JPS58112673A - Resistance welding control method - Google Patents

Resistance welding control method

Info

Publication number
JPS58112673A
JPS58112673A JP21864282A JP21864282A JPS58112673A JP S58112673 A JPS58112673 A JP S58112673A JP 21864282 A JP21864282 A JP 21864282A JP 21864282 A JP21864282 A JP 21864282A JP S58112673 A JPS58112673 A JP S58112673A
Authority
JP
Japan
Prior art keywords
circuit
voltage
welding
welding current
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21864282A
Other languages
Japanese (ja)
Other versions
JPS6159835B2 (en
Inventor
Seiichiro Tamai
誠一郎 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21864282A priority Critical patent/JPS58112673A/en
Publication of JPS58112673A publication Critical patent/JPS58112673A/en
Publication of JPS6159835B2 publication Critical patent/JPS6159835B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • B23K11/258Monitoring devices using digital means the measured parameter being a voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)

Abstract

PURPOSE:To improve and uniform the quality of spot welding by increasing a welding current gradually after a specific time limit from the starting of feeding and detecting nugget formation on the basis of the increment of the accumulated value of integral values of an interchip voltage for a half cylce. CONSTITUTION:The voltage between chips 1 and 1 which clamp a work 2 is passed through a filter circuit 3 and integrated by an AC integrating circuit 4, whose output is supplied to a rectifying circuit 5. Once a welding current of each half cycle flows, an A/D converting circuit 6 generates a conversion starting pulse to perform conversion. By a conversion ending signal, the circuit 4 is reset and a microcomputer 8 accumulates and stores the interchip voltage of every half cycle. The increment of the accumulated value is compared with the value of a feeding cut set value circuit 7 and when the former is less than the latter, an input voltage variation compensating timer 9 cuts feeding by a feeding cut signal from the computer 8. Further, the welding current setting of the timer 9 is carried out by a welding current setting circuit 10.

Description

【発明の詳細な説明】 本発明は、抵抗溶接制御方法に係り、抵洗溶接、特にス
ポット溶接の品質の向上と均一化を図ること全目的とす
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resistance welding control method, and its entire purpose is to improve and make uniform the quality of resistance welding, particularly spot welding.

従来からスポット溶接の溶接品質の向上を図るための方
策として、(1)溶接条件の安定化制御、(転)溶接ナ
ゲツトの形成を何らかの物理量で検知し、このナゲツト
径が均一になるようにインプロセスで制御を行うことの
2通りの方法が考えられている。(1)の方法は、いわ
ゆる抵抗溶接の3大条件といわれる溶接電流9通電時限
、加圧力を変動が少ないように安定に制御する方法であ
り、例えば、入力電圧変動を補償する回路や、負荷力率
が異なった場合でも常に一定の電流を流すように制御す
る定電流制御回路等を組み込んだ同期式タイマーにその
具現化されたものをみることができる。しかし、これら
は、加圧力変動9分流、チップ変形もしくはワーク(被
溶接物)の形状9表面状況。
Conventionally, measures to improve the welding quality of spot welding include (1) stabilization control of welding conditions, (trans)detecting the formation of weld nuggets using some physical quantity, and controlling the welding so that the diameter of these nuggets is uniform. Two methods of controlling the process have been considered. Method (1) is a method to stably control the three major conditions of resistance welding, such as welding current 9 energization time and applied force, so that there are few fluctuations. An example of this can be seen in the synchronous timer, which incorporates a constant current control circuit that controls the flow of a constant current even when the power factor varies. However, these are due to pressure fluctuations, 9 branch currents, chip deformation, or the shape of the workpiece (object to be welded) 9 and surface conditions.

当り具合等の変動に対しては、何ら補償する機能をもっ
ておらず、溶接品質を一定化することは困難である。
There is no function to compensate for variations in the degree of contact, etc., and it is difficult to maintain constant welding quality.

