JPH10301647A - Power compensating device of electric furnace - Google Patents

Power compensating device of electric furnace

Info

Publication number
JPH10301647A
JPH10301647A JP9112279A JP11227997A JPH10301647A JP H10301647 A JPH10301647 A JP H10301647A JP 9112279 A JP9112279 A JP 9112279A JP 11227997 A JP11227997 A JP 11227997A JP H10301647 A JPH10301647 A JP H10301647A
Authority
JP
Japan
Prior art keywords
reactive power
unit
data
power
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9112279A
Other languages
Japanese (ja)
Inventor
Toshio Yoshida
利夫 吉田
Sunao Mochizuki
直 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP9112279A priority Critical patent/JPH10301647A/en
Publication of JPH10301647A publication Critical patent/JPH10301647A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Landscapes

  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

PROBLEM TO BE SOLVED: To compensate inactive and active power and to prevent flicker due to voltage fluctuation from occurring. SOLUTION: Commercial power supply is stepped down by a three-phase transformer TF1 and is supplied as power to an electric furnace that is load. A reactive power compenrator FS in an SVG system is provided between a cable LI and ground, and in the device FS, a condenser C is parallelly connected to a serial circuit of a reactor L1 and a fast switching circuit SW. A reactive power compensator VC consists of a three-phase transformer TF2 , a reactor L2 and an inverter part INV and is connected between the cable LI and the ground. Current that is detected by a current transformer CT and voltage that is detected by a potential transformer PT are guided into a predictive functioning part KOS that uses chaos theory. The part KOS operates and predicts a reactive power amount from current and voltage value, and the predictive value is inputted to controlling parts CTR1 and CTR2 . The parts CTR1 and CTR2 control the inverter device INV and the circuit SW according to the inputted predictive value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電力の品質低下
を改善した電気炉の電力補償装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power compensating device for an electric furnace in which deterioration of power quality is improved.

【0002】[0002]

【従来の技術】周知のように電気炉には、図4、図5に
示すような、AC方式とDC方式がある。図4のAC方
式は、商用電源を遮断器CBを介して変圧器TFの1次
側に導き、その2次側に電極棒ELを接続し、電極棒E
Lを炉FUの鉄スクラップIS内に挿入したものであ
る。電極棒ELには低圧の数10VのAC電圧を印加し
て鉄スクラップISを通した電極間短絡により、そのス
クラップISを熔融するものである。また、図5のDC
方式は、変圧器TFの2次側出力を整流器RFで直流電
圧に変換した後に、電極棒ELに印加させたもので、直
流電圧でスクラップISを熔融させる点が上記AC方式
と異なるだけである。
2. Description of the Related Art As is well known, electric furnaces include an AC system and a DC system as shown in FIGS. In the AC system shown in FIG. 4, a commercial power supply is led to a primary side of a transformer TF via a circuit breaker CB, and an electrode bar EL is connected to a secondary side thereof.
L is inserted into the iron scrap IS of the furnace FU. A low voltage AC voltage of several tens of volts is applied to the electrode rod EL to melt the scrap IS by short-circuiting between the electrodes through the iron scrap IS. Also, the DC of FIG.
The method is such that the secondary side output of the transformer TF is converted into a DC voltage by the rectifier RF and then applied to the electrode rod EL. The only difference from the AC method is that the scrap IS is melted by the DC voltage. .

【0003】上述したAC,DC両方式では、電極間の
鉄のスクラップ状態によるため、短絡電流(有効、無
効)が不規則に変化する。この不規則変化は電力会社の
電力系統にまで影響を及ぼすため、電気炉特有のいわゆ
る「フリッカ」が生じることが知られている。
In both the AC and DC systems described above, the short-circuit current (valid / invalid) varies irregularly due to the scrap state of iron between the electrodes. It is known that the irregular change affects the electric power system of the electric power company, so that a so-called "flicker" peculiar to the electric furnace occurs.

