JPH02278317A - Flicker compensation device for dc arc furnace - Google Patents

Flicker compensation device for dc arc furnace

Info

Publication number
JPH02278317A
JPH02278317A JP1099392A JP9939289A JPH02278317A JP H02278317 A JPH02278317 A JP H02278317A JP 1099392 A JP1099392 A JP 1099392A JP 9939289 A JP9939289 A JP 9939289A JP H02278317 A JPH02278317 A JP H02278317A
Authority
JP
Japan
Prior art keywords
reactive power
arc furnace
flicker
converter
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1099392A
Other languages
Japanese (ja)
Inventor
Norio Ao
範夫 青
Kazuhiko Mori
森 一彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1099392A priority Critical patent/JPH02278317A/en
Publication of JPH02278317A publication Critical patent/JPH02278317A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Furnace Details (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To reduce a flicker generating quantity by predicting reactive power generated in a DC arc furnace with the use of a phase control angle controlling a DC converter and a DC current, controlling a thyristor based on the reactive power generation predicting quantity and generating the reactive power from a flicker compensation part when the DC converter is controlled. CONSTITUTION:In a phase-control angle control means for DC converter 33, the DC converter 23 is controlled by using the phase-control angle alpha obtained based on the deviation between a detection current from the DC detector 32 and a set current, and a constant current is controlled. At that time, a reactive power generating quantity prediction means 41 fetches the command signal of the phase-control angle alpha and the DC current Id and predicts the reactive power generating quantity of the DC arc furnace 25 by setting a non-load DC voltage E0 to be known. Then, a pulse generated from a pulse generator 42 is made variable based on the reactive power generating quantity predictive value, and the phase-control angle of the thyristor 44 is controlled. Thus, the reactive power can be compensated to the power system with the flicker compensation part 46 simultaneously with the control of the DC converter 23, and the flicker generating quantity can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、直流アークを用いて溶解原料である鉄屑等の
被溶解物(以下、スクラップと指称する)を溶解する直
流アーク炉での負荷変動によって生ずるフリッカの発生
量を低減化する直流アーク炉のフリッカ補償装置の改良
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a DC arc furnace that uses a DC arc to melt materials to be melted, such as iron scraps (hereinafter referred to as scrap), which are melting raw materials. This invention relates to an improvement of a flicker compensation device for a DC arc furnace that reduces the amount of flicker generated due to load fluctuations.

〔従来の技術〕[Conventional technology]

一般に、アーク放電は、電極棒に所望とする電流を通電
することにより、この電極棒と金属物との間にアークを
発生させて金属物を溶解するものであって、これは数万
度の高温雰囲気状態を容易に形成でき、エネルギー密度
が高く、しかもアーク電流の制御が比較的容易であるこ
とから、溶接やスクラップの溶解等に広く利用されてい
る。
In general, arc discharge involves passing a desired current through an electrode rod to generate an arc between the electrode rod and a metal object to melt the metal object. It is widely used for welding, scrap melting, etc. because it can easily create a high-temperature atmosphere, has high energy density, and can control arc current relatively easily.

ところで、従来、スクラップを溶解する製鋼用には三相
交流アーク炉が用いられているが、その後消費の拡大に
よるスクラップの増大に伴う生産性向上の要求から暫時
大容量化が進み、70を以上の大形三相交流アーク炉も
多数運転されるに至っている。それに伴い、電源設備が
大容量化し、炉容量に対し500KVA/を以上の規模
になっている。その結果、アーク炉が引き起す電力障害
By the way, conventionally, three-phase AC arc furnaces have been used for steelmaking to melt scrap, but after that, the demand for improved productivity due to the increase in scrap due to expanded consumption led to larger capacity for a while, and Many large three-phase AC arc furnaces are now in operation. Along with this, the power supply equipment has increased in capacity and has become larger than 500 KVA per furnace capacity. As a result, electric power disturbances caused by arc furnaces.

いわゆるフリッカ障害が大きな問題となっている。The so-called flicker disorder has become a major problem.

すなわち、スクラップを溶解するアーク炉では、本来、
アークは黒鉛電極棒とスクラップや溶鋼との間に発生す
るが、アーク熱によりスクラップがくずれ落ちると、ス
クラップの形状や位置が変化し、それに伴ってアーク発
生位置やアーク発生方向が変化し、アークの電圧および
電流が大きく変動する。また、交流アーク炉においては
、電極棒へ通電される電流が半サイクル毎に零になるた
め、炉内ではアーク切れやアーク短絡が頻繁に起き、電
源側からみるとアークは非常に不安定で、か一つ、5変
動の大きな負荷となっている。このような負荷変動は、
電源電圧の変動を引き起し、同一の電力系統につながる
一般家庭等の電圧が変動し、例えば照明器具のちらつき
、つまりフリッカの発生原因にもなっている。
In other words, in an arc furnace that melts scrap,
An arc occurs between the graphite electrode rod and scrap or molten steel, but when the scrap collapses due to arc heat, the shape and position of the scrap change, and the arc generation position and arc generation direction change accordingly, causing the arc voltage and current fluctuate significantly. In addition, in an AC arc furnace, the current flowing to the electrode rod drops to zero every half cycle, so arc breaks and arc short circuits occur frequently in the furnace, making the arc extremely unstable from the power source's perspective. , or one of the five fluctuations is a large load. Such load fluctuations are
This causes fluctuations in the power supply voltage, which in turn causes fluctuations in the voltages of ordinary homes connected to the same power system, causing flickering in lighting equipment, for example.