一方、(2の方法は、より直接的に溶接品質すなわちナ
ゲツト形成状況を音とか電圧によって検出し、ナゲツト
が十分成長した時点で通電をカットすることにより品質
を一定化しようとするものである。例えば、溶接中の溶
接電極間電圧(以後、これをチップ間電圧と呼ぶ)を監
視し、第1図に示すように、毎サイクル毎のチップ間電
圧の各波高値を監視し、その最大値(Vp)を検知し、
vpに対して予め設定しておいた割合だけチップ間電圧
が低下し念時点(Vc値になった時点)で通電をカット
することにより、上記の加圧力変動等があった場合でも
、溶接品質を溶接中、すなわちインプロセスで均一化せ
んとするものである(4I!i−開昭52−11454
1号公報)。
On the other hand, method (2) more directly detects the welding quality, that is, the state of nugget formation, using sound or voltage, and attempts to stabilize the quality by cutting off the current when the nuggets have grown sufficiently. For example, the voltage between welding electrodes (hereinafter referred to as the voltage between tips) during welding is monitored, and as shown in Figure 1, the peak value of the voltage between tips is monitored for each cycle, and the maximum value (Vp) is detected,
Welding quality can be maintained even when the above-mentioned pressure fluctuations occur by cutting off the current at the moment when the inter-chip voltage decreases by a preset percentage relative to vp (when it reaches the Vc value). The purpose is to make the material uniform during welding, that is, in-process.
Publication No. 1).

しかし、この方法の欠点は、通電時現のみの制御のため
1例えば何らかの原因で溶接電流がかなり低下した場合
、通電時限は長くなるが、十分なナゲツト成長は望めず
、したがって強度も低いことになる。ここで、第2図の
t、I)は十分なナゲツトが得られた場合のチップ間電
圧の波高値のエンベロープ、同(II)はナゲツト形成
が不十分な場合を示す0 また、この方法では、ワークとして軟鋼やステンレスの
ような比抵抗の大きい材料しか適用できない欠点を有し
ている。何故なら、アルミ等の比抵抗の小さい材料は、
上記波高値のエンベロープに最高値があるとは限らない
からであるら他方、溶接中に溶接部から発生するアコ−
ステ監視し、するスレッシュホールドレベル(Tri)
以上のムE信号が検出された時点で通電をカットする方
法も試みられている。これは特に溶接中の中チリ発生に
伴なう大きなムX@号を検出して、中チリが発生する時
点では十分なナゲツトが形成されているという考えにも
とすき、そこで通電をカットするものである。
However, the disadvantage of this method is that it controls only the current state of energization, so if the welding current drops considerably for some reason, the energization time will be longer, but sufficient nugget growth cannot be expected, and the strength will therefore be low. Become. Here, t, I) in Fig. 2 is the envelope of the peak value of the inter-chip voltage when sufficient nuggets are obtained, and (II) is the envelope when nuggets are insufficiently formed. However, it has the disadvantage that only materials with high resistivity such as mild steel or stainless steel can be used as the workpiece. This is because materials with low resistivity, such as aluminum,
This is because the envelope of the wave height values mentioned above does not necessarily have a maximum value.
Threshold level (Tri)
Attempts have also been made to cut off the energization at the time when the above-mentioned E signal is detected. This is especially useful when detecting the large nuggets associated with the generation of medium dust during welding, and considering that sufficient nuggets have been formed by the time medium dust occurs, and the current is cut off at that point. It is something.

しかし、この方法も上記チップ間電圧方式と同様、単に
通電時限のみを制約するのみで、溶接電流を積極的に制
御する方式ではないため、例えば電流像下等によりナゲ
ツト形成が不十分な場合はムX信号も小さく、通電時限
のみが長くなるだけで、均一なナゲツト径を得ることは
できない。
However, like the tip-to-chip voltage method described above, this method only restricts the energization time and does not actively control the welding current. The beam X signal is also small, and only the energization time period becomes longer, making it impossible to obtain a uniform nugget diameter.