【0004】この「フリッカ」の問題を解決するため、
図6に示すサイリスタ位相制御リアクトル(TCR)無
効電力補償方式で無効電力の変化分をキャンセルするこ
とが行われているが、この方式は最短でも10mSの応答
であるために、十分な解決に至っていないのが現状であ
る。なお、図6において、CTは変流器、PTは変圧
器、CRはゲート制御装置、SCRはサイリスタ、Lは
リアクトル、Cはコンデンサである。
In order to solve the problem of "flicker",
The thyristor phase control reactor (TCR) reactive power compensation system shown in FIG. 6 cancels the change in the reactive power. However, since this system has a response of at least 10 ms, a sufficient solution has been reached. There is no present. In FIG. 6, CT is a current transformer, PT is a transformer, CR is a gate control device, SCR is a thyristor, L is a reactor, and C is a capacitor.

【0005】上記応答特性を改善するために、高速スイ
ッチング素子であるIGBTを使用したSVG(Static
Var Generator)方式が開発されたが、このSVG方式
は、応答特性が1mS程度となって応答遅れは解決できる
けれども、このSVG方式は、容量がMVA(メガ・ボ
ルト・アンペア)オーダの装置として実用化するには困
難を伴う問題がある。
In order to improve the response characteristics, an SVG (Static) using an IGBT which is a high-speed switching element is used.
Var Generator) system was developed, but this SVG system has a response characteristic of about 1 ms and can solve the response delay. However, this SVG system is practical as a device with a capacity of MVA (mega volt amperes) There are problems that are difficult to achieve.

【0006】[0006]

【発明が解決しようとする課題】上述したように、TC
R方式では無効電力補償の応答遅れのために、フリッカ
問題が十分に解決できなく、また、SVG方式は高価で
あるとともに、容量の問題もある。このため、近年、エ
レクトロニクス化の発展で各企業においてのコンピュー
タの設置が増大しているために、上記フリッカによる電
圧変動がコンピュータに与えることが問題になりつつあ
る。
As described above, TC
In the R system, the flicker problem cannot be sufficiently solved due to the response delay of the reactive power compensation, and the SVG system is expensive and has a problem of capacity. For this reason, in recent years, the installation of computers in each company has been increasing due to the development of electronics, and the problem that the voltage fluctuation due to the flicker gives to the computers is becoming a problem.

【0007】この発明は上記の事情に鑑みてなされたも
ので、無効電力または無効・有効電力を補償して、電圧
変動によるフリッカが発生しないようにし、かつ安定受
電するようにした電気炉の電力補償装置を提供すること
を課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been made in consideration of the above-mentioned circumstances. It is an object to provide a compensation device.

【0008】[0008]

【課題を解決するための手段】この発明は、上記の課題
を達成するために、第1発明は、商用電源を変圧器で降
圧して負荷である電気炉に電力として供給する装置にお
いて、前記変圧器の一次側の電路とアース間に接続さ
れ、高速スイッチング回路を有するSVG方式の無効電
力補償装置と、このSVG方式の無効電力補償装置と並
列接続されるインバータ部を有する無効電力補償装置
と、前記電路に流れる電流情報と電路の電圧情報が入力
され、これら情報から無効電力の予測演算を行って出力
に予測制御出力を送出する予測機能部と、この予測機能
部から送出される予測制御出力が供給され、前記SVG
方式の無効電力補償装置の高速スイッチング回路とイン
バータ方式の無効電力補償装置のインバータ部を前記予
測制御出力に基づいて制御させる制御部とを備え、前記
SVG方式の無効電力補償装置とインバータ方式の無効
電力補償装置を併用して電路の電圧変動を極力小さくす
るようにしたものである。
According to a first aspect of the present invention, there is provided an apparatus for supplying electric power to an electric furnace as a load by stepping down a commercial power supply with a transformer. A SVG reactive power compensator having a high-speed switching circuit, which is connected between an electric circuit on the primary side of the transformer and ground and a reactive power compensator having an inverter connected in parallel with the SVG reactive power compensator; A prediction function unit that receives current information flowing through the electric circuit and voltage information of the electric circuit, performs a prediction operation of reactive power from these information, and sends a prediction control output to an output, and a prediction control unit transmitted from the prediction function unit. Output is supplied and the SVG
A high-speed switching circuit of the reactive power compensating device of the system and a control unit for controlling the inverter unit of the reactive power compensating device of the inverter system based on the predicted control output, wherein the reactive power compensating device of the SVG system and the reactive power of the inverter system are provided. The power compensator is used in combination to minimize the voltage fluctuation of the electric circuit.