そこで、アーク炉におけるフリッカの発生原因について
種々の角度から研究を重ねた結果、フリッカ障害の程度
を決定付けるものとしてアークの変動によって発生する
無効電力の変動幅が大きな原因になっていることが発表
された(電気学会技術報告(11部)72号、1978
年12月発行)。
As a result of repeated research on the causes of flicker in arc furnaces from various angles, it was announced that the range of fluctuations in reactive power generated by fluctuations in the arc is a major factor that determines the degree of flicker failure. (IEEJ Technical Report (Part 11) No. 72, 1978
(Published December 2016).

そこで、以上のような研究成果を踏ま、えつつ最近の大
型アーク炉設備では第3図に示すようなフリッカ補償装
置が併設されている場合が多い。先ず、アーク炉設備に
おいては、電力系統1の交流電力を炉用変圧器2で所定
の電圧に変換した後、この電力を交流アーク炉3内に装
入した可動電極4に供給してアークを発生させているが
、このアークの発生によって遅れ位相を伴った無効電力
が生ずるので、交流アーク炉3と同一系統の電力系統1
にフリッカ補償装置10が設けられている。
Therefore, based on the above research results, recent large arc furnace equipment is often equipped with a flicker compensator as shown in FIG. First, in the arc furnace equipment, AC power from the power system 1 is converted to a predetermined voltage by the furnace transformer 2, and then this power is supplied to the movable electrode 4 inserted into the AC arc furnace 3 to generate an arc. However, since the generation of this arc generates reactive power with a delayed phase, the AC arc furnace 3 and the power system 1
A flicker compensator 10 is provided.

このフリッカ補償装置10は、高調波兼力率改善用コン
デンサ11を用いて予め電力系統1を所定の進み位相と
なるように補償するとともに、アクの変動による無効電
力幅の変動を補償するために、交流アーク炉3の交流電
力供給ラインに生ずる無効電力発生量を無効電力発生量
検出手段12で検出した後、さらに位相制御角制御手段
13にて無効電力発生量に応じた位相i′171J御角
指令信号を得、さらにパルス発生器14から位相制御角
指令信号に応じたパルスを出力し、前記電力系統1に降
圧変圧器15.サイリスタ16およびリアクトル負荷1
7の接続されているフリッカ補償部分のうちサイリスタ
16の位相制御角を可変して前記リア・クトル負荷17
に流れる電流を制御することにより、フリッカ補償装置
10側に生ずる無効電力を電力系統1に加算し、当該電
力系統1が常に一定の無効電力レベルとなるように制御
している。
This flicker compensator 10 uses a harmonic and power factor improving capacitor 11 to compensate the power system 1 in advance so that it has a predetermined leading phase, and also to compensate for fluctuations in reactive power width due to fluctuations in AC power. After the amount of reactive power generated in the AC power supply line of the AC arc furnace 3 is detected by the reactive power generation amount detection means 12, the phase control angle control means 13 further controls the phase i'171J according to the amount of reactive power generation. An angle command signal is obtained, and a pulse corresponding to the phase control angle command signal is outputted from the pulse generator 14, and a step-down transformer 15. Thyristor 16 and reactor load 1
The phase control angle of the thyristor 16 among the flicker compensation parts connected to the rear torque compensation section 7 is varied.
By controlling the current flowing through the flicker compensator 10, the reactive power generated on the flicker compensator 10 side is added to the power system 1, and the power system 1 is controlled to always have a constant reactive power level.

しかし、交流アーク炉3によって生ずる無効電力は不規
則であり、それを適切に予測することは難しい。このた
め交流電力供給ラインから無効電力を検出してR;IJ
 lしているものの、5 rnsec (半サイクル)
程度の制御遅れが生じ、十分な補償効果か得られないば
かりか、場合によってはフリッカを助長してしまうこと
がある。そのため、交流アーク炉3に適用するフリッカ
補償装置10の補償効果には限界がある。また、フリッ
カ補償装置10は製鋼の生産にそれほど寄与しないばか
りか、多額の設備費を必要とする問題がある。
However, the reactive power generated by the AC arc furnace 3 is irregular, and it is difficult to predict it appropriately. Therefore, reactive power is detected from the AC power supply line and R;IJ
5 rnsec (half cycle)
A certain degree of control delay occurs, and not only is a sufficient compensation effect not obtained, but in some cases, flicker may be aggravated. Therefore, there is a limit to the compensation effect of the flicker compensation device 10 applied to the AC arc furnace 3. Further, the flicker compensator 10 not only does not contribute much to steel production, but also has the problem of requiring a large amount of equipment cost.