本発明は、チップ間電圧がナゲツト成長に密接な関連が
あることに着目し、溶接中のチップ間電圧を監視して、
電源半サイクル分の通電に対応するチップ間電圧を半サ
イクル分の通電範囲にわたって積分した積分値の整流し
た値の累積値の増加分が予め設定していた値を超えた時
点で通電をカットする通電制御方法であり、かつ最も重
要な点は、通電開始から一定期間は、そのワークの標準
溶接電流で通電を行い、その後溶接電流を各サイクル毎
に略一定の割合で、順次増加させていく方法を採用した
ことにある。
The present invention focuses on the fact that the inter-tip voltage is closely related to nugget growth, and monitors the inter-tip voltage during welding.
Energization is cut off when the cumulative increase in the rectified value of the integrated value obtained by integrating the inter-chip voltage corresponding to energization for half a cycle of the power supply over the energization range for half a cycle exceeds a preset value. The most important point of the energization control method is that energization is carried out at the standard welding current for the workpiece for a certain period of time from the start of energization, and then the welding current is sequentially increased at a substantially constant rate for each cycle. The reason lies in the method adopted.

まず、チップ間電圧の監視方法に関して説明する。チッ
プ間電圧を検出する場合、第3図(&)に示すように垣
に波高値を検出する場合と、同(し)に示すように半サ
イクル分の通電に対応するチップ間電圧をその半サイク
ル分について積分した値として検出する場合とがある。
First, a method for monitoring chip-to-chip voltage will be explained. When detecting the chip-to-chip voltage, there are two methods: detecting the peak value at the peak as shown in Figure 3 (&), and detecting the chip-to-chip voltage corresponding to half a cycle of energization as shown in Figure 3 (&). In some cases, it is detected as a value integrated over a cycle.

(b)の方法は、チップ間電圧の検出グループをスポッ
ト溶接機の懐にそわせて配置した場合に特に顕著にみら
れる溶接電流による誘起電圧の重畳分を大巾に除くこと
ができるので検出精度の向上が図れる利点がある。さて
チップ間電圧の通電開始後の時間的変化は、第2図に示
すようになる。ここで、第2図のチップ開市圧のエンベ
ロープのピーク値近傍がナゲツト成長の最盛期といわれ
、その後、エンベロープカーブが下降するのは、ナゲツ
トの拡大によシ抵抗値が減少し、したがってチップ間の
電圧降下が低下するためである。この傾向は、本発明に
よる方法のように、通電開始後もしくはそこから一定時
限後に溶接電流を増加させていく方式の場合も略同−傾
向を示す。したがって、チップ間電圧の半サイクル通電
に対するチップ間電圧を前記半サイクル分の通電範囲に
わたって積分した値を順次整流しこれをさらに累積して
いきながら、その累積値の増加分の変化を監視して、そ
の変化分(増加分)が予め設定していた値以下になった
場合に、通電をカットすることで、適正なナゲツトを得
んとするものである。またこのことによム矛りの防止も
図ることができる。             ′なお
、ここで第3図(IL)の波形の根拠について説明して
おく。
Method (b) detects the inter-chip voltage because it can largely eliminate the superimposed induced voltage caused by the welding current, which is particularly noticeable when the detection group is placed along the edge of the spot welder. This has the advantage of improving accuracy. Now, the temporal change in the inter-chip voltage after the start of energization is as shown in FIG. Here, the vicinity of the peak value of the envelope of the chip opening pressure in Figure 2 is said to be the peak period of nugget growth, and the reason why the envelope curve declines after that is because the resistance value decreases due to the expansion of the nugget, and therefore the inter-chip This is because the voltage drop decreases. This tendency is approximately the same in the case of the method according to the present invention in which the welding current is increased after the start of energization or after a certain period of time. Therefore, the inter-chip voltage for half-cycle energization of the inter-chip voltage is integrated over the energization range for the half-cycle, and the values are sequentially rectified and further accumulated, and the changes in the cumulative value are monitored. When the amount of change (increase) becomes less than a preset value, the current is cut off to obtain an appropriate nugget. In addition, this can also prevent ramming. 'The basis of the waveform in FIG. 3 (IL) will be explained here.