【0009】第2発明は、前記インバータ方式の無効電
力補償装置はインバータ部に直流電源を接続することに
よって、無効電力と有効電力の変動分を同時に補償でき
るようにしたものである。
According to a second aspect of the present invention, the inverter type reactive power compensating device is capable of simultaneously compensating for the fluctuations in the reactive power and the active power by connecting a DC power supply to the inverter section.

【0010】第3発明は、前記予測機能部が、電路の電
流、電圧情報から無効電力を演算する無効電力演算部
と、予め電路の電流、電圧情報から無効電力を検出し、
その無効電力を時系列データとして入力されたデータ入
力部と、このデータ入力部からの時系列データと前記無
効電力演算部からの無効電力が入力され、前記時系列デ
ータを埋め込んで多次元再構成空間のアトラクタを得る
とともに、そのアトラクタ中で無効電力を含むベクトル
を埋め込んだベクトルデータを得るデータ埋め込み部
と、このデータ埋め込み部のベクトルデータからそのデ
ータの近傍に存在する点が供給され、この点が次の時点
でどこに存在するかを前記データ埋め込み部で求めて予
測値を演算する予測計算部と、この予測計算部で演算さ
れた予測値を出力するデータ出力部とからなるものであ
る。
According to a third aspect of the present invention, the prediction function unit calculates a reactive power from current and voltage information of the electric circuit, and detects a reactive power from the current and voltage information of the electric circuit in advance.
A data input unit in which the reactive power is input as time-series data, and time-series data from the data input unit and reactive power from the reactive power calculation unit are input, and the time-series data is embedded to perform multidimensional reconstruction. A data embedding unit that obtains a space attractor and obtains vector data in which a vector including reactive power is embedded in the attractor, and a point existing near the data is supplied from the vector data of the data embedding unit. The data embedding section obtains the location where the data exists at the next time and calculates a predicted value, and the data output section outputs the predicted value calculated by the prediction calculation section.

【0011】[0011]

【発明の実施の形態】以下この発明の実施の形態を図面
に基づいて説明する。図1はこの発明の実施の第1形態
を示す概略構成図で、この図1に示す第1形態は、フリ
ッカ抑制のための無効電力補償を行うものである。図1
において、商用電源は、遮断器CBを介して三相変圧器
TF1にて降圧され、負荷である電気炉(図示省略)に
電力として供給される。遮断器CBと三相変圧器TF1
とを結ぶ電路LIとアース間には、図示一点鎖線で囲ん
だSVG方式の無効電力補償装置FSが設けられる。こ
のSVG方式の無効電力補償装置FSは、リアクトルL
1とIGBT等からなる高速スイッチング回路SWとの
直列回路に、コンデンサCを並列接続したものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention. The first embodiment shown in FIG. 1 performs reactive power compensation for suppressing flicker. FIG.
In commercial power supply is stepped down through the circuit breaker CB in a three-phase transformer TF 1, is supplied as power to the electric furnace is a load (not shown). Circuit breaker CB and three-phase transformer TF 1
Is provided between the electric circuit LI connecting to the ground and the ground, an SVG type reactive power compensator FS surrounded by a dashed line in the figure. The SVG reactive power compensator FS includes a reactor L
In this example , a capacitor C is connected in parallel to a series circuit of a high-speed switching circuit SW made up of 1 and an IGBT.

