JP4676369B2 - Voltage fluctuation compensation device - Google Patents

Voltage fluctuation compensation device Download PDF

Info

Publication number
JP4676369B2
JP4676369B2 JP2006097279A JP2006097279A JP4676369B2 JP 4676369 B2 JP4676369 B2 JP 4676369B2 JP 2006097279 A JP2006097279 A JP 2006097279A JP 2006097279 A JP2006097279 A JP 2006097279A JP 4676369 B2 JP4676369 B2 JP 4676369B2
Authority
JP
Japan
Prior art keywords
energization
welding machine
phase advance
capacity
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006097279A
Other languages
Japanese (ja)
Other versions
JP2007272550A (en
Inventor
茂 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2006097279A priority Critical patent/JP4676369B2/en
Publication of JP2007272550A publication Critical patent/JP2007272550A/en
Application granted granted Critical
Publication of JP4676369B2 publication Critical patent/JP4676369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Description

本発明は、通電開始時に溶接電流が漸増する溶接機負荷と電気的に接続され、溶接機による配電線に発生する電力変動を補償する電圧変動補償装置に関する。   The present invention relates to a voltage fluctuation compensation device that is electrically connected to a welding machine load in which a welding current gradually increases when energization is started, and compensates for a power fluctuation generated in a distribution line by the welding machine.

通電開始時に溶接電流を漸増制御(スロープ制御)する溶接機では、漸増制御期間中は使用電力が半サイクル毎に変動するが、漸増制御期間終了後の使用電力はほぼ一定の値となる。従って、配電線の電圧降下は、溶接機の通電開始時の漸増制御期間中に大きく変動し、漸増制御期間終了後の定常状態ではほぼ一定値となる。   In a welding machine that gradually controls the welding current at the start of energization (slope control), the power consumption fluctuates every half cycle during the gradual increase control period, but the power consumption after the end of the gradual increase control period is a substantially constant value. Accordingly, the voltage drop of the distribution line greatly fluctuates during the gradual increase control period at the start of energization of the welding machine, and becomes a substantially constant value in the steady state after the gradual increase control period ends.

下記の特許文献1には、溶接機と並列接続され、互いに異なる容量を有し、その組合せによって全体のコンデンサ容量を複数段階で切り換えることができる進相コンデンサを個別にオン/オフすることによって、溶接機の漸増制御期間に配電線に発生する電圧降下を補償する電圧変動補償装置が開示されている。
すなわち、特許文献1に記載の電圧変動補償装置101は、図4に示すように、配電線の電圧を検出する計器用変圧器82と、溶接機80に流れる電流を検出する変流器81と、計器用変圧器82および変流器81の出力から溶接機80に生じる有効電力・無効電力を演算し、配電線に発生する電圧変動値に対応した補償値を検出する補償値検出部84と、直列リアクトル91a〜94a、半導体スイッチ91b〜94b、および進相コンデンサ91c〜94cをそれぞれ備える4つのリアクトル・コンデンサユニット91〜94を含む進相コンデンサ回路90と、補償値検出部84で検出された補償値から必要な進相コンデンサ91〜94の投入段数を演算し、演算結果を指令回路89に出力する投入量演算部85と、補償値検出部84で検出された補償値に対応する段数分だけ進相コンデンサ91〜94が投入されるように半導体スイッチ91b〜94bをオン/オフする信号を出力する指令回路89とを備えている。
特公平8−2507号公報
In Patent Document 1 below, by turning on / off individually the phase-advancing capacitors that are connected in parallel with the welding machine, have different capacities, and can switch the overall capacitor capacity in a plurality of stages by the combination thereof, A voltage fluctuation compensating device that compensates for a voltage drop that occurs in a distribution line during a gradual increase control period of a welding machine is disclosed.
That is, as shown in FIG. 4, the voltage fluctuation compensator 101 described in Patent Document 1 includes an instrument transformer 82 that detects a voltage of a distribution line, and a current transformer 81 that detects a current flowing through a welding machine 80. A compensation value detector 84 for calculating active power and reactive power generated in the welding machine 80 from outputs of the transformer 82 and the current transformer 81 and detecting a compensation value corresponding to a voltage fluctuation value generated in the distribution line; A phase advance capacitor circuit 90 including four reactor capacitor units 91 to 94 having series reactors 91a to 94a, semiconductor switches 91b to 94b, and phase advance capacitors 91c to 94c, respectively. A charge amount calculation unit 85 that calculates the required number of input stages of the phase advance capacitors 91 to 94 from the compensation value and outputs the calculation result to the command circuit 89, and a compensation value detection unit 84 The number of stages by phase advancing capacitor 91 through 94 corresponding to the issued compensation value and a command circuit 89 for outputting a signal for turning on / off the semiconductor switch 91b~94b as charged.
Japanese Patent Publication No. 8-2507

かかる有効電力・無効電力検出方式の電圧変動補償装置101において有効電力・無効電力の演算は、溶接機電流と配電線の電圧とを乗算し、半サイクル間で積分する。したがって、有効電力・無効電力に基づいて求められる補償値の検出には、半サイクルの遅延が生じる。
また、コンデンサ電流を過渡現象が生じることなく開閉するには、コンデンサ端子電圧と回路電圧とが一致するタイミングで進相コンデンサを投入する必要がある。よって、投入される進相コンデンサ回路は半サイクル以上前の有効電力・無効電力を補償するコンデンサ容量となってしまう。
In the voltage fluctuation compensator 101 of the active power / reactive power detection method, the calculation of the active power / reactive power multiplies the welding machine current by the voltage of the distribution line and integrates it for half a cycle. Therefore, a half-cycle delay occurs in the detection of the compensation value obtained based on the active power / reactive power.
Further, in order to open and close the capacitor current without causing a transient phenomenon, it is necessary to insert a phase advance capacitor at a timing at which the capacitor terminal voltage and the circuit voltage match. Therefore, the phase-advancing capacitor circuit to be input has a capacitor capacity that compensates for active power and reactive power before half a cycle.

ここで、図5に、上述の電圧変動補償装置101における進相コンデンサのオン/オフに関するタイムチャートを示す。図5に示すように、電圧変動補償装置101では、上述の有効電力・無効電力演算での半サイクルの遅延および進相コンデンサ投入タイミング待ちでの遅れに起因して電圧変動が生じる。   Here, FIG. 5 shows a time chart regarding ON / OFF of the phase advance capacitor in the voltage fluctuation compensator 101 described above. As shown in FIG. 5, in the voltage fluctuation compensator 101, voltage fluctuation occurs due to the half-cycle delay in the above-described active power / reactive power calculation and the delay in waiting for the phase-advancing capacitor input timing.

上述の遅延を生じさせることなく進相コンデンサを投入する方法として、溶接機の実際の通電タイミングよりも若干早めに出力される通電信号を利用して、溶接機の通電開始に合わせて進相コンデンサを投入することができる電圧変動補償装置を用いることが考えられる。
かかる電圧変動補償装置102では、図6に示すように、溶接機80の溶接コントローラ80aから出力される通電信号に基づいて、溶接機通電開始から漸増制御期間終了までの間に出力される通電同期信号を出力する通電同期信号出力部86を有しており、漸増制御期間中は、溶接機通電開始と同期して投入量記憶部87に予め記憶されている一定容量(例えば、漸増制御期間の中間域における電圧降下をほぼゼロにできる量)の進相コンデンサ91c〜94cを投入する信号を指令回路89に出力する。
そして、信号切換回路88が、溶接機80の漸増制御期間終了後は、投入量演算部85によって演算された段数分の進相コンデンサ91c〜94cを投入する信号が指令回路89に出力されるように切り換える。
As a method of introducing a phase advance capacitor without causing the above-mentioned delay, a phase advance capacitor is used in accordance with the start of energization of the welding machine by using an energization signal output slightly earlier than the actual energization timing of the welder. It is conceivable to use a voltage fluctuation compensator capable of supplying
In the voltage fluctuation compensating apparatus 102, as shown in FIG. 6, the energization synchronization output from the start of energization of the welder to the end of the gradual increase control period based on the energization signal output from the welding controller 80a of the welder 80. It has an energization synchronization signal output unit 86 for outputting a signal, and during the gradual increase control period, a constant capacity (for example, in the gradual increase control period) stored in advance in the input amount storage unit 87 in synchronization with the start of energization of the welding machine. A signal for turning on the phase-advancing capacitors 91c to 94c) is output to the command circuit 89.
Then, after the gradual increase control period of the welding machine 80 ends, the signal switching circuit 88 outputs a signal to the command circuit 89 to input the phase advance capacitors 91c to 94c corresponding to the number of steps calculated by the input amount calculation unit 85. Switch to.