これに対し、近年、パワーエレクトロニクス技術の進歩
により、交流から直流に変換する直流変換器の信頼性が
高まり、それと同時にかかる直流変換器を適用した大型
の直流アーク炉が開発されるに至った。すなわち、この
直流アーク炉は、交流アーク炉3に比較し各種原単位お
よびフリッカ発生量の低減化に大きく寄与することが実
証されている。このフリッカ発生量の低減効果は直流変
換器によってアーク電流を一定値に制御することが可能
なためである。
On the other hand, in recent years, advances in power electronics technology have increased the reliability of DC converters that convert alternating current to direct current, and at the same time, large-scale DC arc furnaces using such DC converters have been developed. That is, it has been demonstrated that this DC arc furnace greatly contributes to reducing various basic units and flicker generation amount compared to the AC arc furnace 3. This effect of reducing the amount of flicker generation is due to the fact that the arc current can be controlled to a constant value by the DC converter.

因みに、直流アーク炉と交流アーク炉、では、第4図の
一般的なP(有効電力) −Q (無効電力)特性から
明らかなように、直流アーク炉の無効電力変動幅△Qd
cが交流アーク炉の無効電力変動幅△Qacの約半分で
あることが分る。同図においてAは直流アーク炉のP−
Q特性曲線、Bは交流アーク炉のP−Q特性曲線を示す
Incidentally, for DC arc furnaces and AC arc furnaces, as is clear from the general P (active power) - Q (reactive power) characteristics in Figure 4, the reactive power fluctuation range △Qd of DC arc furnaces is
It can be seen that c is approximately half of the reactive power fluctuation width ΔQac of the AC arc furnace. In the figure, A is P− of the DC arc furnace.
Q characteristic curve, B shows the P-Q characteristic curve of the AC arc furnace.

、ここで、直流アーク炉の無効電力Qは次のような簡易
式で表わせる。
, where the reactive power Q of the DC arc furnace can be expressed by the following simple formula.

Q″EO−1d −5in a    −−(1)但し
、上式においてEoは無負荷直流電圧、Idは運転時の
直流電流、αは直流変換器を構成するサイリスタの位相
制御角である。そのうち、無負荷直流電圧E。は炉用変
圧器の二次電圧により一義的に決定され、また直流電流
1dは運転時定電流制御となっているので一定値とされ
ており、また直流リアクトルの平滑効果により急激な変
化が抑制されている。従って、瞬時の無効電力は直流電
流1dおよび位相制御角αによって決り、その中でも位
相制御角αは大きな要因となっている。
Q″EO-1d −5in a --(1) However, in the above equation, Eo is the no-load DC voltage, Id is the DC current during operation, and α is the phase control angle of the thyristor that constitutes the DC converter. , the no-load DC voltage E. is uniquely determined by the secondary voltage of the furnace transformer, and the DC current 1d is a constant value due to constant current control during operation, and the smoothing of the DC reactor The effect suppresses sudden changes.Therefore, the instantaneous reactive power is determined by the DC current 1d and the phase control angle α, of which the phase control angle α is a major factor.

一方、交流アーク炉3では無効電力が3・Id2・Xr
によって決定される。ここで、■aはアーク電流、xr
は炉の回路リアクタンスである。このように直流アーク
炉と交流アーク炉では無効電力の発生メカニズムが異な
っている。しかし、従来は直流アーク炉に交流アーク炉
用フリッカ補償装置10をそのまま流用しており、特に
直流アク炉に最適なフリッカ補償装置として工夫されて
いるものではなかった。
On the other hand, in the AC arc furnace 3, the reactive power is 3・Id2・Xr
determined by Here, ■a is arc current, xr
is the furnace circuit reactance. As described above, the reactive power generation mechanisms are different between DC arc furnaces and AC arc furnaces. However, conventionally, the flicker compensator 10 for AC arc furnaces has been used as is for DC arc furnaces, and it has not been devised as a flicker compensator particularly suitable for DC arc furnaces.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従って、以上述べた直流アーク炉は、交流アク類と比較
して無効電力の変動幅が半減でき、これはアーク電流を
定電流とすることに因っていた。
Therefore, the above-mentioned DC arc furnace can reduce the fluctuation range of reactive power by half compared to AC arc furnaces, and this is due to the fact that the arc current is a constant current.

しかし、それでもなおかつ、フリッカ発生レベルが規制
値を越える場合があるので、フリッカ補償装置10が必
要になってくる。
However, since the flicker generation level may still exceed the regulation value, the flicker compensator 10 becomes necessary.

しかし、従来の直流アーク炉設備においては、直流アー
ク炉に交流アーク炉用フリッカ補償装置10をそのまま
流用しているので、無効電力の検出および制御に5 m
5ec程度の遅れが生じ、特に瞬時の無効電力の変動に
適切に対処することが難しく、補償機能を十分に発揮し
得ない問題があった。
However, in conventional DC arc furnace equipment, the flicker compensator 10 for AC arc furnaces is used as is in the DC arc furnace, so it takes 5 m to detect and control reactive power.
A delay of about 5 ec occurs, making it particularly difficult to appropriately deal with instantaneous fluctuations in reactive power, resulting in a problem that the compensation function cannot be fully demonstrated.