【0012】図示二点鎖線で囲んだVCはインバータ方
式の無効電力補償装置で、この無効電力補償装置VCは
三相変圧器TF2、リアクトルL2およびインバータ部I
NVから構成され、前記電路LIとアース間に接続され
る。電路LIには変流器CTと変圧器PTが設けられ、
変流器CTで検出された電流情報と、変圧器PTで検出
された電圧情報とが後述するカオス理論を用いた予測機
能部KOSに導入される。この予測機能部KOSでは導
入された電流、電圧情報から無効電力量を演算し予測し
て、その予測値が制御部CTR1、CTR2に入力され
る。制御部CTR1、CTR2は入力された予測値に従っ
て、インバータ部INVと高速スイッチング回路SWを
制御する。
A VC surrounded by a two-dot chain line is an inverter type reactive power compensator. The reactive power compensator VC is composed of a three-phase transformer TF 2 , a reactor L 2 and an inverter I.
NV, which is connected between the electric circuit LI and the ground. The electric current path LI is provided with a current transformer CT and a transformer PT,
The current information detected by the current transformer CT and the voltage information detected by the transformer PT are introduced into a prediction function unit KOS using chaos theory described later. The prediction function unit KOS calculates and predicts the reactive power amount from the introduced current and voltage information, and the predicted value is input to the control units CTR 1 and CTR 2 . The control units CTR 1 and CTR 2 control the inverter unit INV and the high-speed switching circuit SW according to the input predicted value.

【0013】上記のように構成された第1形態におい
て、負荷である電気炉には、鉄くず等のスクラップが収
納され、この鉄くず等のスクラップ内に、電極棒が挿入
されて三相変圧器TF1から電力が供給されると、電極
棒間に短絡電流が流れてスクラップを熔融し始める。こ
のとき、鉄くず等のスクラップの状態によって電力量は
大幅に変動する。この変動に伴って、電路LIに流れる
電流、電圧情報も変動する。この変動情報は、変流器C
T、変圧器PTにより検出されて予測機能部KOSに入
力される。
In the first embodiment configured as described above, scraps such as iron scraps are stored in the electric furnace as a load, and the electrode rods are inserted into the scraps such as iron scraps to form a three-phase transformer. When power from the vessel TF 1 is supplied, a short-circuit current between the electrode bar starts to melt scrap flows. At this time, the amount of power fluctuates greatly depending on the state of scrap such as scrap iron. With this change, the current and voltage information flowing through the electric circuit LI also change. This fluctuation information is obtained from the current transformer C
T, detected by the transformer PT and input to the prediction function unit KOS.

【0014】ここで、図2により予測機能部KOSにつ
いて述べる。図2において、無効電力演算部11には、
変流器CTと変圧器PTで検出された負荷電路の電流、
電圧情報が入力される。無効電力演算部11では、検出
される電流、電圧情報の位相のずれより無効電力量が演
算される。データ入力部12は予め上述と同様に検出さ
れ、演算された無効電力量の時系列データが入力され
る。このデータ入力部12から出力されるデータはデー
タ埋め込み部13に、前記無効電力演算部11で演算さ
れた無効電力とともに埋め込みが行われる。
Here, the prediction function unit KOS will be described with reference to FIG. In FIG. 2, the reactive power calculation unit 11 includes:
The current of the load circuit detected by the current transformer CT and the transformer PT,
Voltage information is input. The reactive power calculator 11 calculates the amount of reactive power from the detected current and voltage information phase shifts. The data input unit 12 receives time-series data of the reactive power amount detected and calculated in advance as described above. The data output from the data input unit 12 is embedded in the data embedding unit 13 together with the reactive power calculated by the reactive power calculating unit 11.