図7に、上述の通電同期信号および有効電力・無効電力検出併用方式の電圧変動補償装置102の進相コンデンサのオン/オフに関するタイムチャートを示す。
図7に示すように、電圧変動補償装置102では、有効電力・無効電力演算での半サイクル遅延およびコンデンサ投入タイミング待ちでの遅れに起因する電圧変動は生じないが、漸増制御期間中に投入される進相コンデンサの容量が一定であるので、漸増制御期間中のある期間のみしか電圧変動をほぼゼロにすることはできない。すなわち、通電開始直後には電圧上昇が、漸増制御期間終了直前には電圧降下が生じる。
FIG. 7 shows a time chart relating to on / off of the phase advance capacitor of the voltage fluctuation compensator 102 of the above-described energization synchronization signal and active / reactive power detection combined method.
As shown in FIG. 7, in the voltage fluctuation compensator 102, the voltage fluctuation due to the half cycle delay in the active power / reactive power calculation and the delay in waiting for the capacitor charging timing does not occur, but is input during the gradual increase control period. Since the capacity of the phase advance capacitor is constant, the voltage fluctuation can be made almost zero only during a certain period of the gradual increase control period. That is, a voltage rise occurs immediately after the start of energization, and a voltage drop occurs immediately before the gradual increase control period ends.

そこで、本発明の目的は、溶接機の全通電期間に亘って配電線に発生する電圧変動を補償することができる電圧変動補償装置を提供することである。   Therefore, an object of the present invention is to provide a voltage fluctuation compensating device that can compensate for voltage fluctuation generated in the distribution line over the entire energization period of the welding machine.

本発明の電圧変動補償装置は、溶接機負荷と電気的に接続され、通電開始後所定期間に溶接電流が漸増するように溶接機コントローラにより制御される前記溶接機によって配電線に発生する電圧変動を補償する電圧変動補償装置であり、前記溶接機負荷と電気的に接続された配電線の電圧を検出する計器用変圧器と、負荷電流を検出する変流器と、直列リアクトル、半導体スイッチ、および進相コンデンサを直列接続したリアクトル・コンデンサユニットを複数含み、前記溶接機負荷と並列に接続された進相コンデンサ回路とを備えている。さらに、かかる電圧変動補償装置は、前記溶接機における通電開始前から、通電終了までの間に前記溶接機コントローラから出力される通電信号を受信すると共に、前記溶接機の通電開始後、該溶接機の漸増制御期間終了時まで通電同期信号を出力する通電同期信号出力部と、前記通電同期信号の受信開始時から所定の時間間隔毎に、投入する進相コンデンサの容量値を次第に増加するように設定する投入量漸増部と、前記計器用変圧器の出力および前記変流器の出力から演算される前記溶接機負荷の有効電力および無効電力に基づいて、前記配電線に発生する電圧変動に対応する補償値を検出する補償値検出部と、前記補償値検出部によって検出された補償値に応じた進相コンデンサの容量値を演算する投入量演算部と、前記通電同期信号受信中は、前記投入量漸増部で演算された容量値を出力すると共に、前記通電同期信号受信終了後は、前記投入量演算部で演算された容量値を出力する信号切換回路と、前記信号切換回路から出力された容量値に基づいて、前記半導体スイッチをオン/オフする信号を出力する指令回路とを備えている。そして、前記通電同期信号出力部が、前記通電信号を受信してから前記溶接機の通電開始までの遅延時間を記憶する遅延時間記憶部、前記溶接機の漸増制御期間を記憶する漸増制御期間記憶部、通電信号受信後、前記遅延時間記憶部の記憶内容に基づいて、溶接機の通電開始までの遅延時間を計時する遅延タイマ、前記遅延タイマによって遅延時間が計時された後、前記漸増制御期間記憶部の記憶内容に基づいて、漸増制御期間が終了するまでの時間を計時する漸増制御期間タイマ、および前記漸増制御期間タイマが計時している間に通電信号を出力するAND回路を有しており、前記投入量漸増部が、所定時間間隔毎にパルスを発生させる漸増クロック発生回路、溶接機の通電開始時に発生する電圧降下を補償できる進相コンデンサ容量を記憶する漸増開始容量記憶部、および前記漸増開始容量記憶部に記憶されている進相コンデンサ容量から前記漸増クロック発生回路から出力されるパルスに従ってカウントアップを行うカウンタ回路を有している。   The voltage fluctuation compensator of the present invention is electrically connected to a welder load, and the voltage fluctuation generated in the distribution line by the welding machine controlled by the welding machine controller so that the welding current gradually increases in a predetermined period after the start of energization. A voltage fluctuation compensator that compensates for the load, a transformer for an instrument that detects a voltage of a distribution line electrically connected to the load of the welder, a current transformer that detects a load current, a series reactor, a semiconductor switch, And a plurality of reactor / capacitor units in which phase advance capacitors are connected in series, and a phase advance capacitor circuit connected in parallel with the welder load. Further, the voltage fluctuation compensating device receives an energization signal output from the welding machine controller before energization is completed before the energization of the welder, and after the energization of the welder is started, An energization synchronization signal output unit that outputs an energization synchronization signal until the end of the gradual increase control period, and a capacitance value of a phase advance capacitor to be gradually increased at predetermined time intervals from the start of reception of the energization synchronization signal. Corresponds to voltage fluctuations generated in the distribution line based on the input power gradually increasing part to be set and the active power and reactive power of the welding machine load calculated from the output of the instrument transformer and the output of the current transformer A compensation value detection unit for detecting a compensation value to be performed, an input amount calculation unit for calculating a capacitance value of a phase advance capacitor according to the compensation value detected by the compensation value detection unit, and the energization synchronization signal During the transmission, the signal switching circuit that outputs the capacitance value calculated by the input amount gradually increasing unit, and outputs the capacitance value calculated by the input amount calculating unit after receiving the energization synchronization signal, and the signal And a command circuit for outputting a signal for turning on / off the semiconductor switch based on the capacitance value outputted from the switching circuit. The energization synchronization signal output unit stores a delay time from when the energization signal is received to when the welding machine is energized, and a gradually increasing control period memory that stores the gradually increasing control period of the welding machine. A delay timer that counts a delay time until the start of energization of the welding machine based on the stored contents of the delay time storage unit after receiving the energization signal, and the gradual increase control period after the delay time is timed by the delay timer A gradual increase control period timer for timing the time until the gradual increase control period ends based on the storage contents of the storage unit, and an AND circuit for outputting an energization signal while the gradual increase control period timer is timing And a gradually increasing clock generating circuit for generating a pulse at a predetermined time interval, and a phase advance capacitor capacity capable of compensating for a voltage drop generated at the start of energization of the welding machine. Increasing starting volume storage unit for 憶, and has a counter circuit that counts up from said incremental start storage unit in the stored power capacitor capacity according to the pulse output from the incremental clock generation circuit.