チップ間電圧(e)は、通常上チップと下チップとの間
の電圧全検出プルーブを用いて検出することによシ測定
されるが、この時、チップ間電圧(6)はチップ間を溶
接電流が流れることによる抵抗降下電圧(R1)と溶接
電流によシ検出グループの閉ルて検出される。
The inter-chip voltage (e) is normally measured by detecting the voltage between the upper and lower tips using a full voltage detection probe, but at this time, the inter-tip voltage (6) is measured by welding between the tips. The resistance drop voltage (R1) due to the current flowing and the welding current are detected by closing the detection group.

すなわち、 1 e=iR+に− t (K:誘起′電圧係数、1:溶接電流、R:テップ間抵
抗) こn’6図で示したものが第4図(&)、 (b)e 
(C)である。
That is, 1 e = iR + - t (K: induced voltage coefficient, 1: welding current, R: resistance between steps) What is shown in Fig. 4 (&), (b) e
(C).

次に溶接電流の設定に関して説明する。Next, the setting of welding current will be explained.

溶接電流の設定は、通電の開始時については標準浴接電
流条件に設定する。通電が開始されて一定期間に、ワー
クのナゲツト形成箇所の温度上昇が見られ、ついに溶融
点に達し、ナゲツトが成長し始める。この間は、溶接電
流は略一定に保つか多少アップスロープをかけるのがよ
い・ようである。
The welding current is set to standard bath welding current conditions at the start of energization. During a certain period of time after electricity is started, the temperature of the nugget forming part of the work increases, and finally reaches the melting point and the nugget begins to grow. During this time, it seems best to keep the welding current approximately constant or to slightly increase the slope.

さて、この区間を過ぎると、溶接電流を2〜2o%の範
囲で1サイクル毎に順次増加させてゆく。具体的には、
定電流タイマーや入力電圧変動補償タイマーの溶接電流
設定電圧値を予め各サイクル毎について1固々にプリセ
ットしてプログラム化しておき、溶接が進行するにつれ
て、スイッチば、第6図に示すようにプリセット値を与
える複数ノ可変抵抗VR1、VB2 、 ’iR5、−
・・VRH(!:、その可変抵抗を選択するスイッチと
してアナログスイッチムS<、ム82.ムS3.・・・
・・・ムSn  と、アナログスイッチを制御するため
の電源周波数に同期したパルス’lクロック入力として
もつシフトレジスタSRとにより容易に構成できる。そ
して上記VR1は第1サイクル目の溶接電流を設定する
ための、VB2は第2サイクル目の溶接電流を設定する
ための、VRHrri第nサイクル目の溶接電流を設定
するためのそれぞれ可変抵抗である。ムNDはシフトレ
ジスタSRの前段のムNDゲートであシ、その入力側に
は電源周波数パルスと通電時限信号がいずれもタイマー
より与えられる。なお、通電時限は通電カット信号によ
って限定されるが、これがタイマーにより設定される上
限通電サイクル値を超えても出ない場合は、上限通電サ
イクル値によりカットされる。
Now, after this period, the welding current is increased one cycle at a time in the range of 2 to 20%. in particular,
The welding current setting voltage value of the constant current timer and input voltage fluctuation compensation timer is preset and programmed to one value for each cycle in advance, and as welding progresses, the preset value can be changed by switching as shown in Figure 6. Multiple variable resistors VR1, VB2, 'iR5,-
・・VRH(!:, Analog switch S<, M82. S3... as a switch to select the variable resistance.
. . . can be easily constructed by using a shift register SR having a clock input as a pulse clock synchronized with the power supply frequency for controlling an analog switch. VR1 is a variable resistor for setting the welding current for the first cycle, VB2 is a variable resistor for setting the welding current for the second cycle, and VRHrri is a variable resistor for setting the welding current for the nth cycle. . The MND is a MND gate at the previous stage of the shift register SR, and a power frequency pulse and an energization time limit signal are both applied to the input side of the MND gate from a timer. Note that the energization time limit is limited by the energization cut signal, but if this does not occur even after exceeding the upper limit energization cycle value set by the timer, it is cut by the upper limit energization cycle value.