【0015】ここで言う「埋め込み」とは、ある時系列
データを多次元再構成空間の軌道として表す操作のこと
である。前記埋め込み部13で作られたn次元ベクトル
軌道(アトラクタ)の中で、無効電力演算部13で演算
された無効電力を含むベクトルを埋め込んだベクトル
(n次元再構成空間におけるある1点に対応している)
の近傍に存在する点を近傍データ探索部14で探索す
る。この探索部14で探索した近傍の点が予測計算部1
5に与えられると、予測計算部15では、近傍の点が次
の時点で、どこに存在するかをデータ埋め込み部13で
求めて予測演算し、その予測演算された結果がデータ出
力部16から出力されて,図1に示す制御部CTR1
CTR2に与えられる。
The term "embedding" as used herein refers to an operation for representing certain time-series data as a trajectory in a multidimensional reconstruction space. In the n-dimensional vector trajectory (attractor) created by the embedding unit 13, a vector (corresponding to a point in the n-dimensional reconstruction space corresponding to a certain point in the n-dimensional ing)
Is searched by the nearby data search unit 14. The neighboring point searched by the search unit 14 is the prediction calculation unit 1
5, the prediction calculation unit 15 determines where the nearby point exists at the next time by the data embedding unit 13 and performs a prediction calculation. The prediction calculation result is output from the data output unit 16. Then, the control unit CTR 1 shown in FIG.
It is given to the CTR 2.

【0016】制御部CTR2からの制御出力によりSV
G方式の無効電力補償装置FSのIGBT等からなる高
速スイッチング回路SWが制御されると、電路LIの変
動を相殺するようにリアクトルL1の電流を高速スイッ
チング回路SWで調整する。この調整により電路LIの
無効電力による変動は抑制できるけれども、一定の遅れ
無効電力は継続するので、コンデンサCの進み電流によ
りこれを補償するようにしている。このSVG方式の無
効電力補償装置FSだけでは、波形歪みのレベルまでは
補償ができないために、第1形態では無効電力補償装置
VCのインバータ部INVを前記制御部CTR1の制御
出力で制御して無効電力の補償を行う。これにより、波
形歪みレベルまで補償ができるようになり、かつ電圧変
動を1〜2%程度まで抑制可能になる。
The control output from the control unit CTR 2 causes the SV
When high-speed switching circuit SW composed of IGBT or the like of the reactive power compensator FS of G scheme is controlled to adjust the current of the reactor L 1 so as to offset the variation of the electrical path LI fast switching circuit SW. Although the fluctuation due to the reactive power of the electric circuit LI can be suppressed by this adjustment, a constant delayed reactive power continues, so that it is compensated by the leading current of the capacitor C. Alone reactive power compensator FS of this SVG method, to a level of the waveform distortion because it can not be compensated, in the first embodiment by controlling the inverter unit INV of the reactive power compensator VC at the control output of the control unit CTR 1 Compensate for reactive power. This makes it possible to compensate up to the waveform distortion level and to suppress the voltage fluctuation to about 1 to 2%.

【0017】図3はこの発明の実施の第2形態を示す概
略構成図で、図1と同一部分は同一符号を付してその詳
細な説明は省略する。図3の第2形態は、前記第1形態
のインバータ方式の無効電力補償装置VCのインバータ
部INVに直流電源Bを設けて、無効電力補償だけでな
く、有効電力も補償するようにしたものである。このよ
うに構成することにより、電圧変動は0.5〜1%程度
とさらに抑制できるようになる。なお、上記実施の形態
から、スポット溶接器にも適用可能である。
FIG. 3 is a schematic configuration diagram showing a second embodiment of the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. In the second embodiment shown in FIG. 3, a DC power supply B is provided in the inverter section INV of the inverter-type reactive power compensating device VC of the first embodiment to compensate not only for reactive power but also for active power. is there. With this configuration, the voltage fluctuation can be further suppressed to about 0.5 to 1%. In addition, from the said embodiment, it is applicable to a spot welder.