また、本発明の電圧変動補償装置では、前記進相コンデンサは、互いに異なる容量を有しており、前記指令回路は、入力された容量値から複数の前記半導体スイッチのうちオンにするものを決定してもよい。   Further, in the voltage fluctuation compensator according to the present invention, the phase advance capacitors have different capacities, and the command circuit determines which one of the plurality of semiconductor switches to turn on from the input capacitance value. May be.

また、本発明の電圧変動補償装置では、前記進相コンデンサのうち、最も容量の小さい進相コンデンサの容量を基準容量Cとしたとき、容量が小さい順にi番目の進相コンデンサの容量が、基準容量Cに2の(i―1)乗を乗じた値(1≦i≦n、(n:進相コンデンサの個数))になってもよい。   Further, in the voltage fluctuation compensator of the present invention, when the capacity of the phase advance capacitor having the smallest capacity among the phase advance capacitors is set as the reference capacity C, the capacity of the i-th phase advance capacitor is the reference in the order of decreasing capacity. It may be a value obtained by multiplying the capacitance C by the power of 2 (i−1) (1 ≦ i ≦ n, (n: number of phase-advancing capacitors)).

さらに、本発明の電圧変動補償装置では、前記信号切換回路は、前記通電信号が入力され、前記通電信号の出力が終了した際に、前記指令回路への出力を停止することが好ましい。   Furthermore, in the voltage fluctuation compensator of the present invention, it is preferable that the signal switching circuit stops output to the command circuit when the energization signal is input and the output of the energization signal is completed.

従って、本発明の電圧変動補償装置は、溶接機コントローラから出力される通電信号を利用することによって、溶接機の漸増制御期間中は進相コンデンサ回路の容量を溶接電流の漸増状態に合わせて遅れなく制御し、かつ漸増制御期間終了後の溶接電流の変動が小さくなった期間は、溶接機に生じる有効電力および無効電力に従った補償値で進相コンデンサ回路の容量を制御することができる。よって、溶接機の全通電期間に亘って配電線に発生する電圧変動を補償することができる。
また、複数の進相コンデンサのなかに容量が同一であるものが含まれている場合に比べて、複数の進相コンデンサの組合せにより進相コンデンサ回路全体の容量の取り得る値の種類が増えるので、進相コンデンサ回路の容量を緻密に制御することができる。
さらに、進相コンデンサ回路全体での容量を等間隔で変化させることが可能となる。
加えて、溶接機における通電終了後に、有効電力および無効電力演算での半サイクル遅延に起因する進相コンデンサの引き外し遅れの発生をなくすことが可能となる。
Therefore, the voltage fluctuation compensator of the present invention uses the energization signal output from the welding machine controller to delay the capacity of the phase advance capacitor circuit in accordance with the gradually increasing state of the welding current during the gradually increasing control period of the welding machine. During the period when the welding current fluctuation after the end of the gradual increase control period is reduced, the capacity of the phase advance capacitor circuit can be controlled with a compensation value according to the active power and reactive power generated in the welding machine. Therefore, the voltage fluctuation which generate | occur | produces in a distribution line over the whole electricity supply period of a welding machine can be compensated.
Also, compared to the case where multiple phase advance capacitors have the same capacity, the combination of multiple phase advance capacitors increases the types of values that can be taken by the entire phase advance capacitor circuit. The capacity of the phase advance capacitor circuit can be precisely controlled.
Furthermore, it is possible to change the capacity of the entire phase advance capacitor circuit at equal intervals.
In addition, after the energization of the welding machine is completed, it is possible to eliminate the occurrence of the delay in tripping of the phase advance capacitor due to the half cycle delay in the calculation of active power and reactive power.

以下、本発明の好適な一実施の形態について、図面を参照しつつ説明する。   A preferred embodiment of the present invention will be described below with reference to the drawings.

図1は、溶接機に本実施の形態に係る電圧変動補償装置を接続した図である。図1に示すように、本実施の形態に係る電圧変動補償装置10は、溶接機1と並列に接続される。ここで、溶接機1は、図示しない交流電源に接続されていると共に、溶接機コントローラ1aによって、通電開始後所定期間は溶接機電流が漸増するように制御される(図3参照)。   FIG. 1 is a diagram in which a voltage fluctuation compensator according to the present embodiment is connected to a welder. As shown in FIG. 1, the voltage fluctuation compensation device 10 according to the present embodiment is connected in parallel with the welding machine 1. Here, the welding machine 1 is connected to an AC power source (not shown) and controlled by the welding machine controller 1a so that the welding machine current gradually increases for a predetermined period after the start of energization (see FIG. 3).

電圧変動補償装置10は、配電線3の電圧を検出する計器用変圧器11と、溶接機1に流れる電流を検出する変流器13と、溶接機1と並列に接続されている進相コンデンサ回路20と、計器用変圧器11、変流器13、および溶接機コントローラ1aからの出力に基づいて、進相コンデンサ回路20の後述する4つの半導体スイッチ21b〜24bのオン/オフを制御するスイッチ制御部30とを備えている。   The voltage fluctuation compensation device 10 includes an instrument transformer 11 that detects the voltage of the distribution line 3, a current transformer 13 that detects a current flowing through the welding machine 1, and a phase advance capacitor connected in parallel to the welding machine 1. Based on outputs from the circuit 20, the instrument transformer 11, the current transformer 13, and the welding machine controller 1a, switches for controlling on / off of four semiconductor switches 21b to 24b described later of the phase advance capacitor circuit 20 And a control unit 30.

進相コンデンサ回路20は、直列リアクトル21a〜24a、半導体スイッチ21b〜24b、および進相コンデンサ21c〜24cをそれぞれ備える4つのリアクトル・コンデンサユニット21〜24を含んでいる。半導体スイッチ21b〜24bは、それぞれ進相コンデンサと直流リアクトルと直列に接続されている。
ここで、本実施の形態では、進相コンデンサ21c〜24cがそれぞれ有する容量C1、C2、C3、C4は、C1:C2:C3:C4=1:2:4:8となるように設定されている。したがって、半導体スイッチ21b〜24bのうちオンにするものの組合せによって、進相コンデンサ回路20全体でのコンデンサ容量を等間隔で15段階変化させることができる。
The phase advance capacitor circuit 20 includes four reactor capacitor units 21 to 24 each including series reactors 21a to 24a, semiconductor switches 21b to 24b, and phase advance capacitors 21c to 24c. Each of the semiconductor switches 21b to 24b is connected in series with a phase advance capacitor and a DC reactor.
Here, in the present embodiment, the capacitances C1, C2, C3, and C4 of the phase advance capacitors 21c to 24c are set to be C1: C2: C3: C4 = 1: 2: 4: 8. Yes. Therefore, the capacitor capacity of the entire phase advance capacitor circuit 20 can be changed by 15 steps at equal intervals by the combination of the semiconductor switches 21b to 24b to be turned on.

次に、図2を用いて、スイッチ制御部30についてより詳細に説明する。図2は、スイッチ制御部30の概略構成を示すブロック図である。   Next, the switch control unit 30 will be described in more detail with reference to FIG. FIG. 2 is a block diagram illustrating a schematic configuration of the switch control unit 30.

図2に示すように、スイッチ制御部30は、計器用変圧器11の出力および変流器13の出力から演算される溶接機負荷に発生する有効電力および無効電力に基づいて、配電線3に発生する電圧変動に対応する補償値を検出する補償値検出部31と、補償値検出部31によって検出された補償値に応じて、溶接機1によって生じる電圧変動を補償するために必要な進相コンデンサ容量、すなわち進相コンデンサ回路20の投入段数を演算する投入量演算部32とを有している。   As shown in FIG. 2, the switch control unit 30 controls the distribution line 3 based on the active power and reactive power generated in the welding machine load calculated from the output of the instrument transformer 11 and the output of the current transformer 13. A compensation value detector 31 for detecting a compensation value corresponding to the generated voltage fluctuation, and a phase advance required for compensating for the voltage fluctuation caused by the welding machine 1 according to the compensation value detected by the compensation value detector 31. And an input amount calculation unit 32 for calculating the capacitor capacity, that is, the number of input stages of the phase advance capacitor circuit 20.