次に本発明の方法を実施するための一回路例について第
6図の図面とともに説明する。図において、1は浴接電
極(電極チップ)、2はワーク(被溶接物)、3はフィ
ルタ回路、4は交流積分回路、6は整流回路、6はム/
D変換回路、7は通電カット設定値回路、8にマイクロ
コンピュータ、9は入力電圧変動補償タイマー、10は
第6図の溶接電流設定回路である。
Next, an example of a circuit for carrying out the method of the present invention will be described with reference to the drawing of FIG. In the figure, 1 is a bath electrode (electrode tip), 2 is a workpiece (object to be welded), 3 is a filter circuit, 4 is an AC integrating circuit, 6 is a rectifier circuit, and 6 is a mu/
A D conversion circuit, 7 an energization cut setting value circuit, 8 a microcomputer, 9 an input voltage fluctuation compensation timer, and 10 a welding current setting circuit shown in FIG.

そしてチップ間電圧は、フィルタ回路3を介して交流積
分回路4に入力されて積分処理され、整流回路5に入力
される。ム/D変換は、各半サイクル毎の溶接電流が流
れ終った時点で変換開始パルスをつくり変換を行う。次
に、ム/D変換終了信号で、この積分回路4をリセット
する。このようにして各半サイクル毎のチップ間電圧を
マイクロコンピュータ8のメモリ内に記憶し累積する。
The inter-chip voltage is then input to an AC integrating circuit 4 via a filter circuit 3, subjected to integration processing, and then input to a rectifier circuit 5. In the M/D conversion, a conversion start pulse is generated at the time when the welding current for each half cycle finishes flowing, and the conversion is performed. Next, this integrating circuit 4 is reset by the M/D conversion end signal. In this way, the inter-chip voltage for each half cycle is stored and accumulated in the memory of the microcomputer 8.

[0」路7はディジタルスイッチで構成され、マイクロ
コンピュータ8内にとり込まれた通電開始からのチップ
間電圧の累積値の増加分と設定値回路7の値とがそれぞ
れ比較される。
The "0" path 7 is constituted by a digital switch, and the increase in the cumulative value of the inter-chip voltage from the start of energization, which is taken into the microcomputer 8, is compared with the value of the set value circuit 7, respectively.

ここでもし、マイクロコンピュータ8内に累積されたチ
ップ間電圧の累積値の増加分が設定値回路7の設定値よ
り小さい場合には、マイクロコンピュータ8からタイマ
ー9に対し、通電をカットするための信号を出力する。
Here, if the increase in the cumulative value of the inter-chip voltage accumulated in the microcomputer 8 is smaller than the set value of the set value circuit 7, the microcomputer 8 sends an instruction to the timer 9 to cut off the current. Output a signal.

タイマー9はこの信号を受ければ直ちに通電をカットす
る。またタイマー9の溶接電流設定に関してt/′i、
溶接電流設定回路1oを利用して行われる。
When the timer 9 receives this signal, it immediately cuts off the current. Regarding the welding current setting of timer 9, t/'i,
This is done using the welding current setting circuit 1o.

さて、具体的に実施した一例を示すと、次のようである
Now, an example of a concrete implementation is as follows.