本発明は上記実情に鑑みてなされたもので、直流アーク
炉で発生する無効電力の変動に対し制御遅れを生じるこ
となく電力需電系の無効電力を適切に制御でき、よって
フリッカ補償機能を適切に発揮しうる直流アーク炉のフ
リッカ補償装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and it is possible to appropriately control the reactive power of the power demand system without causing a control delay in response to fluctuations in the reactive power generated in the DC arc furnace, and therefore, the flicker compensation function can be appropriately controlled. The object of the present invention is to provide a flicker compensation device for a DC arc furnace that can be used in a DC arc furnace.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記課題を解決するために、直流アク炉に電力
を供給する電力系統にサイリスタを介してリアクトル負
荷を接続してなるフリッカ補償部を設け、一方、直流ア
ーク炉側には前記直流ア一り炉に流れる直流電流および
前記直流変換器の位相制御角とを用いて直流アーク炉に
よって発生する無効電力を予測演算する無効電力発生量
子Dj手段を設け、この無効電力発生量予測手段によっ
て予測される無効電力に基づいて前記サイリスタの位相
制御角を可変することにより、前記フリッカ補償部に生
ずる無効電力を前記電力系統に加える構成である。
In order to solve the above problems, the present invention provides a flicker compensator in which a reactor load is connected via a thyristor to the power system that supplies electric power to a DC arc furnace, and on the other hand, the DC arc furnace A reactive power generation quantum Dj means is provided which predicts and calculates the reactive power generated by the DC arc furnace using the DC current flowing through the furnace and the phase control angle of the DC converter, and the reactive power generation amount prediction means predicts the reactive power generated by the DC arc furnace. By varying the phase control angle of the thyristor based on the reactive power generated in the flicker compensator, the reactive power generated in the flicker compensator is added to the power system.

また、他の発明は、フリッカ補償部および無効電力発生
量予測手段のほか、前記無効電力発生量予測手段によっ
て予Δp1される無効電力と直流アーク炉側交流電力供
給ラインから取得した無効電力との偏差を求める偏差演
算手段を設け、その偏差に基づいて前記サイリスタの位
相制御角を可変することにより前記フリッカ補償部に生
ずる無効電力を前記電力系統に加える構成である。
In addition to the flicker compensation unit and the reactive power generation amount predicting means, another invention provides a combination of the reactive power predicted by Δp1 by the reactive power generation amount predicting means and the reactive power acquired from the AC power supply line on the DC arc furnace side. A deviation calculation means for calculating a deviation is provided, and by varying the phase control angle of the thyristor based on the deviation, reactive power generated in the flicker compensator is added to the power system.

〔作用〕[Effect]

従って、本発明は以上のような手段を講じたことにより
、直流アーク炉側直流変換器の位相制御角を制御すると
き、その位相制御角と直流アーク炉の直流電流とを用い
て直流アーク炉側に発生する無効電力発生量を予測し、
この無効電力発生量予測値に基づいてフリッカ補償部の
サイリスタを制御するので、直流変換器の制御と同時に
フリッカ補償部により電力系統に無効電力を補償でき、
フリッカ発生量の低減化を図ることができる。
Therefore, by taking the above measures, the present invention uses the phase control angle and the DC current of the DC arc furnace to control the phase control angle of the DC converter on the DC arc furnace side. Predict the amount of reactive power generated on the side,
Since the thyristor of the flicker compensation unit is controlled based on this predicted amount of reactive power generation, the flicker compensation unit can compensate for reactive power in the power system at the same time as controlling the DC converter.
The amount of flicker generated can be reduced.

また、他の発明は、直流アーク炉側に発生する無効電力
発生量を予測し、この無効電力発生量予測値と直流変換
器の制御の結果直流アーク炉の交流電力ラインに生ずる
無効電力とを比較し、その偏差に応じてサイリスクの位
相制御角を制御するので、電力系統の無効電力の状態を
適切に把握してフリッカ補償部から無効電力を発生でき
、より一層のフリッカ発生量の低減化を図ることができ
る。
Further, another invention predicts the amount of reactive power generated on the DC arc furnace side, and calculates the predicted value of the reactive power generation amount and the reactive power generated in the AC power line of the DC arc furnace as a result of control of the DC converter. Since the comparison is made and the phase control angle of the SIRISK is controlled according to the deviation, reactive power can be generated from the flicker compensator by appropriately understanding the state of reactive power in the power system, further reducing the amount of flicker generated. can be achieved.

C実施例〕 以下、本発明の一実施例について第1図を参照して説明
する。一般に、直流アーク炉を用いてスクラップを溶解
する場合、電力系統21からの交流電圧を炉用変圧器2
2で所定の電圧に降圧した後、サイリスクを用いた直流
変換器23で直流に変換し、さらに直流リアクトル24
で平滑した後アーク炉25に供給している。
C Embodiment] Hereinafter, an embodiment of the present invention will be described with reference to FIG. Generally, when melting scrap using a DC arc furnace, AC voltage from the power system 21 is transferred to the furnace transformer 2.
After stepping down the voltage to a predetermined voltage in step 2, it is converted to direct current in a direct current converter 23 using Cyrisk, and then converted to direct current in a direct current reactor 24.
After being smoothed by the process, it is supplied to the arc furnace 25.