ここで、補償値および必要な進相コンデンサ投入段数を求めるにあたって必要な、溶接機1が通電状態にある時に発生する電圧降下値ΔVは以下の(式1)で、進相コンデンサにおける電圧上昇値ΔVUPは以下の(式2)でそれぞれ算出することができる。 Here, the voltage drop value ΔV generated when the welding machine 1 is in the energized state, which is necessary to obtain the compensation value and the required number of phase advance capacitor input stages, is the following (Equation 1), and the voltage rise value in the phase advance capacitor: ΔV UP can be calculated by the following (Equation 2).

ΔV=P×(%R×cosθ+%X×sinθ)/(10×10) (式1)
ただし、ΔV:電圧降下値[%]、P:溶接機の皮相電力[VA]、%R:配電線の抵抗分インピーダンス(10MVA当たりの%)、cosθ:溶接機の力率、%X:配電線のリアクタンス分インピーダンス(10MVA当たりの%)であり、sinθは、溶接機の力率により算出されるものである(θ=cos−1θ)。
ΔV = P × (% R × cos θ +% X × sin θ) / (10 × 10 6 ) (Formula 1)
However, ΔV: Voltage drop value [%], P: Apparent power of welding machine [VA],% R: Resistance impedance of distribution line (% per 10 MVA), cos θ: Power factor of welding machine,% X: Distribution It is the impedance corresponding to the reactance of the electric wire (% per 10 MVA), and sin θ is calculated by the power factor of the welding machine (θ = cos −1 θ).

ΔVUP=Q×%X/(10×10) (式2)
ただし、ΔVUP:電圧上昇値[%]、Q:進相コンデンサ容量[var]、%X:配電線のリアクタンス分インピーダンス(10MVA当たりの%)である。なお、(式2)は、上述の(式1)において進相コンデンサが供給する電力=進み無効電力のみであることから導出されたものである。
ΔV UP = Q ×% X / (10 × 10 6 ) (Formula 2)
However, ΔV UP : voltage increase value [%], Q: phase advance capacitor capacity [var],% X: impedance corresponding to reactance of distribution line (% per 10 MVA). (Equation 2) is derived from the fact that the power supplied by the phase advance capacitor in the above (Equation 1) = advanced reactive power only.

本実施の形態では、(式1)に示す有効電力と無効電力による電圧降下の合計分を、進相コンデンサより供給される進相無効電流によって補償する方式を採っている。すなわち、本実施の形態では、溶接機1の通電状態における電圧降下を進相コンデンサの投入によって補償することから、(式1)の電圧降下値ΔVが直ちに、進相コンデンサにおける電圧上昇値ΔVUPに相当する関係となる。
したがって、補償値検出部31では、電圧降下値ΔVまたは進相コンデンサにおける電圧上昇値ΔVUPを補償値として検出している。なお(式1)の電圧降下は、P×cosθ×%Rの(有効電力の)項とP×sinθ×%Xの(無効電力の)項の和である。
入力された電圧と電流から有効電力、無効電力を演算する方式は、既に別装置または従来知られた電圧変動補償装置で使用されており、本発明の電圧変動補償装置でも同じ方式で電力を演算後、インピーダンスを乗算して電圧降下を求めることができる。
In the present embodiment, a method is adopted in which the total voltage drop due to the active power and reactive power shown in (Equation 1) is compensated by the phase advance reactive current supplied from the phase advance capacitor. That is, in this embodiment, since the voltage drop in the energized state of the welding machine 1 is compensated by inserting the phase advance capacitor, the voltage drop value ΔV in (Equation 1) immediately becomes the voltage rise value ΔV UP in the phase advance capacitor. The relationship is equivalent to
Therefore, the compensation value detector 31 detects the voltage drop value ΔV or the voltage rise value ΔV UP in the phase advance capacitor as the compensation value. Note that the voltage drop in (Equation 1) is the sum of the (active power) term of P × cos θ ×% R and the (reactive power) term of P × sin θ ×% X.
The method of calculating active power and reactive power from the input voltage and current is already used in another device or a conventionally known voltage fluctuation compensator, and the voltage fluctuation compensator of the present invention also calculates power using the same method. Later, the impedance can be multiplied to determine the voltage drop.

したがって、進相コンデンサにおける電圧上昇値ΔVUPが(式2)より求められることを利用すれば、通電時に必要な進相コンデンサ容量および進相コンデンサ投入段数を演算することが可能である。よって、投入量演算部32では、上述の補償値および(式2)により、通電時に必要な進相コンデンサ容量および進相コンデンサ投入段数を演算している。 Therefore, by utilizing the fact that the voltage increase value ΔV UP in the phase advance capacitor is obtained from (Equation 2), it is possible to calculate the phase advance capacitor capacity and the number of phase advance capacitor input stages required at the time of energization. Therefore, the input amount calculation unit 32 calculates the phase advance capacitor capacity and the number of phase advance capacitor input stages required during energization based on the above-described compensation value and (Equation 2).

また、スイッチ制御部30は、溶接機1において通電開始前から溶接機1の通電終了までの間に溶接機コントローラ1aから出力される通電信号(図3参照)を受信すると共に、溶接機1における漸増制御期間T1(図3参照)中に通電同期信号(図3参照)を出力する通電同期信号出力部33と、通電同期信号を受信すると共に、通電同期信号受信開始時から所定の時間間隔毎に、電圧変動を補償するために必要な進相コンデンサ容量、すなわち進相コンデンサ回路20の投入段数を次第に増加するように設定する投入量漸増部41とを有している。   In addition, the switch control unit 30 receives an energization signal (see FIG. 3) output from the welding machine controller 1 a before the energization of the welding machine 1 is started before the energization is completed in the welding machine 1. An energization synchronization signal output unit 33 that outputs an energization synchronization signal (see FIG. 3) during the gradual increase control period T1 (see FIG. 3), and receives the energization synchronization signal and at predetermined time intervals from the start of receiving the energization synchronization signal In addition, a phase-advancing capacity 41 that sets the phase-advancing capacitor capacity necessary to compensate for voltage fluctuation, that is, the number of input stages of the phase-advancing capacitor circuit 20 to gradually increase, is provided.

ここで、図2に示すように、通電同期信号出力部33は、遅延時間記憶部34、遅延タイマ35、漸増制御期間記憶部36、漸増制御期間タイマ37、およびAND回路38を有している。
遅延時間記憶部34は、通電信号を受信してから溶接機1における通電開始までの遅延時間T2(図3参照)を記憶する。遅延タイマ35は、通電信号受信後、遅延時間記憶部34の記憶内容に基づいて、溶接機1における通電開始までの時間を計時する。また、漸増制御期間記憶部36は、溶接機1における漸増制御期間T1を記憶する。漸増制御期間タイマ37は、遅延タイマ35によって、溶接機1の通電開始までの時間が計時された後、漸増制御期間記憶部36の記憶内容に基づいて、漸増制御期間T1が終了するまでの時間を計時する。AND回路38は、漸増制御期間タイマ37が計時している間、通電同期信号を出力する。
Here, as shown in FIG. 2, the energization synchronization signal output unit 33 includes a delay time storage unit 34, a delay timer 35, a gradual increase control period storage unit 36, a gradual increase control period timer 37, and an AND circuit 38. .
The delay time storage unit 34 stores a delay time T2 (see FIG. 3) from when the energization signal is received to when the welding machine 1 starts energization. The delay timer 35 measures the time until the start of energization in the welding machine 1 based on the stored contents of the delay time storage unit 34 after receiving the energization signal. Further, the gradual increase control period storage unit 36 stores a gradual increase control period T1 in the welding machine 1. The gradual increase control period timer 37 is a time until the gradual increase control period T1 ends based on the storage contents of the gradual increase control period storage unit 36 after the time until the start of energization of the welding machine 1 is timed by the delay timer 35. Time. The AND circuit 38 outputs an energization synchronization signal while the gradual increase control period timer 37 keeps timing.

