が第5図Aの
ごとくONからOFFになり、No.2分路へ投入信号
S2に切り換わつた場合、単安定マルチバイブレ
ーター22ををトリガーし、第5図Fのごとく出
力をLOWよりHIGHに切り換わり、第1のAND
ゲート26へ入力する。このとき、No.2分路の投
入信号S2は、第5図BのごとくHIGHとなつて
おり、第2のORゲート23より第1のANDゲー
ト26へ入力されているため、第1のANDゲー
ト26は論理積が成立し、出力は第5図Gのごと
くHIGHに切り換わり第1のORゲート21に入
力するため、No.1分路の出力は第5図Hのごとく
投入信号を継続し、第5図aのNo.1分路における
コンデンサ電流ic1は、点線部も通電される。
For example, when the input signal S1 of the No. 1 branch turns from ON to OFF as shown in FIG. 5A and switches to the input signal S2 of the No. 2 branch, the monostable multivibrator 22 is triggered, As shown in Figure 5F, the output is switched from LOW to HIGH, and the first AND
input to gate 26; At this time, the input signal S2 of the No. 2 branch is HIGH as shown in FIG. 5B, and is input from the second OR gate 23 to the first AND gate 26, so the first AND The logical AND is established in the gate 26, and the output switches to HIGH as shown in Fig. 5G and is input to the first OR gate 21, so the output of No. 1 branch continues to be the input signal as shown in Fig. 5H. However, the capacitor current ic 1 in the No. 1 branch in FIG. 5a is also applied to the dotted line.

No.2分路のコンデンサ充電電圧Vc2が第5図b
のごとく負の場合、電源電圧Eの負のピークにて
同期信号は出力し、第5図Dのごとくパルスを出
力しており、投入信号が切り換わつた時点では同
期信号がないため、No.2分路は投入不可の状態に
ある。
The capacitor charging voltage Vc 2 of the No. 2 branch is shown in Fig. 5b.
In the case of a negative value as shown in FIG. .2 branch is in a state where input is not possible.

このため次の半サイクル後に同期信号を出力さ
れると、第2のANDゲート24aは第5図B,
Dのごとく投入信号S2と同期信号D2により論
理積が成立し、第5図Eのごとく出力をHIGHと
し、第3のORゲート25を通して単安定マルチ
バイブレータ22のリセツト信号となり、第5図
FのごとくLOWに変化し、さらに第1のANDゲ
ート26は不成立となり、第5図Gのごとく
LOWとなり、No.1分路の投入信号は第5図Hの
ごとくLOWになり、No.1分路はOFFする。
Therefore, when the synchronization signal is output after the next half cycle, the second AND gate 24a is activated as shown in FIG.
An AND is established between the input signal S2 and the synchronization signal D2 as shown in FIG. 5D, and the output becomes HIGH as shown in FIG. As shown in Figure 5G, the first AND gate 26 becomes LOW.
The input signal of the No. 1 branch becomes LOW as shown in Fig. 5H, and the No. 1 branch turns OFF.

またこのときNo.2分路では投入信号と同期信号
によりANDゲートの論理積が成立し、No.2分路
はONする。
At this time, in the No. 2 branch, the AND gate of the input signal and the synchronization signal is established, and the No. 2 branch is turned ON.

これによりNo.1分路の電流ic1は、半サイクル
余分に通電できたことにより、No.1分路からNo.2
分路の電流ic2に切れ目なしで通電され、第5図
dの合成電流(ic1+ic2)のごとくとなる。
As a result, the current IC 1 in the No. 1 branch was able to be energized for an extra half cycle, so the current IC 1 in the No. 1 branch was transferred from the No. 1 branch to the No. 2 branch.
The current ic 2 in the shunt is passed without interruption, resulting in a composite current (ic 1 +ic 2 ) in FIG. 5d.

以上のごとく、No.1分路の判定回路について説
明したが、No.2分路、No.3分路においも同様の構
成で同様の動作となる。この場合第4図部はそ
れぞれ自分の分路の投入信号が入力され、同期信
号は他の分路の信号が入力される。
As described above, the determination circuit for the No. 1 branch has been described, but the No. 2 and No. 3 branches have the same configuration and operate in the same manner. In this case, each section in FIG. 4 receives the input signal of its own branch, and the synchronization signal receives the signal of the other branch.