この可動電極27の昇降制御およびアーク電流の制御は
従来と同様な技術を用いて実施するものとする。すなわ
ち、前者の電極昇降制御は、アーク炉25の内部にスク
ラップ26が装入され、運転時に可動電極27と炉底電
極28間の直流電圧を電圧検出器2つで検出した後、こ
の検出電圧と電圧設定器30の設定電圧とを比較しその
偏差を受けて昇降制御器31が前記可動電極27を昇降
制御する構成である。
It is assumed that the control of raising and lowering the movable electrode 27 and the control of the arc current are performed using techniques similar to those of the prior art. That is, in the former electrode elevation control, scrap 26 is charged into the interior of the arc furnace 25, and after the DC voltage between the movable electrode 27 and the furnace bottom electrode 28 is detected by two voltage detectors during operation, this detected voltage is and the set voltage of the voltage setting device 30, and in response to the deviation, an elevation controller 31 controls the elevation of the movable electrode 27.

一方、後者のアーク電流制御は、直流変換器23の出力
側の直流電流(アーク電流)を電流検出器32で検出し
た後、この検出電流を直流変換器用位相制御角制御手段
33に導入し、ここで検出電流と予め定めた設定電流と
の偏差に応じて位相制御角αなる指令信号を出力しパル
ス発生器34を介して直流変換器23の位相制御角を可
変することにより、アーク電流の制御を行っている。
On the other hand, in the latter arc current control, after detecting the DC current (arc current) on the output side of the DC converter 23 with the current detector 32, this detected current is introduced into the DC converter phase control angle control means 33, Here, a command signal of phase control angle α is output according to the deviation between the detected current and a predetermined set current, and the phase control angle of the DC converter 23 is varied via the pulse generator 34, thereby controlling the arc current. is under control.

次に、本発明の要旨であるフリッカ補償装置の構成につ
いて説明する。この装置は、無負荷直流電圧E。を既知
とし電流検出器32からの検出電流1dおよび位相制御
角制御手段33から出力する位相制御角αを用いて前記
(1)式に基づいてアーク変動による無効電力を予測演
算する無効電力発生間予7Il11手段41と、この無
効電力発生量予測手段41の出力に応じたパルスを出力
するパルス発生器42と、前記直流アーク炉設備と同一
の電力系統21に降圧変圧器43.サイリスタ44およ
びリアクトル負荷45等がシリアルに接続され前記パル
ス発生器42から送られてくるパルスに基づいてサイリ
スタ44の位相制御角を制御しりアクドル負荷45に流
れる電流を可変することにより無効電力を得るフリッカ
補償部46とで構成されている。このフリッカ補償部4
6にはその他に高調波フィルタ兼力率改善用コンデンサ
47が設けられている。
Next, the configuration of the flicker compensation device, which is the gist of the present invention, will be explained. This device has no-load DC voltage E. is known and the detected current 1d from the current detector 32 and the phase control angle α output from the phase control angle control means 33 are used to predict and calculate the reactive power due to arc fluctuation based on the above equation (1). 7Il11 means 41, a pulse generator 42 that outputs pulses according to the output of the reactive power generation amount predicting means 41, and a step-down transformer 43 connected to the same power system 21 as the DC arc furnace equipment. A thyristor 44, a reactor load 45, etc. are connected in series, and reactive power is obtained by controlling the phase control angle of the thyristor 44 based on pulses sent from the pulse generator 42 and varying the current flowing through the axle load 45. It is composed of a flicker compensator 46. This flicker compensation section 4
6 is also provided with a harmonic filter/power factor improving capacitor 47.

次に、以上のように構成された装置の動作のうち特にフ
リッカ補償の動作について説明する9、般に、フリッカ
の発生は前述したように直流アーク炉25の負荷によっ
て発生する無効電力の変動が原因となっている。そして
、この直流アーク炉25で発生する無効電力は上記(1
)式で近似的に表わすことができる。この(1)式の無
負荷直流電圧Eoは炉用変圧器22の二次電圧で一義的
に定まり、また直流電流1dの急激な変化は直流リアク
トル24によってI K A / m5ec程度に抑制
され、また位相制御角αは直流アーク炉25の直流変換
器23の位相制御角であることから、直流アーク炉25
の場合にはIdとαから無効電力の発生量を予anする
ことが可能である。
Next, we will explain the operation of the apparatus configured as described above, especially the operation of flicker compensation9.Generally, flicker occurs due to fluctuations in reactive power caused by the load of the DC arc furnace 25, as described above. It is the cause. The reactive power generated in this DC arc furnace 25 is the above (1
) can be approximately expressed by the equation. The no-load DC voltage Eo in equation (1) is uniquely determined by the secondary voltage of the furnace transformer 22, and the sudden change in the DC current 1d is suppressed to about I K A / m5ec by the DC reactor 24. Furthermore, since the phase control angle α is the phase control angle of the DC converter 23 of the DC arc furnace 25,
In this case, it is possible to predict the amount of reactive power generated from Id and α.