【0018】[0018]

【発明の効果】以上述べたように、この発明によれば、
連続的に不規則な負荷変化を予測して制御し、かつ無効
電力、有効電力を補償することにより、極めて速い応答
の補償が可能となり、かつ商用電源からの受電電力は負
荷変動、電圧変動の少ない安定した受電が可能となる利
点がある。
As described above, according to the present invention,
By predicting and controlling irregular load changes continuously and compensating for reactive power and active power, it is possible to compensate for extremely fast response, and the power received from the commercial power supply is subject to load fluctuations and voltage fluctuations. There is an advantage that small and stable power reception becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の第1形態を示す概略構成図。FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention.

【図2】予測機能部のブロック構成図。FIG. 2 is a block configuration diagram of a prediction function unit.

【図3】この発明の実施の第2形態を示す概略構成図。FIG. 3 is a schematic configuration diagram showing a second embodiment of the present invention.

【図4】電気炉のAC方式を示す概略構成図。FIG. 4 is a schematic configuration diagram showing an AC type of an electric furnace.

【図5】電気炉のDC方式を示す概略構成図。FIG. 5 is a schematic configuration diagram showing a DC system of the electric furnace.

【図6】従来のTCR方式における無効電力補償装置の
概略構成図。
FIG. 6 is a schematic configuration diagram of a conventional reactive power compensator in a TCR method.

【符号の説明】[Explanation of symbols]

FS…SVG方式の無効電力補償装置 VC…インバータ方式の無効電力補償装置 L1,L2…リアクトル C…コンデンサ SW…高速スイッチング回路 TF1,TF2…三相変圧器 KOS…予測機能部 INV…インバータ部 CTR1,CTR2…制御部 CT…変流器 PT…変圧器 LI…電路 11…無効電力演算部 12…データ入力部 13…データ埋め込み部 14…近傍データ探索部 15…予測計算部 16…データ出力部FS ... reactive power compensator L 1 of the reactive power compensator VC ... inverter type of SVG scheme, L 2 ... reactor C ... Capacitor SW ... high-speed switching circuit TF 1, TF 2 ... three-phase transformer KOS ... prediction function unit INV ... Inverter unit CTR 1 , CTR 2 ... Control unit CT ... Current transformer PT ... Transformer LI ... Electric circuit 11 ... Reactive power calculation unit 12 ... Data input unit 13 ... Data embedding unit 14 ... Nearby data search unit 15 ... Prediction calculation unit 16 ... Data output section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 商用電源を変圧器で降圧して負荷である
電気炉に電力として供給する装置において、 前記変圧器の一次側の電路とアース間に接続され、高速
スイッチング回路を有するSVG方式の無効電力補償装
置と、このSVG方式の無効電力補償装置と並列接続さ
れるインバータ部を有する無効電力補償装置と、前記電
路に流れる電流情報と電路の電圧情報が入力され、これ
ら情報から無効電力の予測演算を行って出力に予測制御
出力を送出する予測機能部と、この予測機能部から送出
される予測制御出力が供給され、前記SVG方式の無効
電力補償装置の高速スイッチング回路とインバータ方式
の無効電力補償装置のインバータ部を前記予測制御出力
に基づいて制御させる制御部とを備え、 前記SVG方式の無効電力補償装置とインバータ方式の
無効電力補償装置を併用して電路の電圧変動を極力小さ
くするようにしたことを特徴とする電気炉の電力補償装
置。
1. An SVG type device having a high-speed switching circuit, which is connected between an electric circuit on a primary side of a transformer and a ground and which is stepped down from a commercial power supply by a transformer and supplied to an electric furnace as a load. A reactive power compensating device, a reactive power compensating device having an inverter section connected in parallel with the SVG type reactive power compensating