これによりNo.1分路からNo.2分路への切り換わ
りと、同様にNo.1分路からNo.3分路へ、No.2分路
からNo.1分路へ、No.2分路からNo.3分路へ等々に
ついても動作できる。
This causes the switch from No. 1 branch to No. 2 branch, and similarly from No. 1 branch to No. 3 branch, from No. 2 branch to No. 1 branch, and from No. 2 branch to No. 1 branch. It can also operate from the shunt to the No. 3 shunt, etc.

なお、開閉部に逆並列サイリスタを使用してい
るが、同等の機能を有するトライアツクなども使
用できる。
Incidentally, although anti-parallel thyristors are used in the opening/closing section, a triax or the like having an equivalent function can also be used.

このように本発明により、負荷通電中に容量が
頻繁に変化する負荷や溶接機が多数あり、通電中
に各種重なり電流のため、容量切り換わりが激し
い場合でも、各分路電流はスムーズに切り換わり
フリツカー改善効果が高く、工業的ならびに実用
的価値の大なるものである。
As described above, with the present invention, even if there are many loads and welding machines whose capacity changes frequently during load energization, and the capacity changes rapidly due to various overlapping currents during energization, each shunt current can be smoothly switched. On the other hand, it has a high effect of improving frizziness and is of great industrial and practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のフリツカー補償装置の回路ブロ
ツクダイヤグラム、第2図は同従来のフリツカー
補償装置の各部の波形図、第3図は本発明のフリ
ツカー補償装置の一実施例のブロツクダイヤグラ
ム、第4図は同本発明のフリツカー補償装置の論
理ゲート回路図、第5図は同本発明のフリツカー
補償装置の各部の波形図である。 1a,1b,1c:進相用コンデンサ、2a,
2b,2c:直列リアクトル、3a,3b,3
c,4a,4b,4c:サイリスタ、15:選択
回路、16a,16b,16c:同期検出回路、
18a,18b,18c:ゲート回路、20a,
20b,20c:判定回路、21:第1のORゲ
ート、22:単安定マルチバイブレータ、23:
第2のORゲート、24a:第2のANDゲート、
24b:第3のANDゲート、25:第3のORゲ
ート、26:第1のANDゲート。
FIG. 1 is a circuit block diagram of a conventional flicker compensator, FIG. 2 is a waveform diagram of each part of the conventional flicker compensator, FIG. 3 is a block diagram of an embodiment of the flicker compensator of the present invention, and FIG. The figure is a logic gate circuit diagram of the flicker compensator of the present invention, and FIG. 5 is a waveform diagram of each part of the flicker compensator of the present invention. 1a, 1b, 1c: phase advance capacitor, 2a,
2b, 2c: Series reactor, 3a, 3b, 3
c, 4a, 4b, 4c: thyristor, 15: selection circuit, 16a, 16b, 16c: synchronization detection circuit,
18a, 18b, 18c: gate circuit, 20a,
20b, 20c: Judgment circuit, 21: First OR gate, 22: Monostable multivibrator, 23:
Second OR gate, 24a: Second AND gate,
24b: third AND gate, 25: third OR gate, 26: first AND gate.

Claims (1)