そこで、本装置では、直流変換器用位相制御角制御手段
33において電流検出器32からの検出電流と設定電流
との偏差に基づいて得られた位相制御角αを用いて直流
変換器23を制御し一定7u流制御を行うが、このとき
無効電力発生量予測手段41で位相角制御角αの指令信
号および直流電流1dを取込み、無負荷直流電圧E。を
既知として上記(1)式により直流アーク炉の無効電力
発土量を予dFjする。そして、この無効電力発生量予
測値に基づいてパルス発生器42から発生するパルスを
可変しサイリスタ44の位相制御角を制御すれば、リア
クトル負荷45に流れる電流が変化してフリッカ補償部
46から所望の無効電力を発生させて電力系統21に加
えることができる。すなわち、直流変換器23の制御と
殆んど同時に直流アーク炉25で発生する無効電力の変
動分をフリッカ補償部46から発生させて電力系統21
の無効電力を一定に制御でき、フリッカを大幅に低減化
できる。
Therefore, in this device, the DC converter phase control angle control means 33 controls the DC converter 23 using the phase control angle α obtained based on the deviation between the detected current from the current detector 32 and the set current. Constant 7u current control is performed, and at this time, the reactive power generation amount predicting means 41 takes in the command signal of the phase angle control angle α and the DC current 1d, and the no-load DC voltage E is obtained. Assuming that dFj is known, the reactive power generation amount of the DC arc furnace is predetermined using the above equation (1). Then, by varying the pulses generated from the pulse generator 42 and controlling the phase control angle of the thyristor 44 based on this reactive power generation amount predicted value, the current flowing through the reactor load 45 changes and the flicker compensator 46 outputs the desired reactive power can be generated and added to the power system 21. That is, almost simultaneously with the control of the DC converter 23, the flicker compensator 46 generates a fluctuation in the reactive power generated in the DC arc furnace 25, and the power system 21
The reactive power can be controlled to a constant level, and flicker can be significantly reduced.

次に、第2図は本発明の他の実施例を示す図である。こ
の装置は、無効電力発生量子7ip1手段41と、直流
アーク炉25への交流電力供給ラインの無効電力を検出
する無効電力発生量検出手段51と、前記無効電力予測
値と検出無効電力との偏差に基づいてサイリスタ44の
位相制御角を決定する偏差演算手段52とを備え、この
偏差演算手段52の出力に応じてパルス発生器42から
発生するパルスの位相を可変してサイリスタ44の位相
制御角を制御する構成である。
Next, FIG. 2 is a diagram showing another embodiment of the present invention. This device includes a reactive power generation quantum 7ip1 means 41, a reactive power generation amount detection means 51 for detecting the reactive power of the AC power supply line to the DC arc furnace 25, and a deviation between the predicted reactive power value and the detected reactive power. The phase control angle of the thyristor 44 is determined by varying the phase of the pulse generated from the pulse generator 42 according to the output of the deviation calculation means 52. This is a configuration that controls the

従って、以上のような構成によれば、無効電力発生量子
ap+手段41は無負荷直流電圧EOを既知とし、前記
電流検出器32からの検出電流1dと位相制御角αとを
用いて(1)式により無効電力発生量を予測演算し、し
かる後、偏差演算手段52では無効電力発生量子7il
lj手段41で予71111 した無効電力発生量子A
11l値と直流変換器23の位相制御後遅れて交流電力
供給ラインに現われる無効電力発生量とを比較し、その
偏差に応じてパルス発生器42から発生するパルスのパ
ルス幅を変えてサイリスタ44を制御しフリッカ補償部
46の無効電力を可変するので、制御遅れを生じること
なく電力系統21の無効電力を一定に制御でき、直流ア
ーク炉25の負荷による無効電力の変動を何効に補償す
ることができる。
Therefore, according to the above configuration, the reactive power generation quantum ap+ means 41 makes the no-load DC voltage EO known and uses the detected current 1d from the current detector 32 and the phase control angle α to calculate (1) The reactive power generation amount is predicted and calculated using the formula, and then the deviation calculation means 52 calculates the reactive power generation quantum 7il.
Reactive power generation quantum A predicted by lj means 41
11l value and the amount of reactive power generated that appears in the AC power supply line after the phase control of the DC converter 23 is compared, and the pulse width of the pulse generated from the pulse generator 42 is changed according to the deviation, and the thyristor 44 is activated. Since the reactive power of the flicker compensator 46 is controlled and varied, the reactive power of the power system 21 can be controlled to be constant without causing a control delay, and fluctuations in reactive power due to the load of the DC arc furnace 25 can be effectively compensated for. I can do it.

従って、以上のような実施例の構成によれば、直流変換
器23の位相制御角を制御するとき、同時にその位相制
御角と直流アーク炉の直流電流とから当該直流アーク炉
の無効電力を予測しこの無効電力発生量子n1値に基づ
き、或いは無効電力発生量予測値と直流アーク炉の交流
電力供給ラインに遅れて現れる無効電力との偏差に基づ
いてフリッカ補償用サイリスタ46の位相制御角により
制御して無効電力を制御するので、制御遅れを生じるこ
となく電力系統21の無効電力を一定に制御でき、直流
アーク炉の特質を生かしっつフリッカの発生量を従来の
比較して大幅に低減化できる。
Therefore, according to the configuration of the embodiment as described above, when controlling the phase control angle of the DC converter 23, the reactive power of the DC arc furnace is simultaneously predicted from the phase control angle and the DC current of the DC arc furnace. It is controlled by the phase control angle of the flicker compensation thyristor 46 based on this reactive power generation quantum n1 value or based on the deviation between the predicted value of reactive power generation amount and the reactive power that appears late in the AC power supply line of the DC arc furnace. Since the reactive power is controlled by controlling the reactive power, the reactive power of the power system 21 can be controlled at a constant level without causing a control delay, and the amount of flicker generated is significantly reduced compared to the conventional method while taking advantage of the characteristics of the DC arc furnace. can.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、次のような種々の
効果を奏する。
As explained above, according to the present invention, the following various effects can be achieved.