ワーク:軟鋼板(厚さ1mm) 溶接機:35KVム単相スポット溶接機制御装置:第6
図に示す装置 溶接条件:初期溶接電流  8100ム上限通電サイク
ル値 15サイクル 電流増加開始サイクル  5サイクル 電流増加値   300ム/1サイクル通電カットのチ
ップ間電圧累積値 4・6v チリ検出チップ間電圧値 0・261 以上について、加圧力’i170〜260kg、チップ
(CFチップ)の径ヲ6.8〜7.0 mmまで変化さ
せて溶接を行った。その結果、通電時限は7〜16サイ
クルの内に収まシ、溶接結果(強度)もきわめて良好で
あった。
Workpiece: Mild steel plate (thickness 1mm) Welding machine: 35KV single phase spot welding machine Control device: No. 6
Equipment welding conditions shown in the figure: Initial welding current 8100 μm upper limit energization cycle value 15 cycles Current increase start cycle 5 cycles current increase value 300 μm/1 cycle energization cut cumulative voltage between tips 4.6 V Dust detection voltage between tips 0・261 Regarding the above, welding was carried out by changing the pressing force from 170 to 260 kg and the diameter of the tip (CF tip) from 6.8 to 7.0 mm. As a result, the current application time was within 7 to 16 cycles, and the welding results (strength) were also very good.

以上のように本発明の抵抗溶接制御方法によれば、通電
開始から一定時限を経た後で、溶接電流をそれまでの値
に比べ2〜20%の範囲内で順次増加させる制御と、チ
ップ間電圧の半サイクル毎の積分値の累積値の増加分の
監視による溶接ナゲツトの成長を保証する制御との効果
的な結合により、チップの変形や加圧力変動、電流変動
、ワークの表面状況や当り具合等の溶接条件変動があっ
た場合でも常に良好で均一な溶接品質を保証することが
できるものであり、その産業性は犬なるものである。
As described above, according to the resistance welding control method of the present invention, after a certain time period has elapsed from the start of energization, the welding current is gradually increased within the range of 2 to 20% compared to the previous value, and the Effective combination with control that guarantees the growth of weld nuggets by monitoring the increase in the cumulative value of the integral value every half cycle of voltage, prevents tip deformation, pressure fluctuations, current fluctuations, workpiece surface conditions, and contact. Even if there are variations in welding conditions such as welding conditions, it is possible to always guarantee good and uniform welding quality, and its industrial efficiency is outstanding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はチップ間電圧の代表的な波形図、第2図はチッ
プ間電圧による通電時限制御の一例を示す図、第3図(
SL)、 (b)はチップ間電圧を半すイクルチップ間
電圧波形を説明するための図、第6図は溶接電流を順次
切り換えてゆく溶接電流設定回路の回路図、第6図は本
発明の方法を実施するための装置のブロック図である。 1・・・・・・溶接電極、2・・・・・・被溶接物、3
・・・・・・フィルタ回路、4・・・・・・交流積分回
路、6・・・・・・整流回路、6・・・・・・ム/D変
換回路、7・・・・・・通電カット設定値回路、8・・
・・・・マイクロコンピュータ、9・・・・・・入力電
圧変動補償タイマー、1o・・・・・・溶接電流設定回
路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1基部 
l 図 第3図 第4図 第5図 AND     SR
Figure 1 is a typical waveform diagram of inter-chip voltage, Figure 2 is a diagram showing an example of energization time control using inter-chip voltage, and Figure 3 (
SL), (b) is a diagram for explaining the cycle inter-chip voltage waveform that halves the inter-chip voltage, Fig. 6 is a circuit diagram of a welding current setting circuit that sequentially switches the welding current, Fig. 6 is a diagram of the present invention. 1 is a block diagram of an apparatus for implementing the method of FIG. 1... Welding electrode, 2... Work to be welded, 3
... Filter circuit, 4 ... AC integration circuit, 6 ... Rectifier circuit, 6 ... Mu/D conversion circuit, 7 ... Energization cut setting value circuit, 8...
...Microcomputer, 9...Input voltage fluctuation compensation timer, 1o...Welding current setting circuit. Name of agent: Patent attorney Toshio Nakao and 1 other group
l Figure 3 Figure 4 Figure 5 AND SR

Claims (1)