device, and information on current flowing through the electric circuit and voltage information on the electric circuit are inputted. A prediction function unit for performing a prediction operation and transmitting a prediction control output to an output, and a prediction control output transmitted from the prediction function unit are supplied, and a high-speed switching circuit of the SVG type reactive power compensator and an invalidation of the inverter type are supplied. A control unit for controlling an inverter unit of the power compensating device based on the predicted control output; Electric furnace power compensator being characterized in that so as to minimize the voltage change of path in combination of reactive power compensation device data type.
【請求項2】 前記インバータ方式の無効電力補償装置
は、直流電源をインバータに接続し、インバータのスイ
ッチング素子の点弧位相を変え無効電力と有効電力を同
時に補償するようにした請求項1記載の電気炉の電力補
償装置。
2. The inverter-based reactive power compensating device according to claim 1, wherein a DC power supply is connected to the inverter, and the firing phase of a switching element of the inverter is changed to simultaneously compensate for the reactive power and the active power. Electric furnace power compensator.
【請求項3】 前記予測機能部は、電路の電流、電圧情
報から無効電力を演算する無効電力演算部と、予め電路
の電流、電圧情報から無効電力を検出し、その無効電力
を時系列データとして入力されたデータ入力部と、この
データ入力部からの時系列データと前記無効電力演算部
からの無効電力が入力され、前記時系列データを埋め込
んで多次元再構成空間のアトラクタを得るとともに、そ
のアトラクタ中で無効電力を含むベクトルを埋め込んだ
ベクトルデータを得るデータ埋め込み部と、このデータ
埋め込み部のベクトルデータからそのデータの近傍に存
在する点が供給され、この点が次の時点でどこに存在す
るかを前記データ埋め込み部で求めて予測値を演算する
予測計算部と、この予測計算部で演算された予測値を出
力するデータ出力部とからなる請求項1または2記載の
電気炉の電力補償装置。
3. The predicting function unit calculates a reactive power from current and voltage information of a circuit, a reactive power calculating unit that detects reactive power from current and voltage information of the circuit in advance, and converts the reactive power into time-series data. As the data input unit, the time series data from the data input unit and the reactive power from the reactive power calculation unit are input, and the time series data is embedded to obtain an attractor of a multidimensional reconstruction space, A data embedding unit that obtains vector data in which a vector including reactive power is embedded in the attractor, and a point existing near the data are supplied from the vector data of the data embedding unit, and where this point exists at the next time And a data output unit that outputs the predicted value calculated by the prediction calculation unit. The electric power compensator for an electric furnace according to claim 1 or 2, comprising:
JP9112279A 1997-04-30 1997-04-30 Power compensating device of electric furnace Pending JPH10301647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9112279A JPH10301647A (en) 1997-04-30 1997-04-30 Power compensating device of electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9112279A JPH10301647A (en) 1997-04-30 1997-04-30 Power compensating device of electric furnace