先ず、請求項1においては、直流変換器を制御するとき
、その直流変換器を制御する位相制御角と直流電流とを
用いて直流アーク炉で発生する無効電力を予測し、この
無効電力発生子iDJ量に基づいてサイリスタを制御し
フリッカ補償部から無効電力を発生させているので、直
流アーク炉で発生する無効電力の変動に対して制御遅れ
を生じることなく電力系統の無効電力を適切に制御でき
、従来と比較してフリッカ発生量を大幅に低減化できる
First, in claim 1, when controlling a DC converter, the reactive power generated in the DC arc furnace is predicted using the phase control angle and DC current that control the DC converter, and the reactive power generator Since the thyristor is controlled based on the amount of iDJ and reactive power is generated from the flicker compensation section, reactive power in the power system can be appropriately controlled without delaying control in response to fluctuations in reactive power generated in the DC arc furnace. The amount of flicker generated can be significantly reduced compared to the conventional method.

また、請求項2では、前記無効電力発生予測値と直流変
換器の制御後に遅れて交流電力供給ラインに現われる無
効電力発生量との偏差に基づいてフリッカ補償部のサイ
リスタを制御するので、交流電力供給側の無効電力を十
分に把握して正確にフリッカ補償部から無効電力を発生
でき、より適切に電力系統の無効電力を一定に制御でき
、フリッカ発生量の低減化に大きく寄与し、本来のフリ
第1図は本発明に係わる直流アーク炉のフリッカ補償装
置の一実施例を示す構成図、第2図は他の実施例を示す
構成図、第3図は従来装置の構成図、第4図は交流アー
ク炉と直流アーク炉のP−Q特性図である。
Further, in claim 2, the thyristor of the flicker compensator is controlled based on the deviation between the reactive power generation predicted value and the reactive power generation amount that appears in the AC power supply line with a delay after the control of the DC converter. It is possible to fully understand the reactive power on the supply side and accurately generate reactive power from the flicker compensator, and it is possible to more appropriately control the reactive power in the power system to a constant level, which greatly contributes to reducing the amount of flicker generation and improves the original Fig. 1 is a block diagram showing one embodiment of the flicker compensation device for a DC arc furnace according to the present invention, Fig. 2 is a block diagram showing another embodiment, Fig. 3 is a block diagram of a conventional device, and Fig. 4 The figure is a P-Q characteristic diagram of an AC arc furnace and a DC arc furnace.

21・・・電力系統、22・・・炉用変圧器、23・・
・直流変換器、25・・・アーク炉、32・・・電流検
出器、33・・・直流変換器用位相制御角制御手段、4
1・・・無効電力発生量予測手段、44・・・サイリス
タ、5・・・サイ リスク負荷、 6・・・フ リ ツカ補償部、 ・・・無効電力発生量検出手段、 2・・・偏差l寅算 手段
21...Power system, 22...Furnace transformer, 23...
- DC converter, 25... Arc furnace, 32... Current detector, 33... Phase control angle control means for DC converter, 4
DESCRIPTION OF SYMBOLS 1... Reactive power generation amount prediction means, 44... Thyristor, 5... Thyrisk load, 6... Flicker compensation part,... Reactive power generation amount detection means, 2... Deviation l-value calculation means

Claims (2)