【特許請求の範囲】[Claims] 抵抗溶接の通電開始から予め設定した時限後に溶接電流
を予め設定した割合で順次増加させ、溶接中に溶接電極
間電圧を監視して半サイクル分の通電に対する溶接電極
間電圧を前記半サイクル分の通電範囲にわたって積分し
た積分値の累積値の増加値が予め設定した値以下になっ
た時点に通電をカットすることを特徴とする抵抗溶接制
御方法。
The welding current is increased sequentially at a preset rate after a preset time period has elapsed from the start of energization in resistance welding, and the voltage between welding electrodes is monitored during welding to adjust the voltage between the welding electrodes for half a cycle of energization to the same value as that for the half cycle. 1. A resistance welding control method, characterized in that energization is cut off when an increase in the cumulative value of integral values integrated over a energization range becomes equal to or less than a preset value.
JP21864282A 1982-12-13 1982-12-13 Resistance welding control method Granted JPS58112673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21864282A JPS58112673A (en) 1982-12-13 1982-12-13 Resistance welding control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21864282A JPS58112673A (en) 1982-12-13 1982-12-13 Resistance welding control method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3120280A Division JPS5831271B2 (en) 1980-03-11 1980-03-11 Resistance welding control method

Publications (2)

Publication Number Publication Date
JPS58112673A true JPS58112673A (en) 1983-07-05
JPS6159835B2 JPS6159835B2 (en) 1986-12-18

Family

ID=16723143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21864282A Granted JPS58112673A (en) 1982-12-13 1982-12-13 Resistance welding control method

Country Status (1)

Country Link
JP (1) JPS58112673A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007272550A (en) * 2006-03-31 2007-10-18 Nichicon Corp Voltage fluctuation compensation device
JP2008142773A (en) * 2006-11-17 2008-06-26 Sekisui Chem Co Ltd Resistance welding monitoring method and resistance welding controlling method
CN108290242A (en) * 2015-11-09 2018-07-17 弗罗纽斯国际有限公司 Method for carrying out data transmission in the case of Resistance welding current source and the Resistance welding current source for executing this method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007272550A (en) * 2006-03-31 2007-10-18 Nichicon Corp Voltage fluctuation compensation device
JP2008142773A (en) * 2006-11-17 2008-06-26 Sekisui Chem Co Ltd Resistance welding monitoring method and resistance welding controlling method
CN108290242A (en) * 2015-11-09 2018-07-17 弗罗纽斯国际有限公司 Method for carrying out data transmission in the case of Resistance welding current source and the Resistance welding current source for executing this method
US10529227B2 (en) 2015-11-09 2020-01-07 Fronius International Gmbh Method for data transmission in the case of a resistance welding current source and resistance welding current source for carrying out the method

Also Published As

Publication number Publication date
JPS6159835B2 (en) 1986-12-18

Similar Documents

Publication Publication Date Title
US6995338B2 (en) Method and apparatus for short circuit welding
EP0669182B1 (en) Method for controlling resistance welding using fuzzy reasoning
US6512200B2 (en) Welding control system
US20040222204A1 (en) Method and apparatus for arc welding with wire heat control
US4456810A (en) Adaptive schedule selective weld control
US20060249497A1 (en) Electric arc welder and method for controlling the welding process of the welder
KR20050013067A (en) Electric arc welder and method for controlling the welding process of the welder
EP0947276A1 (en) Method of and apparatus for initiating a welding arc
US4745255A (en) Method and apparatus for welding current regulation for a resistance welding machine
JPS58112673A (en) Resistance welding control method
US5889262A (en) System for and method of automatically controlling amount of input heat in high-frequency electric resistance welding machine
JPS58112674A (en) Resistance welding control method
JPS58112675A (en) Resistance welding control method
JPS5831271B2 (en) Resistance welding control method
JPH0221357B2 (en)
JP2732154B2 (en) Inverter type resistance welding control method
JPS61253175A (en) Power source for arc welding
JPH0869877A (en) Electrode control method of vacuum arc melting device
JPS6016875B2 (en) Resistance welding control method
JP3128500B2 (en) Nugget formation monitoring device
JPH0275476A (en) Spot welding method
JPS6044073B2 (en) Resistance welding control method
SU996135A1 (en) Method of automatic control of resistance welding process
JPS6044074B2 (en) Resistance welding control method
JPS622914B2 (en)