投入量漸増部41は、漸増クロック発生回路42、漸増開始容量記憶部43、およびカウンタ回路44を有している。
漸増クロック発生回路42は、進相コンデンサ回路20の投入段数の漸増を半サイクル毎に行うか、または1サイクル毎に行うかを決めると共に、決定した時間間隔毎にパルスを発生させる。漸増開始容量記憶部43は、溶接機1における通電開始時に発生する電圧降下を補償できる進相コンデンサの容量を記憶する。カウンタ回路44は、通電同期信号が出力されている間は、漸増開始容量記憶部43に記憶されている漸増開始容量に対応する進相コンデンサ回路20の投入段数から、漸増クロック発生回路42から出力されるパルスに従って1段階ずつカウントアップを行い、通電同期信号の出力が停止した際にはカウントアップを停止する。
The input amount gradually increasing unit 41 includes a gradually increasing clock generating circuit 42, a gradually increasing start capacity storing unit 43, and a counter circuit 44.
The gradually increasing clock generation circuit 42 determines whether to gradually increase the number of input stages of the phase advance capacitor circuit 20 every half cycle or every cycle, and generates a pulse at each determined time interval. The gradual increase start capacity storage unit 43 stores the capacity of the phase advance capacitor that can compensate for the voltage drop that occurs when the welding machine 1 starts energization. While the energization synchronization signal is output, the counter circuit 44 outputs from the gradually increasing clock generation circuit 42 based on the number of input stages of the phase advance capacitor circuit 20 corresponding to the gradually increasing start capacity storage unit 43. The count is incremented step by step according to the pulse, and the count up is stopped when the output of the energization synchronization signal is stopped.

さらに、スイッチ制御部30は、信号切換回路45と指令回路46とを有している。
信号切換回路45には、通電同期信号が入力され、通電同期信号受信中は、投入量漸増部41で決定された投入段数を指令回路46へ出力すると共に、通電同期信号受信終了後は、投入量演算部32で演算された投入段数を指令回路46へ出力する。
また、信号切換回路45には、溶接機コントローラ1aから出力される通電信号が入力されており、通電信号受信終了後は、指令回路46への出力を停止する。指令回路46は、信号切換回路45から出力された投入段数に基づいて、4つの半導体スイッチ21b〜24bのうちオンにするものの組合せを判断し、半導体スイッチ21b〜24bをオン/オフする信号を出力する。
Further, the switch control unit 30 has a signal switching circuit 45 and a command circuit 46.
The energization synchronization signal is input to the signal switching circuit 45. While the energization synchronization signal is being received, the number of input stages determined by the input amount gradually increasing unit 41 is output to the command circuit 46, and after the energization synchronization signal reception is completed, The number of input stages calculated by the quantity calculation unit 32 is output to the command circuit 46.
Further, the energization signal output from the welding machine controller 1a is input to the signal switching circuit 45, and after receiving the energization signal, the output to the command circuit 46 is stopped. The command circuit 46 determines a combination of the four semiconductor switches 21b to 24b to be turned on based on the number of input stages output from the signal switching circuit 45, and outputs a signal for turning on / off the semiconductor switches 21b to 24b. To do.

次に、図3を用いて、電圧変動補償装置10の動作について説明する。図3は、本実施の形態の電圧変動補償装置10の制御シーケンスのタイムチャートである。   Next, the operation of the voltage fluctuation compensating apparatus 10 will be described with reference to FIG. FIG. 3 is a time chart of the control sequence of the voltage fluctuation compensator 10 of the present embodiment.

まず、図3に示すように、時刻t1に溶接機コントローラ1aからの通電信号の出力が開始される。このとき出力された通電信号は、通電同期信号出力部33および信号切換回路45に入力される。
その後、遅延時間記憶部34に記憶されている遅延時間T2が経過し、溶接機1の通電開始時刻t2となると、通電同期信号出力部33からの通電同期信号の出力が開始される。通電同期信号出力部33からの通電同期信号の出力は、漸増制御期間記憶部36に記憶されている漸増制御期間T1の間、すなわち時刻t3まで行われる。
そして、このとき出力された通電同期信号は、投入量漸増部41および信号切換回路45に入力される。
First, as shown in FIG. 3, the output of the energization signal from the welding machine controller 1a is started at time t1. The energization signal output at this time is input to the energization synchronization signal output unit 33 and the signal switching circuit 45.
Thereafter, when the delay time T2 stored in the delay time storage unit 34 elapses and the energization start time t2 of the welding machine 1 is reached, the output of the energization synchronization signal from the energization synchronization signal output unit 33 is started. The output of the energization synchronization signal from the energization synchronization signal output unit 33 is performed during the gradual increase control period T1 stored in the gradual increase control period storage unit 36, that is, until time t3.
The energization synchronization signal output at this time is input to the input amount gradually increasing unit 41 and the signal switching circuit 45.

続いて、投入量漸増部41が、通電同期信号が入力された時刻t2から通電同期信号の出力が終了する時刻t3までの間、所定時間間隔毎に、次第に増加するように進相コンデンサの投入段数を設定する。
そして、信号切換回路45が投入量漸増部41で設定された投入段数を指令回路46に出力し、指令回路46によって進相コンデンサ回路20全体のコンデンサ容量が投入量漸増部41で設定された投入段数に応じた容量となるように半導体スイッチ21b〜24bのオン/オフが制御される。
これにより、図3に示すように、溶接機1の通電開始時刻t2と同時にコンデンサが投入され、漸増制御期間T1に対応する時刻t2からt3の間では、進相コンデンサ回路20の投入段数が漸増する。
Subsequently, the charging amount gradually increasing unit 41 inserts the phase-advancing capacitor so as to gradually increase at predetermined time intervals from time t2 when the energization synchronization signal is input to time t3 when the output of the energization synchronization signal ends. Set the number of steps.
Then, the signal switching circuit 45 outputs the number of input stages set by the input amount gradually increasing unit 41 to the command circuit 46, and the instruction circuit 46 sets the capacitor capacity of the entire phase advance capacitor circuit 20 by the input amount gradually increasing unit 41. On / off of the semiconductor switches 21b to 24b is controlled so as to have a capacity corresponding to the number of stages.
As a result, as shown in FIG. 3, the capacitor is turned on at the same time as the energization start time t2 of the welding machine 1, and the number of input stages of the phase advance capacitor circuit 20 gradually increases between time t2 and t3 corresponding to the gradual increase control period T1. To do.

その後、漸増制御期間T1が終了し、時刻t3となると、信号切換回路45は、投入量漸増部41で設定された投入段数の指令回路46への出力を終了し、計器用変圧器11および変流器13の出力に基づいて検出される補償値に応じて必要なコンデンサ容量の投入段数を演算する投入量演算部32で演算された投入段数の指令回路46への出力を開始する。
さらに、時刻t4において、溶接機コントローラ1aからの通電信号の出力が終了すると、信号切換回路45は、投入量演算部32で演算された投入段数の指令回路46への出力を停止する。したがって、図3に示すように、溶接機1における通電終了時刻t4以降は、コンデンサは引き外される。
Thereafter, when the gradual increase control period T1 ends and time t3 is reached, the signal switching circuit 45 ends the output to the command circuit 46 of the input stage number set by the input amount gradual increase unit 41, and the instrument transformer 11 and the variable transformer 11 are changed. The output to the command circuit 46 of the number of input stages calculated by the input amount calculation unit 32 that calculates the number of input stages of the required capacitor capacity according to the compensation value detected based on the output of the flow device 13 is started.
Furthermore, when the output of the energization signal from the welding machine controller 1a is completed at time t4, the signal switching circuit 45 stops the output to the command circuit 46 of the number of input stages calculated by the input amount calculation unit 32. Therefore, as shown in FIG. 3, the capacitor is removed after the energization end time t4 in the welding machine 1.