Publications (1)

Publication Number Publication Date
JPH10301647A true JPH10301647A (en) 1998-11-13

Family

ID=14582730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9112279A Pending JPH10301647A (en) 1997-04-30 1997-04-30 Power compensating device of electric furnace

Country Status (1)

Country Link
JP (1) JPH10301647A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040004849A (en) * 2002-07-05 2004-01-16 주식회사 포스코 The welding device with function of compensation reactive power
JP2007272550A (en) * 2006-03-31 2007-10-18 Nichicon Corp Voltage fluctuation compensation device
CN103176087A (en) * 2013-03-13 2013-06-26 绍兴电力局 Multi-voltage-class high-capacity test loop
CN103326375A (en) * 2013-06-13 2013-09-25 东北大学 Direct-hanging type reactive power compensation device and method based on 10kV power grid
WO2015103909A1 (en) * 2014-01-08 2015-07-16 国家电网公司 Device applied to coordination control over svg and apf
CN106130033A (en) * 2016-07-18 2016-11-16 安徽得润电气技术有限公司 A kind of low-voltage reactive power compensation device detecting current/voltage real-Time Compensation
CN106169762A (en) * 2016-07-18 2016-11-30 安徽得润电气技术有限公司 A kind of low-voltage reactive power automatic compensation device under multiloop the control of reactive power compensating
CN109066737A (en) * 2018-09-12 2018-12-21 西南交通大学 A kind of negative sequence compensation devices and methods therefor of traction-compensator transformer
US10218300B2 (en) 2014-02-28 2019-02-26 International Business Machines Corporation Transformer phase permutation causing more uniform transformer phase aging and general switching network suitable for same
CN109510215A (en) * 2018-12-25 2019-03-22 陈君诚 Active passive mixing type reactive power dynamic compensating device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040004849A (en) * 2002-07-05 2004-01-16 주식회사 포스코 The welding device with function of compensation reactive power
JP2007272550A (en) * 2006-03-31 2007-10-18 Nichicon Corp Voltage fluctuation compensation device
CN103176087A (en) * 2013-03-13 2013-06-26 绍兴电力局 Multi-voltage-class high-capacity test loop
CN103176087B (en) * 2013-03-13 2015-07-08 绍兴电力局 Multi-voltage-class high-capacity test loop
CN103326375A (en) * 2013-06-13 2013-09-25 东北大学 Direct-hanging type reactive power compensation device and method based on 10kV power grid
WO2015103909A1 (en) * 2014-01-08 2015-07-16 国家电网公司 Device applied to coordination control over svg and apf
US10218300B2 (en) 2014-02-28 2019-02-26 International Business Machines Corporation Transformer phase permutation causing more uniform transformer phase aging and general switching network suitable for same
CN106130033A (en) * 2016-07-18 2016-11-16 安徽得润电气技术有限公司 A kind of low-voltage reactive power compensation device detecting current/voltage real-Time Compensation
CN106169762A (en) * 2016-07-18 2016-11-30 安徽得润电气技术有限公司 A kind of low-voltage reactive power automatic compensation device under multiloop the control of reactive power compensating
CN109066737A (en) * 2018-09-12 2018-12-21 西南交通大学 A kind of negative sequence compensation devices and methods therefor of traction-compensator transformer
CN109066737B (en) * 2018-09-12 2024-01-09 西南交通大学 Negative sequence compensation device and method for traction-compensation transformer
CN109510215A (en) * 2018-12-25 2019-03-22 陈君诚 Active passive mixing type reactive power dynamic compensating device

Similar Documents

Publication Publication Date Title
JP2513914B2 (en) Superconducting energy storage device for power system stabilization
US6603795B2 (en) Power control system for AC electric arc furnace
US4677643A (en) Device for feeding one or a plurality of electrodes in an electrothermal furnace
US20030076075A1 (en) Control system and method for voltage stabilization in electric power system
JP4562216B2 (en) Predictive line controller for electric arc furnaces.
JPH10301647A (en) Power compensating device of electric furnace
AU2002231514A1 (en) Power control system for AC electric arc furnace
JPH04177085A (en) Direct arc electric furnace supplied with controlled current and method of supplying direct arc furnace with controlled current
CN110350606B (en) DC chopper power supply device and method for electric arc furnace
US10145612B2 (en) Flicker reduction in electric arc furnaces by means of flicker prediction from the state determination in the initial phase of the smelting process
Petersen et al. Modelling arc furnace flicker and investigating compensation techniques
JPH07170664A (en) Method of stabilizing power circuit network against fluctuations in reactive load and reactive power compensating device
EP0483405A1 (en) Flicker compensating apparatus for DC arc furnace
CA3053203C (en) Integrated flicker control for arc furnace
JP2020188614A (en) Control method and control circuit of reactive power compensator
JP2909202B2 (en) Control device for load commutation type inverter
SU1198769A1 (en) Method of controlling electric conditions of induction melting installation
JP2828478B2 (en) Power supply for DC arc furnace
JP2002223524A (en) Static type flicker compensator
Dawson Power factor improvement for high power low voltage AC arcs
JPH02278317A (en) Flicker compensation device for dc arc furnace
JPH061948B2 (en) Reactive power compensation system
SU924924A1 (en) Device for control of electric mode of three-phase electric arc furnace electric mode
JPH07255130A (en) Compensator of reactive power
Tsuneoka et al. The JA home team design of the ITER ECRF power supply system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050315