【特許請求の範囲】 1 進相用コンデンサ、直列リアクトルおよび半
導体スイツチにより構成された分路を負荷と並列
に複数群設け、各半導体スイツチの両端子電圧が
0V付近にてパルス信号を発生する同期検出回路
と、負荷容量を検出して投入分路を選択し、投入
信号を送出する選択回路と、投入された分路以外
の他の分路の信号を上記同期検出回路から受ける
とともに、投入分路がある分路から他の分路に変
換されたとき、他の分路の同期パルスが発生する
まで継続してある分路の投入信号を保持する判定
回路と、該判定回路および同期検出回路からの信
号を受けて半導体スイツチにゲート信号を送出す
るゲート回路とを備えたフリツカー補償装置にお
いて、上記判定回路は、 第1の分路の投入信号を入力する第1のORゲ
ートと、該投入信号がトリガー入力され、投入信
号がOFF時のみ作動する単安定マルチバイブレ
ータと、他の分路の投入信号を入力する第2の
ORゲートと、該第2のORゲートの出力信号お
よび上記単安定マルチバイブレータの出力信号を
入力し、かつその論理積を第1のORゲートに入
力する第1のANDゲートと、第2、第3の分路
の投入信号およびその分路の投入可能時に発生す
る同期信号を入力する第2、第3のANDゲート
と、上記第2および第3のANDゲートの出力を
入力し、その論理積を単安定マルチのリセツト端
子に入力する第3のORゲートからなり、分路切
換時に電流を切れ目なく制御することを特徴とす
るフリツカー補償装置。
[Claims] 1. A plurality of groups of shunts each consisting of a phase advance capacitor, a series reactor, and a semiconductor switch are provided in parallel with the load, and the voltage across both terminals of each semiconductor switch is
There is a synchronous detection circuit that generates a pulse signal near 0V, a selection circuit that detects the load capacity, selects the closing shunt, and sends out the closing signal, and a selection circuit that detects the load capacity and selects the closing shunt and sends out the closing signal. In addition to receiving it from the synchronization detection circuit, when the input branch is converted from one branch to another, it is determined to continue to hold the input signal of one branch until the synchronization pulse of the other branch is generated. and a gate circuit that receives signals from the determination circuit and the synchronization detection circuit and sends a gate signal to the semiconductor switch, wherein the determination circuit receives an input signal of the first shunt. a monostable multivibrator to which the closing signal is triggered and operates only when the closing signal is OFF, and a second OR gate to which the closing signals of the other shunts are input.
an OR gate, a first AND gate that inputs the output signal of the second OR gate and the output signal of the monostable multivibrator, and inputs the logical product thereof to the first OR gate; The outputs of the second and third AND gates are input to the second and third AND gates into which the input signal of the third branch and the synchronization signal generated when the branch can be closed are input, and the AND gate is A flicker compensator comprising a third OR gate that inputs the signal to the reset terminal of the monostable multi-channel, and seamlessly controls the current during shunt switching.
JP58194550A 1983-10-17 1983-10-17 Flicker compensator Granted JPS6087629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58194550A JPS6087629A (en) 1983-10-17 1983-10-17 Flicker compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58194550A JPS6087629A (en) 1983-10-17 1983-10-17 Flicker compensator

Publications (2)

Publication Number Publication Date
JPS6087629A JPS6087629A (en) 1985-05-17
JPH0320977B2 true JPH0320977B2 (en) 1991-03-20

Family

ID=16326397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58194550A Granted JPS6087629A (en) 1983-10-17 1983-10-17 Flicker compensator

Country Status (1)

Country Link
JP (1) JPS6087629A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4676369B2 (en) * 2006-03-31 2011-04-27 ニチコン株式会社 Voltage fluctuation compensation device

Also Published As

Publication number Publication date
JPS6087629A (en) 1985-05-17

Similar Documents

Publication Publication Date Title
US4180853A (en) Two-stage commutation circuit for an inverter
US5808378A (en) Control arrangement and method for high-speed source transfer switching system
US4079443A (en) Circuit arrangement for starting up a converter having forced commutation with correct phase
JPH05176445A (en) Three-phase short circuit suppressor
US4058738A (en) Method and circuit arrangement for starting up a converter having forced commutation with the correct phase
JPH0320977B2 (en)
US4469999A (en) Regenerative drive control
JPH0311177B2 (en)
JPS6110917A (en) Method of controlling ac/dc converter
JPS6018174B2 (en) Reactive power supply device
JP2703586B2 (en) Flicker compensator
JP3077300B2 (en) Instantaneous voltage drop compensator
SU1003039A1 (en) Transformer winding taps switching device
JPH0832364B2 (en) Power supply for welding machine
JPS586391B2 (en) Inverter touch
SU951617A1 (en) Two-channel device for controlling two-phase ac motor
JPH0530683A (en) Switching method for uninterruptible power source
JP2914777B2 (en) Gate control method for cycloconverter
JPH08314557A (en) Controller for reactive power compensator
JPS621019A (en) Electric power converter
JPS6349912A (en) Forward/backward switching device for sequence converter
SU1252881A1 (en) Device for controlling rectifier converter of a.c.voltage to d.c.voltage with reactive energy accumulator at output
JPS5951238B2 (en) Control device for anti-parallel connected thyristor converter
JPH0365025A (en) Power converter
JPS609429B2 (en) How to control cycloconverter