以上のように、本実施の形態の電圧変動補償装置10では、通電同期信号出力部33が、溶接機コントローラ1aから出力される通電信号に基づいて、溶接機1の漸増制御期間中に通電同期信号を出力する。
そして、投入量漸増部41が、通電同期信号を受信し、通電同期信号受信開始時から所定の時間間隔毎に、次第に増加するように進相コンデンサ回路20の投入段数を設定する。
一方、投入量演算部32は、計器用変圧器11の出力および変流器13の出力に基づいて補償値検出部31において検出される補償値から、溶接機1によって生じる電圧変動を補償するために必要な進相コンデンサ回路20の投入段数を演算する。
さらに、信号切換回路45が、通電同期信号出力部33からの通電同期信号受信中は、投入量漸増部41によって設定された投入段数を、また、通電同期信号受信終了後は、投入量演算部32によって演算された投入量を指令回路46に出力する。指令回路46は、入力された投入段数に基づいて、4つの半導体スイッチ21b〜24bのうちオンにするものの組合せを判断し、半導体スイッチ21b〜24bをオン/オフする信号を出力する。
したがって、溶接機コントローラ1aから出力される通電信号を利用することによって、溶接機1の漸増制御期間中における進相コンデンサ回路20の容量を溶接電流の漸増状態に合わせて遅れなく制御し、かつ漸増制御期間終了後に溶接電流の変動が小さくなった期間では、溶接機1に生じる有効電力および無効電力に従った補償値で進相コンデンサ回路20の容量を制御することができる。
よって、溶接機1の全通電期間に亘って配電線3に発生する電圧変動を補償することができる。
As described above, in the voltage fluctuation compensation device 10 of the present embodiment, the energization synchronization signal output unit 33 is synchronized with the energization during the gradual increase control period of the welding machine 1 based on the energization signal output from the welding machine controller 1a. Output a signal.
Then, the input amount gradually increasing unit 41 receives the energization synchronization signal, and sets the number of input stages of the phase advance capacitor circuit 20 so as to gradually increase every predetermined time interval from the start of energization synchronization signal reception.
On the other hand, the input amount calculation unit 32 compensates for voltage fluctuation caused by the welding machine 1 from the compensation value detected by the compensation value detection unit 31 based on the output of the instrument transformer 11 and the output of the current transformer 13. The number of input stages of the phase advance capacitor circuit 20 necessary for the calculation is calculated.
Further, when the signal switching circuit 45 is receiving the energization synchronization signal from the energization synchronization signal output unit 33, the number of input stages set by the input amount gradually increasing unit 41, and after receiving the energization synchronization signal, the input amount calculation unit The input amount calculated by 32 is output to the command circuit 46. The command circuit 46 determines a combination of the four semiconductor switches 21b to 24b to be turned on based on the input number of input stages, and outputs a signal for turning on / off the semiconductor switches 21b to 24b.
Therefore, by using the energization signal output from the welding machine controller 1a, the capacity of the phase advance capacitor circuit 20 during the gradually increasing control period of the welding machine 1 is controlled without delay according to the gradually increasing state of the welding current, and gradually increased. In the period when the fluctuation of the welding current becomes small after the end of the control period, the capacity of the phase advance capacitor circuit 20 can be controlled with a compensation value according to the active power and reactive power generated in the welding machine 1.
Therefore, the voltage fluctuation which generate | occur | produces in the distribution line 3 over the whole electricity supply period of the welding machine 1 can be compensated.

また、本実施の形態の電圧変動補償装置10では、進相コンデンサ21c〜24cは、互いに異なる容量を有している。これにより、進相コンデンサ21c〜24cのなかに容量が同一であるものが含まれている場合に比べて、4つの進相コンデンサ21c〜24cの組合せにより進相コンデンサ回路20全体の容量の取り得る値の種類が増える。したがって、進相コンデンサ回路20の容量を緻密に制御することができる。   Moreover, in the voltage fluctuation compensating apparatus 10 of this Embodiment, the phase advance capacitors 21c-24c have a mutually different capacity | capacitance. Thereby, compared with the case where the capacitors having the same capacity are included in the phase advance capacitors 21c to 24c, the capacity of the entire phase advance capacitor circuit 20 can be taken by the combination of the four phase advance capacitors 21c to 24c. More types of values. Therefore, the capacity of the phase advance capacitor circuit 20 can be precisely controlled.

また、本実施の形態の電圧変動補償装置10では、進相コンデンサ21c〜24cがそれぞれ有する容量C1、C2、C3、C4は、C1:C2:C3:C4=1:2:4:8となるように設定されている。したがって、進相コンデンサ回路20全体での容量を15段階で等間隔に変化させることが可能となる。   Further, in the voltage fluctuation compensating apparatus 10 of the present embodiment, the capacitances C1, C2, C3, and C4 of the phase advance capacitors 21c to 24c are C1: C2: C3: C4 = 1: 2: 4: 8, respectively. Is set to Therefore, it is possible to change the capacity of the entire phase advance capacitor circuit 20 at equal intervals in 15 steps.

さらに、本実施の形態の電圧変動補償装置10では、信号切換回路45には、通電信号が入力され、通電信号の出力が終了した際に、信号切換回路45は指令回路46への出力を停止する。したがって、溶接機1における通電終了後に、有効電力および無効電力演算での半サイクル遅延に起因する進相コンデンサの引き外し遅れの発生をなくすことが可能となる。   Furthermore, in the voltage fluctuation compensator 10 of the present embodiment, when the energization signal is input to the signal switching circuit 45 and the output of the energization signal is finished, the signal switching circuit 45 stops the output to the command circuit 46. To do. Therefore, after the energization in the welding machine 1 is completed, it is possible to eliminate the occurrence of the delay in tripping of the phase advance capacitor due to the half cycle delay in the calculation of active power and reactive power.

以上、本発明の好適な一実施の形態について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて、様々な設計変更を行うことが可能なものである。例えば、上述の実施の形態では、進相コンデンサ回路20が4つのリアクトル・コンデンサユニット21〜24を含んでいる場合について説明したが、進相コンデンサ回路20に含まれるリアクトル・コンデンサユニットの個数は4つには限定されない。   The preferred embodiment of the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and various design changes can be made as long as they are described in the claims. Is something. For example, in the above-described embodiment, the case where the phase advance capacitor circuit 20 includes four reactor capacitor units 21 to 24 has been described. However, the number of reactor capacitor units included in the phase advance capacitor circuit 20 is four. It is not limited to one.

また、上述の実施の形態では、進相コンデンサ21c〜24cがそれぞれ有する容量C1、C2、C3、C4が、C1:C2:C3:C4=1:2:4:8となるように設定されている場合について説明したが、容量C1〜C4の比はこれに限定されない。例えば、容量C1〜C4が互いに等しくてもよい。   In the above-described embodiment, the capacitances C1, C2, C3, and C4 of the phase advance capacitors 21c to 24c are set so that C1: C2: C3: C4 = 1: 2: 4: 8. However, the ratio of the capacitors C1 to C4 is not limited to this. For example, the capacitors C1 to C4 may be equal to each other.

さらに、上述の実施の形態では、信号切換回路45に通電信号が入力され、通電信号の出力が終了した際に、信号切換回路45が指令回路46への出力を停止する場合について説明したが、これには限られない。通電信号が信号切換回路45に入力されないような構成であってもよい。   Further, in the above-described embodiment, the case where the signal switching circuit 45 stops the output to the command circuit 46 when the energization signal is input to the signal switching circuit 45 and the output of the energization signal is finished has been described. This is not a limitation. The configuration may be such that the energization signal is not input to the signal switching circuit 45.