【特許請求の範囲】[Claims] (1)電力系統からの交流電力を直流変換器で直流電力
に変換して直流アーク炉の可動電極に供給し前記直流ア
ーク炉内の被溶解物を溶解する直流アーク炉設備におい
て、前記電力系統にサイリスタを介してリアクトル負荷
を接続してなるフリッカ補償部と、前記直流アーク炉に
流れる直流電流および前記直流変換器を制御する位相制
御角とを用いて直流アーク炉に発生する無効電力を予測
演算する無効電力発生量予測手段とを備え、この無効電
力予測値に基づいて前記フリッカ補償部のサイリスタの
位相制御角を制御しこのフリッカ補償部に生ずる無効電
力を前記電力系統に加えるようにしたことを特徴とする
直流アーク炉のフリッカ補償装置。
(1) In a DC arc furnace equipment that converts AC power from a power system into DC power using a DC converter and supplies it to a movable electrode of a DC arc furnace to melt the material to be melted in the DC arc furnace, the power system predicting the reactive power generated in the DC arc furnace using a flicker compensator formed by connecting a reactor load to the DC arc furnace through a thyristor, a DC current flowing through the DC arc furnace, and a phase control angle that controls the DC converter. and a reactive power generation amount predicting means for calculating, based on the reactive power predicted value, the phase control angle of the thyristor of the flicker compensation section is controlled, and the reactive power generated in the flicker compensation section is added to the power system. A flicker compensator for a DC arc furnace, characterized in that:
(2)電力系統からの交流電力を直流変換器で直流電力
に変換して直流アーク炉に供給し前記直流アーク炉内の
被溶解物を溶解する直流アーク炉設備において、前記電
力系統にサイリスタを介してリアクトル負荷を接続して
なるフリッカ補償部と、前記直流アーク炉に流れるアー
ク電流および前記直流変換器の位相制御角とを用いて直
流アーク炉に発生する無効電力を予測演算する無効電力
発生量予測手段と、この無効電力発生量予測手段によっ
て予測された無効電力と前記直流アーク炉側交流電力供
給ラインから取得した無効電力との偏差を求める偏差演
算手段とを備え、この偏差に基づいて前記フリッカ補償
部のサイリスタの位相制御角を制御しこのフリッカ補償
部に生ずる無効電力を前記電力系統に加えるようにした
ことを特徴とする直流アーク炉のフリッカ補償装置。
(2) In a DC arc furnace equipment that converts AC power from a power system into DC power using a DC converter and supplies the DC power to a DC arc furnace to melt the material to be melted in the DC arc furnace, a thyristor is installed in the power system. Reactive power generation that predicts and calculates reactive power generated in the DC arc furnace using a flicker compensator formed by connecting a reactor load through the DC arc furnace, an arc current flowing in the DC arc furnace, and a phase control angle of the DC converter. and a deviation calculating means for calculating a deviation between the reactive power predicted by the reactive power generation amount predicting means and the reactive power obtained from the AC power supply line on the DC arc furnace side, and based on this deviation. A flicker compensator for a DC arc furnace, characterized in that the phase control angle of a thyristor of the flicker compensator is controlled so that reactive power generated in the flicker compensator is added to the power system.
JP1099392A 1989-04-19 1989-04-19 Flicker compensation device for dc arc furnace Pending JPH02278317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1099392A JPH02278317A (en) 1989-04-19 1989-04-19 Flicker compensation device for dc arc furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1099392A JPH02278317A (en) 1989-04-19 1989-04-19 Flicker compensation device for dc arc furnace

Publications (1)

Publication Number Publication Date
JPH02278317A true JPH02278317A (en) 1990-11-14

Family

ID=14246226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1099392A Pending JPH02278317A (en) 1989-04-19 1989-04-19 Flicker compensation device for dc arc furnace

Country Status (1)

Country Link
JP (1) JPH02278317A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155740A (en) * 1990-10-22 1992-10-13 Nkk Corporation Flicker compensating apparatus for DC arc furnace
JP2000234875A (en) * 1995-10-26 2000-08-29 Inverpower Controls Ltd Arc electric furnace and predictive line controller therefor
JP2015037341A (en) * 2013-08-12 2015-02-23 富士電機株式会社 Controller of reactive power compensation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155740A (en) * 1990-10-22 1992-10-13 Nkk Corporation Flicker compensating apparatus for DC arc furnace
JP2000234875A (en) * 1995-10-26 2000-08-29 Inverpower Controls Ltd Arc electric furnace and predictive line controller therefor
JP4562216B2 (en) * 1995-10-26 2010-10-13 ハッチ リミテッド Predictive line controller for electric arc furnaces.
JP2015037341A (en) * 2013-08-12 2015-02-23 富士電機株式会社 Controller of reactive power compensation device

Similar Documents

Publication Publication Date Title
US5155740A (en) Flicker compensating apparatus for DC arc furnace
US6603795B2 (en) Power control system for AC electric arc furnace
CN100392938C (en) Control system and method for voltage stabilization
AU2002231514A1 (en) Power control system for AC electric arc furnace
US4677643A (en) Device for feeding one or a plurality of electrodes in an electrothermal furnace
JPS6366617A (en) Reactive power compensator
Nikolaev et al. Electrical optimization of superpowerful arc furnaces
JPH04177085A (en) Direct arc electric furnace supplied with controlled current and method of supplying direct arc furnace with controlled current
EP0483405B1 (en) Flicker compensating apparatus for DC arc furnace
US5627454A (en) Method for stabilizing a power supply network against reactive load fluctuations, and a power factor compensation device
JPH07211452A (en) Adjusting method for d.c. arc furnace
JPH02278317A (en) Flicker compensation device for dc arc furnace
US11953265B2 (en) Method for operating an electric arc furnace
JP2006014445A (en) Distribution line voltage fluctuation compensator
JPH06296371A (en) Illumination-network-utilized static energy regulator having controllability of current/voltage fed to load, controllability of higher-harmonic content and controllability of reactive energy
CA3053203C (en) Integrated flicker control for arc furnace
CA2028212A1 (en) Flicker compensating apparatus for dc arc furnace
JPH02245912A (en) Direct-current converter for direct-current arc furnace
JP2792085B2 (en) Control method of reactive power compensator
JP2509411B2 (en) Arc furnace equipment for steelmaking
JPH05190278A (en) Dc arc furnace power supply device
JP2007190594A (en) Welding machine and method of controlling the same
JP2021191067A (en) Power conversion device
JPS6237896A (en) Reactive power compensation controller for steel making arc furnace
JP2539056B2 (en) Control device for DC arc furnace