また、上述の実施の形態では、進相コンデンサ回路20の初期投入量を予め設定しておき、1段ずつ増加させる手法について説明したが、溶接機1の漸増制御期間における進相コンデンサ回路20の投入段数漸増制御部はこれには限定されず、例えば、加算する段数を別途記憶させておき加算増加させる手法、投入量を予めメモリに記憶させておき任意のパターン制御を実現する等、種々の手法を採り得る。   Further, in the above-described embodiment, the method of setting the initial charging amount of the phase advance capacitor circuit 20 in advance and increasing it step by step has been described, but the phase advance capacitor circuit 20 of the welder 1 during the gradual increase control period has been described. The input step number gradual increase control unit is not limited to this. For example, various methods such as separately storing the number of steps to be added and increasing the number of additions, storing the input amount in a memory in advance, and realizing arbitrary pattern control, etc. Approach can be taken.

加えて、補償値および必要な進相コンデンサ投入段数の具体的な算出方法についても、上述の実施例に記載のものに一切限定されず、既知の手法を適宜採用することができる。   In addition, the specific calculation method of the compensation value and the necessary number of phase-advancing capacitor input stages is not limited to that described in the above-described embodiment, and a known method can be appropriately employed.

溶接機に本発明の実施の形態に係る電圧変動補償装置を接続した図である。It is the figure which connected the voltage fluctuation compensation apparatus which concerns on embodiment of this invention to the welding machine. 図1に示すスイッチ制御部の概略構成のブロック図である。It is a block diagram of schematic structure of the switch control part shown in FIG. 図1に示す電圧変動補償装置の制御シーケンスのタイムチャートである。It is a time chart of the control sequence of the voltage fluctuation compensation apparatus shown in FIG. 溶接機に従来の有効電力・無効電力検出併用方式の電圧変動補償装置を接続した図である。It is the figure which connected the voltage fluctuation compensator of the conventional combined use method of active power and reactive power detection to the welding machine. 図4に示す電圧変動補償装置の制御シーケンスのタイムチャートである。It is a time chart of the control sequence of the voltage fluctuation compensation apparatus shown in FIG. 溶接機に従来の通電同期信号および無効電力・有効電力検出併用方式の電圧変動補償装置を接続した図である。It is the figure which connected the voltage fluctuation compensation apparatus of the conventional energization synchronous signal and reactive power / active power detection combined use system to the welding machine. 図6に示す電圧変動補償装置の制御シーケンスのタイムチャートである。It is a time chart of the control sequence of the voltage fluctuation compensation apparatus shown in FIG.

符号の説明Explanation of symbols

1 溶接機
1a 溶接機コントローラ
3 配電線
10 電圧変動補償装置
11 計器用変圧器
13 変流器
20 進相コンデンサ回路
21〜24 リアクトル・コンデンサユニット
21a〜24a 直列リアクトル
21b〜24b 半導体スイッチ
21c〜24c 進相コンデンサ
30 スイッチ制御部
31 補償値検出部
32 投入量演算部
33 通電同期信号出力部
34 遅延時間記憶部
36 漸増制御期間記憶部
41 投入量漸増部
45 信号切換回路
46 指令回路
DESCRIPTION OF SYMBOLS 1 Welding machine 1a Welding machine controller 3 Distribution line 10 Voltage fluctuation compensation apparatus 11 Instrument transformer 13 Current transformer 20 Phase advance capacitor circuit 21-24 Reactor capacitor unit 21a-24a Series reactor 21b-24b Semiconductor switch 21c-24c Progression Phase capacitor 30 Switch control unit 31 Compensation value detection unit 32 Input amount calculation unit 33 Energization synchronization signal output unit 34 Delay time storage unit 36 Gradually increasing control period storage unit 41 Input amount gradually increasing unit 45 Signal switching circuit 46 Command circuit

Claims (4)

溶接機負荷と電気的に接続され、通電開始後所定期間に溶接電流が漸増するように溶接機コントローラにより制御される前記溶接機によって配電線に発生する電圧変動を補償する電圧変動補償装置であって、
前記溶接機負荷と電気的に接続された配電線の電圧を検出する計器用変圧器と、
負荷電流を検出する変流器と、
直列リアクトル、半導体スイッチ、および進相コンデンサを直列接続したリアクトル・コンデンサユニットを複数含み、前記溶接機負荷と並列に接続された進相コンデンサ回路と、
前記溶接機における通電開始前から、通電終了までの間に前記溶接機コントローラから出力される通電信号を受信すると共に、前記溶接機の通電開始後、該溶接機の漸増制御期間終了時まで通電同期信号を出力する通電同期信号出力部と、
前記通電同期信号の受信開始時から所定の時間間隔毎に、投入する進相コンデンサの容量値を次第に増加するように設定する投入量漸増部と、
前記計器用変圧器の出力および前記変流器の出力から演算される前記溶接機負荷の有効電力および無効電力に基づいて、前記配電線に発生する電圧変動に対応する補償値を検出する補償値検出部と、
前記補償値検出部によって検出された補償値に応じた進相コンデンサの容量値を演算する投入量演算部と、
前記通電同期信号受信中は、前記投入量漸増部で演算された容量値を出力すると共に、前記通電同期信号受信終了後は、前記投入量演算部で演算された容量値を出力する信号切換回路と、
前記信号切換回路から出力された容量値に基づいて、前記半導体スイッチをオン/オフする信号を出力する指令回路とを備えており、
前記通電同期信号出力部が、前記通電信号を受信してから前記溶接機の通電開始までの遅延時間を記憶する遅延時間記憶部、前記溶接機の漸増制御期間を記憶する漸増制御期間記憶部、通電信号受信後、前記遅延時間記憶部の記憶内容に基づいて、溶接機の通電開始までの遅延時間を計時する遅延タイマ、前記遅延タイマによって遅延時間が計時された後、前記漸増制御期間記憶部の記憶内容に基づいて、漸増制御期間が終了するまでの時間を計時する漸増制御期間タイマ、および前記漸増制御期間タイマが計時している間に通電信号を出力するAND回路を有しており、
前記投入量漸増部が、所定時間間隔毎にパルスを発生させる漸増クロック発生回路、溶接機の通電開始時に発生する電圧降下を補償できる進相コンデンサ容量を記憶する漸増開始容量記憶部、および前記漸増開始容量記憶部に記憶されている進相コンデンサ容量から前記漸増クロック発生回路から出力されるパルスに従ってカウントアップを行うカウンタ回路を有していることを特徴とする電圧変動補償装置。
A voltage fluctuation compensator that is electrically connected to a welder load and compensates for voltage fluctuations generated in a distribution line by the welding machine controlled by a welding machine controller so that a welding current gradually increases in a predetermined period after the start of energization. And
An instrument transformer for detecting a voltage of a distribution line electrically connected to the welder load;
A current transformer for detecting the load current;
A plurality of reactor / capacitor units each including a series reactor, a semiconductor switch, and a phase advance capacitor connected in series; and a phase advance capacitor circuit connected in parallel with the welder load;
The energization signal output from the welding machine controller is received before the energization is completed before the energization is started in the welding machine, and the energization synchronization is performed after the energization of the welding machine is started until the end of the gradual increase control period of the welding machine. An energization synchronization signal output unit for outputting a signal;
An input amount gradual increase unit that sets the capacitance value of the phase advance capacitor to be gradually increased every predetermined time interval from the start of reception of the energization synchronization signal;
A compensation value for detecting a compensation value corresponding to a voltage fluctuation generated in the distribution line based on the active power and reactive power of the welding machine load calculated from the output of the instrument transformer and the output of the current transformer A detection unit;
An input amount calculation unit that calculates the capacitance value of the phase advance capacitor according to the compensation value detected by the compensation value detection unit;
While receiving the energization synchronization signal, a signal switching circuit that outputs the capacitance value calculated by the input amount gradually increasing unit and outputs the capacitance value calculated by the input amount calculation unit after receiving the energization synchronization signal When,
A command circuit for outputting a signal for turning on / off the semiconductor switch based on the capacitance value output from the signal switching circuit;
A delay time storage unit that stores a delay time from when the energization synchronization signal output unit receives the energization signal until the start of energization of the welding machine; a gradually increasing control period storage unit that stores a gradually increasing control period of the welding machine; After receiving the energization signal, based on the stored contents of the delay time storage unit, a delay timer for measuring the delay time until the start of energization of the welding machine, and after the delay time is measured by the delay timer, the gradually increasing control period storage unit The incremental control period timer that measures the time until the gradual increase control period ends, and an AND circuit that outputs an energization signal while the gradual increase control period timer counts,
The incremental amount gradually increasing unit generates a gradually increasing clock generating circuit for generating a pulse at predetermined time intervals, a gradually increasing start capacity storing unit for storing a phase advance capacitor capacity capable of compensating for a voltage drop that occurs at the start of energization of the welding machine, and the gradually increasing unit A voltage fluctuation compensator, comprising: a counter circuit that counts up according to a pulse output from the gradually increasing clock generation circuit from a phase advance capacitor capacity stored in a start capacity storage unit.
前記進相コンデンサは、互いに異なる容量を有しており、前記指令回路は、入力された容量値から複数の前記半導体スイッチのうちオンにするものを決定することを特徴とする請求項1に記載の電圧変動補償装置。   The said phase advance capacitor has a mutually different capacity | capacitance, The said command circuit determines what to turn ON among the said some semiconductor switch from the inputted capacitance value. Voltage fluctuation compensation device. 前記進相コンデンサのうち、最も容量の小さい進相コンデンサの容量を基準容量Cとしたとき、容量が小さい順にi番目の進相コンデンサの容量が、基準容量Cに2の(i―1)乗を乗じた値(1≦i≦n、(n:進相コンデンサの個数))になることを特徴とする請求項2に記載の電圧変動補償装置。   When the capacity of the phase advance capacitor having the smallest capacity among the phase advance capacitors is defined as the reference capacity C, the capacity of the i-th phase advance capacitor is increased to the (i-1) th power of the reference capacity C in order of increasing capacity. The voltage fluctuation compensation device according to claim 2, wherein a value obtained by multiplying by (1 ≦ i ≦ n, (n: number of phase-advancing capacitors)) is obtained. 前記信号切換回路は、前記通電信号が入力され、前記通電信号の出力が終了した際に、前記指令回路への出力を停止することを特徴とする請求項1〜3のいずれか1項に記載の電圧変動補償装置。   The said signal switching circuit stops the output to the said command circuit, when the said energization signal is input and the output of the said energization signal is complete | finished, The any one of Claims 1-3 characterized by the above-mentioned. Voltage fluctuation compensation device.
JP2006097279A 2006-03-31 2006-03-31 Voltage fluctuation compensation device Active JP4676369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006097279A JP4676369B2 (en) 2006-03-31 2006-03-31 Voltage fluctuation compensation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006097279A JP4676369B2 (en) 2006-03-31 2006-03-31 Voltage fluctuation compensation device

Publications (2)

Publication Number Publication Date
JP2007272550A JP2007272550A (en) 2007-10-18
JP4676369B2 true JP4676369B2 (en) 2011-04-27

Family

ID=38675294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006097279A Active JP4676369B2 (en) 2006-03-31 2006-03-31 Voltage fluctuation compensation device

Country Status (1)

Country Link
JP (1) JP4676369B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009100426A (en) 2007-10-19 2009-05-07 Nec Corp Signal monitoring device, communication system, signal monitoring method, and program for signal monitoring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681011U (en) * 1993-04-15 1994-11-15 日新電機株式会社 Control method of voltage fluctuation suppression device
JP2001145265A (en) * 1999-11-12 2001-05-25 Matsushita Electric Ind Co Ltd Automatic power factor controlling device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526667B1 (en) * 1967-09-11 1980-07-15
JPS58112673A (en) * 1982-12-13 1983-07-05 Matsushita Electric Ind Co Ltd Resistance welding control method
JP2527158B2 (en) * 1983-09-29 1996-08-21 ニチコン株式会社 Flickering compensator
JPS6087629A (en) * 1983-10-17 1985-05-17 ニチコン株式会社 Flicker compensator
JPH0679260B2 (en) * 1984-08-18 1994-10-05 ニチコン株式会社 Reactive power compensator
JPH0640287B2 (en) * 1986-09-09 1994-05-25 ニチコン株式会社 Flickering compensator
JPH0832364B2 (en) * 1987-06-08 1996-03-29 ニチコン株式会社 Power supply for welding machine
JPH082507B2 (en) * 1988-12-01 1996-01-17 ニチコン株式会社 Flicker compensator
JP2703586B2 (en) * 1988-12-05 1998-01-26 ニチコン株式会社 Flicker compensator
JPH05176482A (en) * 1991-12-25 1993-07-13 Hitachi Ltd Load voltage compensating device for emergency
JPH05344654A (en) * 1992-06-10 1993-12-24 Hitachi Ltd Voltage drop compensator
JPH06259153A (en) * 1993-03-03 1994-09-16 Nissin Electric Co Ltd Control system for reactive power compensator
JPH07104873A (en) * 1993-10-05 1995-04-21 Kurihara Kogyo Kk Power factor improving device
JPH09182294A (en) * 1995-12-27 1997-07-11 Fuji Electric Co Ltd Power factor regulator
JPH10301647A (en) * 1997-04-30 1998-11-13 Meidensha Corp Power compensating device of electric furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681011U (en) * 1993-04-15 1994-11-15 日新電機株式会社 Control method of voltage fluctuation suppression device
JP2001145265A (en) * 1999-11-12 2001-05-25 Matsushita Electric Ind Co Ltd Automatic power factor controlling device

Also Published As

Publication number Publication date
JP2007272550A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP4530066B2 (en) Power conversion circuit control device and power conversion system
US10148095B2 (en) Method and apparatus for compensating non-active currents in electrical power networks
JP6358859B2 (en) Inverter power generation system and inverter power generation device
JP4805863B2 (en) Charger
JP5826780B2 (en) Power conversion circuit system
US20090251933A1 (en) Method for controlling inverters
EP1836757A1 (en) System for controlling voltage balancing in a plurality of litium-ion cell battery packs and method thereof
JPS58182726A (en) Method and apparatus for automatically setting optimum operation point of dc power source
JP3980515B2 (en) Voltage fluctuation compensation device
JP2017200409A (en) Controller and power conversion system
RU2354025C1 (en) Method for high harmonics compensation and system power factor correction
JP4676369B2 (en) Voltage fluctuation compensation device
RU2012103703A (en) POWER SUPPLY CONTROL METHOD AND POWER SUPPLY CONTROLLER
CN107635711A (en) Energy storage canister for welding system
JP2013150490A (en) Power conversion device
JP2008125169A (en) Power transformer for system coordination
JP6574725B2 (en) Power converter and isolated operation detection method
JP6500738B2 (en) Power converter and control method thereof
KR101026281B1 (en) Current controller of active power filter
JP3819722B2 (en) Voltage fluctuation compensation device
JP4300998B2 (en) Power control method and power control apparatus
JP2008312370A (en) Reactive power compensating device and control method therefor
JP7475773B2 (en) Power Conversion Equipment
KR20060068057A (en) Pwm synchronization method and system for parallel operation of three-phase uninterruptible power supply
JP2004056838A (en) Dc voltage generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4676369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250